
MANIFOLDS ASSOCIATED TO SIMPLE GAMES

PAVEL GALASHIN1 AND GAIANE PANINA2

Abstract. We describe a way of producing an (n−3)-dimensional man-
ifold K(G) starting with an Alexander self-dual simplicial complex G on n
vertices (or, in another terminology, by a simple game with constant sum
with n players). The construction presents K(G) explicitly, by describing
its regular cellulation.

1. Introduction

It is a usual praxis that some combinatorial data produce a geometric
object. Classical examples are permutohedron, associahedron [15], other “fa-
mous” polytopes, including graph-associahedra and nestohedra [12], small
covers, and also Bier spheres [5, 10], and their generalizations [1].

In the paper, we act in a similar way starting with an Alexander self-dual
simplicial complex, or equivalently, with a simple game G as a combinato-
rial data. We build up a cell complex K(G), whose construction although
resembles very much the combinatorics of the permutohedron, yet depends
on G. The cell complex proves to be a combinatorial manifold which we call
the manifold associated to the simple game. Unlike Bier’s construction, we
obtain manifolds that are not necessarily spheres: in particular, they cover
configuration spaces of all existing planar flexible polygons.

The rules of building the cell complex are borrowed from the cell decom-
position of the configuration space of flexible polygons,(see [11], also Section
2). This motivates us to treat a simple game G as a quasilinkage since it
provides a natural generalization of polygonal linkages. By the same reason
we call the cell complex K(G) the configuration space of the quasilinkage.

The main result is the construction of K(G) together with Theorem 4.3,
which states that K(G) is a manifold locally isomorphic to configuration
space of some flexible polygon. We also establish a number of properties
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of the manifold K(G): local combinatorial analysis, PL structure, canonical
smooth structure, Morse surgeries.

The paper is organized as follows. In Section 2 we give all necessary
information on flexible polygons and simple games.

In Section 3 we give small examples of simple games and introduce an
elementary flip of a simple game which amounts to a Morse surgery on the
associated manifold K(G).

In Section 4 we associate to a simple game G a cell complex K(G) by
applying the rules from [11]. We prove that K(G) is locally isomorphic to
K(L) for some flexible polygon L (however, L depends on the location, and
there may be no flexible polygon associated to the entire complex). As a
corollary, we immediately see that K(G) is a (n− 3)-manifold.

In Section 5 we show that the manifold K(G) is homeomorphic to the
moduli space of stable point configurations on S1 for an appropriate definition
of stability.

Finally, in Section 6 we compare K(G) with already existing combinatorial
objects: the spaceM0,n(R) of real points of the moduli space of n-punctured
Riemann spheres, the space of stable point configurations on RP 1 (for an
associated with G notion of stability), and with Bier spheres.

2. Preliminaries

2.1. Polygonal linkages: definitions and overview of the results.
Given a vector L = (l1, ..., ln) ∈ Rn

+ of n positive real numbers, consider
n rigid bars of lengths l1, ..., ln joined by revolving joints in a closed chain.
Such a construction is called a polygonal linkage. By M(L) we denote its
moduli space, or the space of planar configurations :

M(L) := {z1, ..., zn ∈ R2 : |zi| = 1,
∑

lizi = 0}/SO(2)

= {z1, ..., zn ∈ R2 : |zi| = 1,
∑

lizi = 0, z1 = 1} .
Denote by [n] the set {1, ..., n}.

Definition 2.1. The length vector L is called generic, if there is no subset
J ⊂ [n] such that ∑

i∈J

li =
∑
i/∈J

li.

Throughout the paper, we consider only generic length vectors L.

The hyperplanes ∑
i∈J

li =
∑
i/∈J

li

called walls subdivide Rn
+ into a collection of chambers.
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Here is a (far from complete) summary of facts about M(L):

• For a generic length vector, M(L) is a smooth manifold [8].
• The topological type of M(L) depends only on the chamber of L [8].
• As it was shown in [11], M(L) admits a structure of a regular cell

complex. The combinatorics is very much related (but not equal) to
the combinatorics of the permutohedron. The construction will be
explained in details in Section 4.

Definition 2.2. For a generic length vector L, a subset J ⊂ [n] is called
long, if ∑

i∈J

li >
∑
i/∈J

li.

Otherwise, J is called short. The set of all short sets we denote by S(L).

• Homology groups of M(L) are free abelian groups. For a generic
length vector L, the rank of the homology group Hk(M(L)) equals
ak + an−3−k, where ai is the number of short subsets of size i + 1
containing the longest edge (see [7]).

Cell structure on the configuration space of a linkage. Fix a generic
length vector L. We remind that to describe a regular cell complex, it suffices
to list all the (closed) cells ranged by dimension, and to describe incidence
relations for closed cells.

Definition 2.3. A cyclically ordered partition S1, ..., Sk of [n] into k non-
empty subsets is called admissible, if every Si, 1 ≤ i ≤ k, is a short set.

Theorem 2.4. [11] The cell complex K(L) described below is a combinatorial
manifold homeomorphic to the configuration space M(L):

(1) The k-cells of the complex are labeled by (all possible) admissible cycli-
cally ordered partition of [n] into (n − k) non-empty subsets. Given
a cell C, its label is denoted by λ(C).

(2) A closed cell C belongs to the boundary of another closed cell C ′

whenever the label λ(C ′) is finer than the label λ(C). �

Let us explain in some more details how the cell structure appears. We
put labels on the elements of the configuration space: according to definition,
each configuration is a collection of unit vectors {zi}. If the vectors are
different, there is an induced cyclic ordering on [n]. If some of them coincide,
there arises a cyclically ordered partition of [n], whose parts correspond to
coinciding sets of vectors. Clearly, all the labels are admissible partitions.

Two points from M(L) (that is, two configurations) are equivalent if they
have one and the same label. Equivalence classes of M(L) are the open
cells. The closure of an open cell in M(L) is called a closed cell. For a cell
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C, either closed or open, its label λ(C) is defined as the label of (any) its
interior point. The collection of open cells yields a structure of a regular cell
complex which is dual to the complex K(L).

We stress that the complex K(L) depends only on the family of short
subsets S(L). This hints that this construction can be extended to simple
games.

Simple games. A family G of subsets of [n] = {1, ..., n} is called a simple
game with constant sum, or (in this paper) just a simple game for short, or
an Alexander self-dual complex if it satisfies the following properties:

(1) G contains all singletons: for any i ∈ [n], {i} ∈ G.
(2) Monotonicity: if S ∈ G, and T ⊂ S then T ∈ G.
(3) Strong complementarity: if S ∈ G then ([n] \ S) /∈ G , and,

conversely, if S /∈ G, then ([n] \ S) ∈ G.

In Game theory, the elements of G are called the loosing coalitions. One
imagines that there are n players such that each subset (= each team) either
beats its complement or looses. With this understanding the above axioms
have a very natural meaning.

Assume that a simple game G is fixed.
Following the aforementioned motivation by polygonal linkages, we call

any S ∈ G a G-short set, or simply a short set, and any S /∈ G a long set.

Remark 2.5. Each polygonal linkage L yields a simple game by the above
defined short sets family S(L) (see Definition 2.1).

To the best of our knowledge it was D. Zvonkine [? ] who observed the
relation between polygonal linkages and simple games (he called the latter
”voting schemes”)

Definition 2.6. A simple game G is called real, if there exists a length vector
L such that S(L) = G. Otherwise, G is called imaginary.

Here we list some additional properties that are true for real simple games,
but in general may not hold for imaginary ones:

(1) Comparability: For any A,B ∈ 2[n], and any i, j /∈ A ∪ B, if A ∪ i
is long, A∪ j is short and B ∪ i is short then B ∪ j is also short. The
property means that the edge i is in a sense ”longer” than j.

(2) Trade robustness: Given k long subsets, there is no interchanging
of the elements of these sets, which makes all of them short.

In [13] it was shown, that a simple game is a real game (a weighted majority
game, in the terminology of [13]) if and only if it satisfies the trade robustness
condition. Other characterizations of real simple games are given in [6, 14].
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3. Simple games: tools and examples

3.1. Small symmetric examples and non-examples. Elementary case
analysis shows that for n ≤ 5 there are no imaginary simple games. However,
for n ≥ 6 there are many. We start with some symmetric examples of
imaginary simple games in low dimensions.

Definition 3.1. We say that a simple game G is symmetric if for any i, j ∈ [n]
there exists an element σ of the symmetric group Sn such that:

(1) σ takes i to j, and
(2) σ takes short sets to short sets. (Equivalently, if σ takes long sets to

long sets.)

Example 3.2. [14] Let n = 6. A symmetric simple game is defined by the
following rules:

(1) All 2-element sets are short. (Equivalently, all 4-element sets are
long.)

(2) The only ten short 3-element subsets are:

123, 124, 135, 146, 156, 236, 245, 256, 345, 346.

We give another example for n = 7, which is also symmetric:

Example 3.3. [14] A symmetric simple game for n = 7 is defined as follows:

(1) All 2-element subsets are short.
(2) The only seven 3-element long subsets are:

123, 145, 167, 257, 246, 347, 356.

Example 3.3 actually corresponds to Fano plane, and its automorphism
group is known to be transitive, so this example is again symmetric.

Example 3.2 can be obtained in the following way: take an icosahedron
and glue together all pairs of the opposite points. We get a simplicial com-
plex with 6 vertices and 10 triangles which is equal to the one described in
Example 3.2. It therefore corresponds to the 6-vertex triangulation of pro-
jective 2-plane, and can be generalized as vertex-minimal triangulation of
projective space only in dimensions 4, 8, 16, see [2, 3].

Lemma 3.4. (1) If n is odd, there exists exactly one symmetric real sim-
ple game. It assigns equal lengths to all the edges. Equivalently, a set
is short whenever its size is smaller than n/2.

(2) If n is even, there exists no symmetric simple game.

Proof. Fix any symmetric real simple game G with length vector L. For
j ∈ [n] and k ∈ N, denote by ak(j) the number of short subsets of size
k + 1 containing j. By symmetry assumption, ak(j) does not depend on
j. Now assume that li < lj for some i, j ∈ [n]. Take a set A ⊂ [n] such
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that i, j /∈ A. If A ∪ j is short, then A ∪ i is also short. If A ∪ i is short
and A ∪ j is long, then a|A|(i) > a|A|(j), which contradicts the symmetry
assumption. Therefore A ∪ j is short if and only if A ∪ i is short for any
i, j ∈ [n]. This means that for any k, all the k-element subsets of [n] are
either simultaneously short or simultaneously long. This immediately implies
the result of the lemma. �

Corollary 3.5. Examples 3.2 and 3.3 present imaginary simple games.

Proposition 3.6. For n = 8, there is no symmetric simple game (neither
real, no imaginary).

Proof. There are
(
8
4

)
= 70 four-element subsets of [n]. For any simple game,

exactly 35 of them are long, and 35 of them are short. By symmetry, any
of the 8 elements of [n] should be contained in the same number of short
4-element subsets, therefore 35 · 4 should be divisible by 8, but it is not. �

3.2. Flips of simple games.

Definition 3.7. Let G be a simple game and let T be a maximal (by inclu-
sion) subset of [n] such that T ∈ G. Define the flip FT (G) as follows:

FT (G) := (G \ {T}) ∪ {([n] \ T )}

In other words, a flip is an operation that makes the G-short set T long,
and its complement short, leaving all the other sets unchanged.

Proposition 3.8. FT (G) is again a simple game.

Proof. The strong complementarity property obviously holds for FT (G), so
it remains to check monotonicity for FT (G). Assume that S ⊂ S ′ ⊂ [n], and
S ′ ∈ FT (G). We need to prove that S ∈ FT (G). If S ′ 6= T := ([n] \ T ) then
every proper subset of S ′ is G-short and is not equal to T by maximality, so
the only remaining case is S ′ = T . But every proper subset of T is G-short,
again, by maximality of T , so the proposition is proven. �

Example 3.9. Take the length vector L = (l1, ..., l6) with

l1 = l2 = l3 = 1 + ε, l4 = l5 = l6 = 1.

It corresponds to a real simple game S(L). Now take the (maximal short)
set T = {4, 5, 6} and make a flip G := FT (S(L)). This simple game is
imaginary, because it violates the comparability condition: {4, 5, 6} is G-
long, while {1, 5, 6} is G-short, so 4 must be longer than 1, but, from the
other hand, {1, 3, 5} is G-long, while {4, 3, 5} is G-short.

This example differs from Example 3.2. One more example of an imaginary
simple game arises from the below proposition.
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Proposition 3.10. Any flip of an imaginary simple game G from Example
3.2 is again imaginary.

Proof. Because of the total symmetry of G, it does not matter what set we
will choose to be flipped, so we can choose T := {1, 2, 3}. But the simple
game F := FT (G) still violates the comparability condition: the sets {1, 2, 4}
and {3, 4, 5} are F -short while the sets {3, 2, 4} and {1, 4, 5} are F -long, so
1 and 3 are not comparable. �

Proposition 3.11. For a fixed n, any two simple games are connected by a
sequence of flips.

Proof. Take an arbitrary simple game G, and take any maximal short set
T ⊂ [n] such that 1 ∈ T . Apply the flip FT (G), take any other maximal
short set containing 1, and make it long by another flip, and so on. After a
finite number of steps we get a simple game G ′ such that the set S is G ′-long
if and only if it contains 1. This simple game corresponds to the real simple
game S(L) for the length vector L = (1, ε, ε, ..., ε). �

Definition 3.12. (Freezing for simple games) Assume that S1, ..., Sk is a
(non-ordered) partition of [n] into k non-empty short sets. We build a new
simple game FREEZE(G) on the set [k] by the rule:

J ⊂ [k] is short iff
⋃
i∈J

Si is short.

4. Manifold associated to a simple game

Assume that a simple game, or, equivalently, a quasilinkage G is fixed.
Although the quasilinkage in general has no configurations, we can literally
repeat the construction of the cell complex for the configuration.

Definition 4.1. A cyclically ordered partition S1, ..., Sk of [n] into k non-
empty subsets is called G-admissible, if every Si, 1 ≤ i ≤ k, is G-short.

Definition 4.2. For a simple game G its configuration space K(G) is the cell
complex defined as follows:

(1) The k-cell of the complex are labeled by (all possible) admissible
cyclically ordered partition of [n] into (n − k) non-empty subsets.
Given a cell C, its label is denoted by λ(C).

(2) A closed cell C belongs to the boundary of another closed cell C ′

whenever the label λ(C ′) is finer than λ(C).

The complex is a combinatorial manifold, which is locally isomorphic to
the complex K(L) of some real linkage:
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Theorem 4.3. (1) For every vertex v of cell complex K(G), there exists
a length vector Lv such that the star of the vertex v is combinatorially
isomorphic to the star of some vertex of K(L).

(2) For every cell σ of cell complex K(G), there exists a length vector Lσ
such that the star of the cell σ is combinatorially isomorphic to the
star of some vertex of K(Lσ).

(3) For every simple game G, the complex K(G) is a combinatorial man-
ifold.

Proof. (1) Fix a vertex v of K(G). By construction, it is labeled by some G-
admissible cyclically ordered partition of [n] into n short non-empty subsets,
that is, by a cyclic ordering on [n]. Without loss of generality we may assume
that v is labeled by the partition

λ(v) = {1}, {2}, ..., {n}.
The partition p should be viewed as numbers 1, ..., n placed on the circle

counterclockwise.
We need the following observation: let σ be a k-cell of M(G) labeled by

a partition λ = S1, ..., Sn−k. Then σ is incident to v if and only if each
of the sets Si is of the form {a, a + 1, ..., a + b} for some natural numbers
a and b (the sums are taken modulo n). It is true because otherwise the
partition λ(v) would not be a refinement of S. Let us call the sets of the
form {a, a+ 1, ..., a+ b} the segments of the partition λ(v).

Now the statement (1) follows from the lemma:

Lemma 4.4. In the above notation, there exists a length vector Lv (depend-
ing on the vertex v) such that for any segment T of the partition λ(v), the
set T is G-short if and only if T is Lv-short.

Proof of the lemma.
To construct such a length vector, we will need some additional observa-

tions. Recall that λ(v) is viewed as numbers 1, ..., n placed on the circle.
There are n ways to break the circle into a line: (1, 2, ..., n), (2, 3, ..., n, 1),
etc. Each such way will be called a separator position.

Define a positive number q(s) for each of the separators as follows. Assume
for example that s = (2, ..., n, 1). The value q = q(s) ∈ [n] is uniquely
defined by the conditions: (1) the set {2, 3, ..., q−1} is short, and (2) the set
{2, 3, ..., q} is long.

We are now ready to define the length vector. For any j ∈ [n] set

lj := 1 + |q−1(j)|,
or, equivalently,

lj := 1+
1

2

∣∣{S ⊂ [n] : S is a short segment of λ(v);S∪{j} is a long segment of λ(v)}
∣∣.
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It is clear that
∑
li = 2n. We need to prove that the segment S of λ(v) is

short iff
∑

j∈S lj < n. Note that
∑

j∈S lj = |S|+ |q−1(S)|.
Take arbitrary short segment S of λ(v). If s is a separator position adjacent

to some element of S (there are |S|+ 1 such separator positions), then it is
obvious that q(s) /∈ S. Therefore |q−1(S)| ≤ n − |S| − 1, because the total
number of separator positions equals to n. So for a short segment S of λ(v)
we conclude that

∑
j∈S lj = |S|+ |q−1(S)| ≤ n− 1. Lemma is proven. �

(2) The star of a cell can be reduced to the case (1) by freezing technique.
Indeed, for a cell σ labeled by λ(σ) = S1, S2, ..., Sk, we freeze all the entries
in each of the sets Si, and arrive at a simple game on the set [k].

(3) Follows directly from (1), (2), and Theorem 2.4. �

The below construction gives an analysis of the vertex links of the complex
M(G).

Assume that a simple game G and a vertex v of M(G) are fixed. Theorem
4.3 assigns to v a length vector Lv = (l1, ..., ln). Without loss of generality
we may assume that l1 + ... + ln = 2π and that v is labeled by the cyclical
ordering λ(v) = (1, 2, ..., n).

Decompose the (metric) circle S1 centered at the origin 0 into a union of
arches of lengths l1, .., ln. The endpoints of the arches give the Gale diagram
(see [15]) of some convex polytope K = K(F, v) ⊂ Rn−3.

Proposition 4.5. The link of the vertex v is combinatorially dual to bound-
ary complex of the above defined convex polytope K.

Proof. The vertices of K correspond to partitions of [n] into n − 1 short
subsets, and, equivalently, to the short pairs of the form (i, i+1) (this pair is
represented by the vector ui. By a property of Gale diagrams, the vertices of
the set I ⊂ [n] form a facet if and only if the convex hull conv({ui|i ∈ ([n]\I)}
contains the origin 0 the in its relative interior. This means that the angle
between every two succeeding vectors of the set ([n] \ I)} is smaller than
π. Let the indices i1, i2 /∈ I be such that for any i1 < i < i2, we have
i ∈ I. Then the angle between ui1 and ui2 is equal to the sum

∑
i1<i≤i2 li.

So the vertices of the set I form a facet if and only if I gives a refinement of
partition λ(v) into short subsets. This corresponds to the cell incident to v,
which completes the proof of the proposition. �

Theorem 4.6. For any simple game G, the complex K(G) admits a PL
structure.

Proof. The proof is literally the same as the proof of the analogous theorem
for real linkages from [11].

For the proof we need some important property of the standard permu-
tohedron which is defined as the convex hull of the set of points obtained
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by all possible permutations of coordinates of the point (1, 2, ..., n) ∈ Rn.
Its crucial property is that all faces of standard permutohedron are metric
Cartesian products of standard permutohedra of smaller n. This follows
almost straightforwardly from zonoid representation of the standard permu-
tohedron.

With this knowledge let us come back to our cell complex. Each of its cells
is combinatorially equivalent to a Cartesian product of permutohedra. We
metrically realize each of the cells by the Cartesian product of standard per-
mutohedra. Due to the above property, this metric realization is consistent
on a cell and on its faces. �

The next proposition gives us information about what happens to the
configuration space of after a flip.

Proposition 4.7. Let G be a simple game and let T be any maximal G-
short subset of [n]. Then the configuration space of the flipped simple game
M(FT (G)) differs from M(G) by a Morse surgery of index (n− |T | − 1).

Proof. Consider the cell complex M(G). The flip deletes from the complex
some of the cells and adds some new cells. Assume that a cell labeled by
some partition S = (S1, ..., Sk) gets deleted. This means that T ⊆ Si for
some i. Since T is a maximal G-short set, we have T = Si. Therefore, all
the (n− k)-cells which are deleted during the flip are labeled by all possible
partitions of type (T, S1, S2, ..., Sk−1). Thus we arrive at the cell structure of
the boundary of the permutohedron (see [15]) Πn−|T | ⊂ Rn−|T |−1 multiplied
by a disk. The cell structure ofM(G) converts this disk to the permutohedron
Π|T |. So, we cut out a cell subcomplex (∂Πn−|T |) × Π|T | and then we patch
instead the cell complex Πn−|T | × ∂Π|T | along the identity mapping on their
common boundary ∂Πn−|T | × ∂Π|T |. This operation is the Morse surgery of
index (n− |T | − 1). �

Remark 4.8. Propositions 4.7 and 3.11 give an alternative proof of Theorem
4.3.

5. Stable point configurations

There is an important relationship between configuration space of a polyg-
onal linkage and moduli space of stable point configurations on S1. The
relationship almost automatically extends to simple games. We stress that
the below is a combination of the classical construction borrowed from [8]
with the cell decomposition approach from [11].

Assume that a simple game G is fixed.

Definition 5.1. A configuration of n (not necessarily distinct) marked points
p1, ..., pn on the unit circle S1 is called G-stable if the following holds:
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If the points {pi}i∈I coincide, then the set I ⊂ [n] is G-short.

We identify S1 with the real projective line RP 1, which enables us to
speak of diagonal action of the group PSL(2,R) on the space of all stable
configurations. We introduce the quotient space

Mst(G) = {space of G-stable configurations}/PSL(2,R).

Theorem 5.2. Given a simple game G,

(1) Mst(G) is a (n− 3)-dimensional manifold.
(2) Mst(G) is homeomorphic to M(G).
(3) The stratification of the space Mst(G) by combinatorial types is a

regular cell complex dual to the cell complex M(G).

Proof. We label each point configuration by its combinatorial type – the
cyclically ordered partition of the set [n]. The labels do not change under the
action of the group PSL(2,R). Equivalence classes are open balls of different
dimensions, and can be considered as open cells of some cell decomposition.

We arrive at the cell complex on Mst(G) defined as follows:

(1) The k-cell of the complex are labeled by (all possible) admissible
cyclically ordered partition of [n] into k+3 non-empty subsets. Given
a cell C, its label is denoted by λ(C).

(2) A closed cell C belongs to the boundary of another closed cell C ′

whenever the label λ(C ′) is finer than λ(C ′).

This cell decomposition is obviously combinatorially dual to the cell complex
K(G). �

6. Concluding remarks

We conclude the paper by a survey-type paragraph indicating relationships
of our construction with already existing objects.

Deligne-Mumford-Knudsen compactification of M0,n(R). The space
M0,n(C) of Riemann spheres with n distinct labeled punctures plays an im-
portant role in many respects and has been studied extensively. In the
present paper we are interested in the space of its real points M0,n(R), e.g.
points that are fixed under complex conjugation. It equals the space of con-
figurations of n labeled distinct points on S1 = RP 1 (modulo projective
transforms). The spaces M0,n(C) and M0,n(R) are obviously non-compact,
since the points cannot collide. People were looking for nice ways to compact-
ify them. Probably the most remarkable is the Deligne-Mumford-Knudsen
compactification M0,n(C) ↪→ M0,n(C), which adds a normal crossing divisor
and yields a smooth variety of complex dimension n − 3. This gives rise
to the compactification M0,n(R) ↪→ M0,n(R), which can be described as a
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series of blow-ups coming from De Concini and Procesi wonderful compact-
ification [4] for the braid arrangement, see [9]. This compactification comes
automatically with a cell decomposition into a number of associahedra.

Very informally, in this setting the blow-ups mean that when two points
come close to each other, the limit is not a point, but a new branch, con-
taining the two points.

One more compactification comes from flexible polygons. As the
Deligne-Mumford-Knudsen compactification, it also comes with some cellu-
lation. But now the cells are Cartesian products of permutohedra.

In fact, this in not “one”, but a series of different compactifications, pro-
vided by the diversity of flexible polygons. For all of them, the points are
allowed to collide, but not all the collisions are admissible. The specification
of admissible collisions comes from a flexible polygon, or (in other terminol-
ogy) from a polygonal linkage.

Let us fix a flexible polygon L = (l1, ..., ln).
A configuration of (not necessarily distinct) points p1, ..., pn on S1 = RP 1

is L-stable if whenever for a set I ⊂ [n] = {1, ..., n} we have

pi = pj ∀ i, j ∈ I ,

then the following condition should hold:∑
i∈I

li <
∑
i/∈I

li.

In other words, if we think of the points as of weighted ones, the condition
says that the weight of the colliding points should not exceed one half of the
total weight of all the points.

It is known (see [8]) that the configuration space is diffeomorphic to the
quotient of the space of all stable configurations by the diagonal action of
the group PSL(2,R):

M(L) ∼= {L-stable configurations }/PSL(2,R).

As we have conclude from Section 5, yet another compactification K(G)
comes from simple games. Its cells are again Cartesian products of permu-
tohedra, see Section 4.

Bier spheres. In 1992 Thomas Bier explained how to cook up a simplicial
(n−2)-spheres on 2n vertices out of a simplicial complex on n vertices by tak-
ing the deleted join of the complex with its Alexander dual. In particular,
each simple game gives an associated Bier sphere. In turn, our construc-
tion assigns a combinatorial (n− 3)-manifold (generically, not necessarily a
sphere) with each simple game.
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We try to compare the two constructions and indicate some elementary
similarities. However, it remains an open problem whether there exists a
deeper relation between these two objects.

For a simplicial complex ∆ its Alexander dual simplicial complex is defined
as ∆∗ := {F ∈ [n] : [n] \ F /∈ ∆}.

Right from the definition it follows that a simple game is an Alexander
self-dual complex, and vise versa. The deleted join of the complex with
its Alexander dual is called the Bier sphere associated to ∆. The definition
implies that the simplices of the deleted join are labeled by ordered partitions
of the set [n] into three parts (A,B,C) such that:

(1) A ∈ ∆,
(2) C ∈ ∆∗, that is [n] \ C /∈ ∆.
(3) B is just any; however, one concludes that B is never empty.
(4) A and B may be empty, but not both of them at the same time.

The incidence relations in the complex are the following: a simplex (A,B,C)
belongs to (A′, B′, C ′) whenever

A ⊆ A′, B ⊆ B′.

A Bier sphere is indeed a combinatorial sphere. In [10] it is proven in-
ductively, by showing that adding a simplex to ∆ corresponds to a bistellar
move, that is, to cutting off a triangulated (n − 2)-ball and replacing it by
another triangulation of the same ball.

Therefore, a flip applied to a simple game G amounts to a pair of bistellar
moves with disjoint supports on the associated Bier sphere.

In turn, we have seen that a flip amounts to a Morse surgery on the
manifold K(G).
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