
POSITROID VARIETIES AND CLUSTER ALGEBRAS

PAVEL GALASHIN AND THOMAS LAM

Abstract. We show that the coordinate ring of an open positroid variety coincides with the
cluster algebra associated to a Postnikov diagram. This confirms conjectures of Postnikov,
Muller–Speyer, and Leclerc, and generalizes results of Scott and Serhiyenko–Sherman-
Bennett–Williams.

Positroid varieties are subvarieties of the Grassmannian that first appeared in the study
of total positivity and Poisson geometry [Lus98, Pos06, BGY06, KLS13]. In this paper we
establish the following result, see Theorem 3.5.

Theorem. The coordinate ring C[
◦
Πv,w] of an open positroid variety

◦
Πv,w is a cluster algebra.

For the top-dimensional open positroid variety, this is due to Scott [Sco06], a result
that motivated much of the subsequent work. Combinatorially, positroid varieties are
parametrized by Postnikov diagrams, and each such diagram gives rise to a quiver whose
vertices are labeled by Plücker coordinates on the Grassmannian, see [Pos06, Sco06]. This
data gives rise to a cluster algebra of [FZ02] whose cluster variables are rational functions on
the Grassmannian, and since the work of Scott, it has been expected that this cluster alge-

bra coincides with the coordinate ring of
◦
Πv,w. This conjecture was made explicit by Muller

and Speyer [MS17, Remark 4.6], and was established recently in the special case of Schubert
varieties by Serhiyenko–Sherman-Bennett–Williams [SSBW19]. Another closely related con-

jecture was given by Leclerc [Lec16], who constructed a cluster subalgebra of C[
◦
Πv,w] using

representations of preprojective algebras. We show (Corollary 3.7(i)) that these two cluster
structures coincide. These cluster structures have also been compared in [SSBW19]; our
work differs from theirs by switching from a left-sided to a right-sided quotient for the flag
variety, i.e., from B−\G to G/B−, see Remark 3.2.

Leclerc’s conjectures and results apply in the more general setting of open Richardson vari-
eties. We hope to return to cluster structures of open Richardson varieties in the future [GL].
Some other closely related cluster structures include double Bruhat cells [BFZ05, GY16],
partial flag varieties [GLS08], and unipotent groups [GLS07].

Combining our main result with the well-developed machinery of cluster algebras has
many consequences for the structure of open positroid varieties, see e.g. the introduction
of [SSBW19]. For instance, the existence of a green-to-red sequence [FS18], together with

the constructions of [GHKK18] endow C[
◦
Πv,w] with a basis of theta functions with positive

structure constants. Additionally, the results of [LS16] imply that H∗(
◦
Πv,w,C) satisfies the
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curious Lefschetz property, which has implications for extension groups of certain Verma
modules that we aim to explore in future work.

Finally, we show that the totally nonnegative part Π>0
v,w of

◦
Πv,w (as defined by [Lus98,

Pos06]) is precisely the subset of
◦
Πv,w where all cluster variables take positive real values,

see Corollary 4.4.
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the start of this project and inspired the results in Section 2. The second author thanks David
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Outline. We discuss the combinatorics of Le-diagrams in Section 1. The cluster algebra
A(QD) coming from a Le-diagram D consists of some rational functions on the Grassman-
nian. As we discuss in Section 3.4, in order to prove our main result, one needs to show two

inclusions: A(QD) ⊆ C[
◦
Πv,w] and A(QD) ⊇ C[

◦
Πv,w]. For the first inclusion, we rely on the

results of Leclerc [Lec16]. In particular, following ideas of [SSBW19], we show in Section 2
that the cluster algebra of [Lec16] is isomorphic to A(QD) (i.e., they have isomorphic quiv-

ers). We then prove the first inclusion A(QD) ⊆ C[
◦
Πv,w] in Section 3, see Corollary 3.7(ii).

We show the second inclusion A(QD) ⊇ C[
◦
Πv,w] in Section 4, using the results of Muller–

Speyer [MS17, MS16], of Muller [Mul13], and of Berenstein–Fomin–Zelevinsky [BFZ05].

Throughout the paper, we fix a positive integer n, and an integer k ∈ [n] := {1, 2, . . . , n}.
For a, b ∈ Z, we let [a, b] := {a, a+ 1, . . . , b} if a ≤ b, and [a, b] := ∅ otherwise.

1. Le-diagram cluster algebra

Let W = Sn be the symmetric group on n letters. For i ∈ [n − 1], let si ∈ W denote
the simple transposition of i and i + 1. Every permutation w ∈ W can be written as a
reduced word w = si1 · · · sim (where m = `(w) is the length of w). In this case, w :=
(i1, . . . , im) is called a reduced expression for w. For j ∈ [n] and w = si1 · · · sim , we let
w(j) := si1(. . . (sim(j)) . . . ), and for A ⊂ [n], we denote wA := {w(a) | a ∈ A}.

Let J = [n] \ {k}, and denote by W J ⊂ W the set of k-Grassmannian permutations, i.e.,
permutations w ∈ W satisfying w(1) < · · · < w(k) and w(k + 1) < · · · < w(n). In other
words, we have w ∈ W J if and only if w = 1 or each reduced word for w ends with sk.

Let QJ denote the set of pairs (v, w) where w ∈ W J and v ≤ w in the Bruhat order on
W . The elements of QJ label positroid varieties, see Section 3.1. By [MR04, Lemma 3.5],
every reduced expression w = (i1, . . . , im) for w contains a unique “rightmost” reduced
subexpression v for v, called the positive distinguished subexpression. We let J◦v ⊂ [m]
denote the set of indices not used in v.

1.1. Le-diagrams and subexpressions. We use English notation for Young diagrams and
label their boxes in matrix notation. A Le-diagram D is a Young diagram λ, contained in
a k × (n− k) rectangle, together with a filling of some of its boxes with dots, satisfying the
following condition: if a box b is both below a dot and to the right of a dot, then b must
contain a dot.
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Figure 1. The Young diagram λ, Le-diagram D, and graph G(D) corre-
sponding to (v, w) = (s2, s2s1s4s3s2).

We describe a well-known bijection [Pos06, Section 20] between elements of QJ and Le-
diagrams. First, Grassmannian permutations w ∈ W J are in bijection with Young diagrams
λ ⊆ k × (n − k): placing sk+j−i into the box (i, j) of λ, a reduced word for w is obtained
by reading the boxes from right to left along each row, starting from the lowest row. The
southeastern boundary edges of λ are labeled 1, 2, . . . , n from bottom-left to top-right. Thus
the southern boundary edges are labeled by the elements of w[k + 1, n].

Given v ≤ w, we mark the letters not used by the positive distinguished subexpression
for v with a dot, and this gives a Le-diagram denoted D(v, w). For example, if (v, w) =
(s2, s2s1s4s3s2), we have the Young diagram λ = (3, 2) and the Le-diagram D(v, w) in
Figure 1(left and middle). Note that w[k+ 1, n] = w{3, 4, 5} = {1, 2, 4} are the labels of the
southern boundary edges.

Throughout the paper, we assume (v, w) ∈ QJ and denote D := D(v, w). We also fix a
choice of w = (i1, . . . , im), v, and J◦v as above.

1.2. The graph G(D). To a Le-diagramD we associate a planar graphG(D) embedded into
the disk. The boundary of λ is taken to be the boundary of the disk, and boundary vertices
are placed at the east and south boundary steps of λ, labeled 1, 2, . . . in counterclockwise
order, starting from the southwest corner of λ. From each dot in D, we draw a hook: one
line going eastward, and one line going southward, until they hit the boundary. The interior
vertices of G(D) correspond to the dots of D. Each dot of D corresponds to an element
r ∈ J◦v, and we label the associated vertex of G(D) by tr. The edges of G(D) are horizontal
or vertical line segments connecting two dots. See Figure 1(right).

1.3. Quiver. A quiver Q is a directed graph without directed cycles of length 1 or 2. An
ice quiver is a quiver Q such that each vertex of Q is declared to be either frozen or mutable.
We always assume that an ice quiver contains no arrows between frozen vertices. In this
section, we explain how to associate an ice quiver QD to a Le-diagram D = D(v, w).

For each r ∈ J◦v, the vertex of G(D) labeled by tr is the northwestern corner of some face
of G(D), and we label this face by Fr. Label the remaining face of G(D) (the one adjacent
to the northwestern boundary of λ) by F0. Thus the neighborhood of any vertex of G(D)
looks as in Figure 2.

Construct a quiver QD whose vertices are {Fr}r∈J◦v , i.e., the faces of G(D) excluding F0.
For each r ∈ J◦v, depending on the local structure of G(D) near the vertex labeled tr (cf.
Figure 2), QD contains the arrows shown in Figure 3.
The boundary (resp., interior) faces of G(D) are designated as frozen (resp., mutable) ver-
tices of QD. We let ∂J◦v ⊂ J◦v be the set of r ∈ J◦v such that Fr labels a boundary face of
G(D), i.e., is a frozen vertex of QD. Some of the arrows in Figure 3 could connect frozen
vertices, in which case we omit those arrows from QD.
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Figure 2. The neighborhood of a vertex in G(D). The dashed lines may or
may not be present, and Fa, Fb, Fc are the labels of the corresponding faces.
Thus some of them may coincide: we may have either c = a, or c = b, or both.
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Figure 3. Local rules for constructing a quiver from a Le-diagram.
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Figure 4. Constructing a quiver QD from a Le-diagram D. See Example 1.1.

Example 1.1. Let k = 3, n = 6, and (v, w) = (s2s4, s2s1s4s3s2s5s4s3). The graph G(D) is
shown in Figure 4(left), and the quiver QD is shown in Figure 4(right). The only mutable
vertex of QD is F8, the vertices F1, F2, F3, F4, F6 are frozen. Dashed arrows connect frozen
vertices and therefore are not present in QD.

1.4. Cluster algebra. Let Q be an ice quiver with vertex set V partitioned as V = VftVm,
where Vf (resp., Vm) denotes the set of frozen (resp., mutable) vertices. For each vertex
r ∈ V , introduce a formal variable xr, and let x := {xr}r∈V . The cluster algebra A(Q)
associated to Q is a certain C-subalgebra of the ring C(x) of rational functions in the
variables x. Explicitly, A(Q) is the subalgebra generated (as a ring) by all cluster variables
together with {x−1r | r ∈ Vf}, where the set of (in general infinitely many) cluster variables
is constructed from the data (Q,x) using combinatorial operations called mutations. Given
a mutable vertex r ∈ Vm, a mutation at r changes the quiver Q in a certain way, and also
replaces xr with

(1.1) x′r :=

∏
i→r xi +

∏
r→j xj

xr
,

where the products are taken over arrows in Q incident to r. We refer the reader to [FZ02]
for further background on cluster algebras.



POSITROID VARIETIES AND CLUSTER ALGEBRAS 5

2. Leclerc’s cluster algebra

For any v ≤ w, Leclerc [Lec16] introduced another cluster algebra using representations
of preprojective algebras. In this section, we recast his construction in elementary terms
when (v, w) ∈ QJ and show that in this case, his cluster algebra coincides with the one
from Section 1. The calculations in this section are very similar to those in [SSBW19,
Section 5], to which we refer the reader for an accessible introduction to preprojective algebra
representations in type A.

2.1. Preprojective algebra representations from Young diagrams. Let An−1 be the
quiver with vertex set [n − 1] and a pair of opposite arrows between i and i + 1 for all
i ∈ [n− 2]. Recall that a representation of An−1 is a collection E1, . . . , En−1 of vector spaces

together with linear maps ~ψi : Ei → Ei+1, ~ψi+1 : Ei+1 → Ei for all i ∈ [n − 2]. A Young
diagram λ that fits inside a k × (n− k) rectangle gives rise to a representation of An−1: for
each box (i, j) of λ, let c(i, j) := k + j − i (thus (i, j) is labeled by sc(i,j) in Figure 1). Then
for all c ∈ [n − 1], Ec has a basis {ei,j | (i, j) ∈ λ : c(i, j) = c}. Additionally, for each box

(i, j), the values of the maps ~ψc(i,j) and ~ψc(i,j) on ei,j are given by

~ψc(i,j)(ei,j) =

{
ei,j+1, if (i, j + 1) ∈ λ,

0, otherwise;
~ψc(i,j)(ei,j) =

{
ei+1,j, if (i+ 1, j) ∈ λ,

0, otherwise.

Leclerc works not just with representations of An−1, but with representations of the asso-
ciated preprojective algebra Λ. It is easy to see that each Young diagram λ contained inside
a k × (n− k) rectangle yields a representation Uλ of Λ.

2.2. Leclerc’s representations. Recall that we have fixed (v, w) ∈ QJ . Leclerc associates
a representation Ur of Λ to each r ∈ J◦v. Our goal is to define a family {ν(r)}r∈J◦v of Young
diagrams such that each of them fits inside a k× (n− k) rectangle, and such that Ur = Uν(r)
for all r ∈ J◦v.

For r ∈ [m], we set

w(r) := si1 · · · sir , v(r) := svi1 · · · s
v
ir , where svir :=

{
sir , if r /∈ J◦v,

1, if r ∈ J◦v;

w(r) := w−1 · w(r) = sim · · · sir+1 , and v(r) := v−1 · v(r) = svim · · · s
v
ir+1

.

For a ∈ [n− 1], let ωa := {1, 2, . . . , a}. For u ∈ W and a ∈ [n− 1], the subset uωa can be
identified with a Young diagram µ(u, a) fitting inside an (n− a)× a rectangle, such that if
one places sa+i−j inside each box (i, j) ∈ µ(u, a) and takes the product as in Section 1.1, the
resulting element ū satisfies ūωa = uωa. That is, ū is the unique element of W Ja satisfying
ūωa = uωa, where Ja = [n − 1] \ {a}, and µ(u, a) is the Young diagram associated to ū.
Clearly, if u′ ≤ u, then µ(u′, a) ⊆ µ(u, a).

Since w ∈ W J , we see that (w(r−1))−1 ∈ W J so µ(w(r−1), ir) is a rectangle for any r
whose top left (resp., bottom right) box is labeled by sa (resp., by sk). Thus the skew shape
µ(w(r−1), ir)/µ(v(r−1), ir) is obtained from another Young diagram ν(r) by a 180◦ rotation.
We emphasize that ν(r) is defined for all r ∈ [m].

Example 2.1. Let k = 6, n = 12. Consider a Le-diagram in Figure 5(left). We have
J◦v = {a, b, c, d}, and the diagrams ν(r) for r ∈ J◦v are shown in Figure 5(right). For instance,

ib = 7, w(b−1)ωib = s6s7s8s9s5s6s7s8s4s5s6s7ω7, and thus µ(w(b−1), ib) is a 3 × 4 rectangle.
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ν(a) = (4, 3, 3, 2, 1)

Figure 5. Constructing Young diagrams ν(r) from a Le-diagram (cf. Exam-
ple 2.1).

Similarly, v(b−1) = s7s8s9s5s6s7s8s4s6ω7 = s7s8s5s6s7ω7. The shape µ(v(b−1), ib) = (3, 2),
rotated by 180◦, consists of red and yellow squares (see Figure 5) labeled by s7, s8, s5, s6, s7,
and is the complement of ν(b) inside a 3× 4 rectangle. Thus ν(b) = (4, 2, 1).

The next result follows from the definitions, see [Lec16, Proposition 4.3] and [SSBW19,
Section 5].

Proposition 2.2. For r ∈ J◦v, Leclerc’s representation Ur of Λ coincides with the represen-
tation Uν(r) constructed from ν(r) in Section 2.1. �

We give an alternative description of the Young diagram ν(r) using the combinatorics of
Le-diagrams.

For integers a, b ≥ 1, denote by H(a, b) = (a, 1b−1) the hook Young diagram whose first
row contains a boxes and whose first column contains b boxes. We consider “Frobenius
coordinates” for Young diagrams: we write µ = [(a1, b1), . . . , (ad, bd)] if µ = {(l + i − 1, l +
j − 1) | l ∈ [d], i ∈ [al], j ∈ [bl]}. Thus the first row of µ has a1 boxes, the first column of µ
has b1 boxes, etc.

For each box (i, j) ∈ λ (not necessarily containing a dot), let NW(i, j) ∈ λ t {(0, 0)} be
the box closest to (i, j) in the strictly northwest direction that is either (0, 0) or contains a
dot. Recall from Section 1.1 that the boxes of λ correspond to the terms in the reduced word
w = si1 · · · sim for w, i.e., to the elements of [m]. For r ∈ [m], we denote by (i(r), j(r)) ∈ λ
the corresponding box of λ (thus ir = k + j(r) − i(r)).
Proposition 2.3. For r ∈ J◦v, the Frobenius coordinates of ν(r) are given by

ν(r) =
[
(i(r), j(r)),NW(i(r), j(r)), . . . ,NWp(i(r), j(r))

]
,

where p ≥ 0 is such that NWp+1(i(r), j(r)) = (0, 0).

Proof. Recall that ν(r) is defined for all r ∈ [m], not just for r ∈ J◦v. We will also show

that for r /∈ J◦v, we have ν(r) =
[
NW(i(r), j(r)), . . . ,NWp(i(r), j(r))

]
, where p ≥ 0 satisfies

NWp+1(i(r), j(r)) = (0, 0). If i(r) = 1 or j(r) = 1 then the result is clear. Otherwise, assume
that we have shown the result for the box (i(r) − 1, j(r) − 1), and let r′ ∈ [m] be such
that (i(r

′), j(r
′)) = (i(r) − 1, j(r) − 1). It is easy to see that µ(w(r−1), ir) is an i(r) × j(r)

rectangle while µ(w(r′−1), ir′) is an (i(r) − 1) × (j(r) − 1) rectangle. If r /∈ J◦v then clearly
µ(v(r−1), ir) is a disjoint union of H(i(r), j(r)) and µ(v(r

′−1), ir′), so ν(r) = ν(r′). If r ∈ J◦v then

µ(v(r−1), ir) = µ(v(r
′−1), ir′), so ν(r) is a disjoint union of H(i(r), j(r)) and ν(r′). �
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Example 2.4. Continuing Example 2.1, the Frobenius coordinates of ν(r) for r ∈ J◦v are
given as follows:

ν(d) = [(1, 1)], ν(c) = [(2, 3), (1, 1)], ν(b) = [(4, 3), (1, 1)], ν(a) = [(4, 5), (2, 3), (1, 1)].

We see that ν(a) is a union of H(i(a), j(a)) = H(4, 5) and ν(c), which is a union of H(i(c), j(c)) =

H(2, 3) and ν(d) = H(1, 1). Similarly, ν(b) is a union of H(i(b), j(b)) = H(4, 3) and ν(d).

2.3. Leclerc’s quiver. Now that we have constructed Young diagrams ν(r) for r ∈ J◦v,

we can analyze the quiver Q̃ that Leclerc associates to (v, w) ∈ QJ . The vertex set1 of
Q̃ is just J◦v. The frozen vertices of Q̃ correspond to the Young diagrams obtained from
µ(w−1, ia)/µ(v−1, ia) (for a ∈ [n − 1]) by a 180◦ rotation. It is easy to see that these are
precisely the Young diagrams ν(r) such that Fr is a boundary face of G(D) that contains the
part of the boundary of λ between boundary vertices a and a+1. Thus the map r 7→ Fr sends
the vertices of Q̃ bijectively to the vertices of the quiver QD from Section 1.3, preserving the
partition into frozen and mutable vertices.

The arrows of Q̃ can be described in terms of morphisms of Young diagrams. Given a skew
shape λ/µ for µ ⊂ λ, we say that their set-theoretic difference λ/µ is an order ideal of λ. For
a Young diagram λ and an integer p ≥ 0, we denote shiftp(λ) := {(i+ p, j + p) | (i, j) ∈ λ}.
For another Young diagram µ, we write λ

p−→ µ if the set shiftp(λ) ∩ µ is an order ideal of

µ. In this case, we say that λ
p−→ µ is a morphism from λ to µ. The morphism λ

0−→ λ

is considered trivial, and a morphism λ
p−→ µ is the zero morphism if shiftp(λ) ∩ µ = ∅.

Morphisms can be composed: if λ
p−→ µ and µ

q−→ ν then λ
p+q−−→ ν. For r, r′ ∈ J◦v, a nonzero

and nontrivial morphism ν(r)
p−→ ν(r′) is irreducible if it is not a composition of non-trivial

morphisms ν(r)
p′′−→ ν(r′′)

p′−→ ν(r′) for some r′′ ∈ J◦v. Leclerc’s quiver Q̃ contains an arrow
r → r′ for r 6= r′ ∈ J◦v if and only if at least one of r, r′ is mutable and there is an irreducible

morphism ν(r)
p−→ ν(r′) for some p ≥ 0.

Remark 2.5. We explain the relation between our morphisms of Young diagrams and the
morphisms of representations of Λ from the original definition [Lec16] of Q̃. Let Uλ and Uµ be
the two (indecomposable) Λ-modules associated to Young diagrams λ and µ as in Section 2.1.
Since Uλ is generated (as a Λ-module) by the vector e1,1, a morphism f : Uλ → Uµ is uniquely
determined by f(e1,1) ∈ Uµ, which must be a linear combination of e1,1, e2,2, . . . , ed,d ∈ Uµ,
where d is the length of µ in Frobenius coordinates.

Associated to each morphism λ
p−→ µ of Young diagrams is the elementary morphism

Uλ
p−→ Uµ of Λ-modules sending e1,1 to ep,p. (The condition that shiftp(λ)∩µ is an order ideal

of µ corresponds exactly to the condition that e1,1 7→ ep,p defines a morphism of Λ-modules,
see [SSBW19, Remark 5.15].) Any morphism f : Uλ → Uµ is thus a linear combination of

the elementary morphisms Uλ
p−→ Uµ of Young diagrams.

A morphism f : Uν(r) → Uν(r′) is irreducible if it is nonzero, not an isomorphism, and

cannot be factored nontrivially within the category add(U) whose objects are isomorphic
to direct sums of the Uν(s) for s ∈ J◦v. Leclerc’s quiver Q̃ has no loops, i.e., arrows from

r to r, see [Lec16, Definition 3.9(d)]. For r 6= r′, the number of arrows in Q̃ from r

1More precisely, the vertex set of Q̃ consists of irreducible factors of functions {fr}r∈J◦
v

defined in (3.2).

However, when (v, w) ∈ QJ , each fr is irreducible by Corollary 3.4 below, thus we may label the vertices of

Q̃ by elements of J◦v.
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to r′ is equal to the dimension of the space of irreducible morphisms from Uν(r) to Uν(r′) .

This dimension is defined [BIRS09, Sch14] to be equal to the dimension of the space of all

morphisms Uν(r) → Uν(r′) modulo the subspace consisting of reducible morphisms. If λ
p−→ µ

is a morphism, then (see the proof of Proposition 2.6) λ
q−→ µ is a reducible morphism for

all q > p. Thus any morphism f : Uν(r) → Uν(r′) is equal modulo reducible morphisms to

a scalar multiple of some elementary morphism Uλ
p−→ Uµ. It follows that the dimension

of the space of irreducible morphisms from Uν(r) to Uν(r′) is equal to 1 or 0, depending on

whether there is an elementary morphism Uν(r)
p−→ Uν(r′) that is irreducible as a morphism

of Λ-modules. Furthermore, when considering the irreducibility of an elementary morphism

Uν(r)
p−→ Uν(r′) , we only need to check if it factors nontrivially as a product of elementary

morphisms. Thus the irreducibility of Uν(r)
p−→ Uν(r′) in the sense of Λ-modules agrees with

the notion of irreducibility we defined for a morphism ν(r)
p−→ ν(r′) of Young diagrams.

Proposition 2.6. The map r 7→ Fr gives a quiver isomorphism between Leclerc’s quiver Q̃
and the Le-diagram quiver QD.

Proof. If the Frobenius coordinates of a Young diagram λ are given by λ = [(a1, b1), . . . , (ad, bd)],
we set λ1 := (a1, b1), . . . , λ

d := (ad, bd), and λd+1 = λd+2 = · · · = (0, 0). Let us write
(a, b) ≥ (a′, b′) if a ≥ a′ and b ≥ b′.

Let λ
p−→ µ be a morphism. Since its image is an order ideal of µ, a morphism λ

p−→ µ
exists if and only if λ1 ≥ µp+1, λ2 ≥ µp+2, etc. Moreover, if p < q and we have a morphism

λ
p−→ µ then the morphism λ

q−→ µ is not irreducible: it factors through λ
p−→ µ

q−p−−→ µ. Also

note that λ
0−→ µ if and only if µ ⊂ λ. We write λ

p
↪−→ µ if the morphism λ

p−→ µ exists
and is injective (i.e., shiftp(λ) ⊂ µ is an order ideal of µ). This is equivalent to λ1 = µp+1,
λ2 = µp+2, etc.

By Proposition 2.3, for each r ∈ J◦v, we have ν1(r) = (i(r), j(r)). Thus all Young diagrams

{ν(r)}r∈J◦v are different. Observe that the morphism λ
0
↪−→ µ exists if and only if λ = µ, in

which case it is a trivial morphism.
Let r ∈ J◦v and suppose that the neighboring faces Fa, Fb, Fc, Fr of tr in G(D) are labeled as

in Figure 2. It follows from Proposition 2.3 that we have morphisms ν(r)
0−→ ν(a), ν(r)

0−→ ν(b),

ν(c)
1
↪−→ ν(r).

We first show that for r, r′ ∈ J◦v, if there is no arrow Fr → Fr′ in QD then there is no
arrow r → r′ in Q̃. Indeed, let ν := ν(r) and ν ′ := ν(r′), and suppose that there is no arrow

Fr → Fr′ in QD but we have a morphism ν
p−→ ν ′ for some p ≥ 0. Assume that the regions

around tr′ in G(D) are labeled by Fa′ , Fb′ , Fc′ , Fr′ as in Figure 2. If p ≥ 1, then ν
p−→ ν ′

factors through ν
p−1−−→ ν(c′)

1−→ ν ′. Therefore such a morphism is not irreducible unless p = 1

and the morphism ν
p−1−−→ ν(c′) is trivial, i.e., r = c′. Since there is no arrow Fr → Fr′ in

QD, we must have either c′ = a′, or c′ = b′, or both. Without loss of generality, assume that
c′ = a′(= r). If both r and r′ are frozen then Q̃ contains no arrow between them. Thus
at least one of them must be mutable, so the horizontal edge of G(D) between r and r′

must have another vertex to the right of tr′ . Let that vertex be labeled by tq, then we have

morphisms ν
1−→ ν(q)

0−→ ν ′, thus we see that indeed our morphism ν
p−→ ν ′ is not irreducible

when p ≥ 1.
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Assume now that p = 0, which implies that (i(r), j(r)) ≥ (i(r
′), j(r

′)) and (i(r), j(r)) 6=
(i(r

′), j(r
′)). From the definition of the Le-diagram quiver QD, we see that there exists a path

from Fr to Fr′ that consists of arrows all going up, left, or up-left. The composition of the

corresponding morphisms gives the morphism ν
0−→ ν ′, which shows that it is not irreducible

if there is no arrow Fr → Fr′ in QD.
It remains to show that if we have an arrow Fr → Fr′ in QD then the morphism ν →

ν ′ is irreducible. Let the regions around tr (resp., tr′) be labeled by Fa, Fb, Fc, Fr (resp.,

Fa′ , Fb′ , Fc′ , Fr′) as above. First, suppose that r = c′, in which case our morphism is ν
1
↪−→ ν ′.

If it factors as ν
p−→ ν ′′

q−→ ν ′ then the injectivity of ν
1
↪−→ ν ′ forces ν

p−→ ν ′′ to be injective,

and thus we must have ν
1
↪−→ ν ′′

0−→ ν ′. But then ν is obtained from ν ′′ by removing a hook,

so by Proposition 2.3, ν
1
↪−→ ν ′′ must be one of the down-right arrows in QD. In this case,

the hooks (ν ′′)1 and (ν ′)1 have to be incomparable, contradicting ν ′′
0−→ ν ′. Next, suppose

that r′ equals to a or b. Then we have a morphism ν
0−→ ν ′. It is clear from the definition

of QD that if Fr → Fr′ is an arrow of QD then QD contains no directed path from Fr to Fr′

of length more than 1. If the morphism ν
0−→ ν ′ is not irreducible then there must be such a

directed path from r to r′ in Q̃. But we have already shown that each arrow of Q̃ appears

as an arrow in QD, thus ν
0−→ ν ′ must be irreducible. �

3. Clusters and positroid varieties

Proposition 2.6 shows that the two (abstract) cluster algebras A(QD) and A(Q̃) are iso-
morphic. In this section, we further connect them by showing that the conjectural cluster

structures they define on C[
◦
Πv,w] coincide.

3.1. Background on positroid varieties. Let G = SLn(C) and B,B−, N,N− denote the
upper- and lower-triangular Borel subgroups, and their unipotent parts. For i ∈ [n − 1],
denote by ṡi ∈ G a (signed) permutation matrix representing si ∈ W that has a 2× 2 block

equal to

(
0 1
−1 0

)
in rows and columns i, i + 1. Given a reduced word w = si1 · · · sim for

w ∈ W , we let ẇ ∈ G denote the (signed) permutation matrix given by ẇ := ṡi1 · · · ṡim . For

v ≤ w, we define the open Richardson variety
◦
Rv,w to be the image of Bv̇B− ∩ B−ẇB− in

G/B−. Thus
◦
Rv,w is a smooth affine subvariety of G/B−.

Recall that J = [n] \ {k}. Let P J
− ⊃ B− denote the J-parabolic subgroup such that the

projection πJ : G→ G/P J
− ' Gr(n−k, n) is given by sending a n×n matrix g to the column

span of its last n− k columns. We sometimes denote πJ(g) by gP J
−. For an (n− k)-element

subset I of [n], we denote by ∆I the corresponding Plücker coordinate on Gr(n− k, n), i.e.,
the maximal (n− k)× (n− k) minor of g with row set I and column set [k + 1, n].

For (v, w) ∈ QJ , the open positroid variety is the image
◦
Πv,w := πJ(

◦
Rv,w) ⊂ Gr(n− k, n),

see [Lus98, KLS13]. It is isomorphic to
◦
Rv,w, and is a smooth affine subvariety of Gr(n−k, n).

For other descriptions of
◦
Πv,w, see [Pos06, BGY06].

3.2. Leclerc’s functions. Fix v ≤ w. Following [Lec16, Section 2], denote N ′(v) = N ∩
(v̇−1Nv̇) ⊂ N and Nv,w := N ′(v) ∩ v̇−1B−ẇB−. We will be interested in the variety
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(3.1) v̇Nv,w = v̇N ∩Nv̇ ∩B−ẇB−.

Lemma 3.1 ([BGY06, Theorem 2.3], [Lec16, Lemma 2.2]). The map v̇Nv,w → G/B− given

by g 7→ gB− gives an isomorphism v̇Nv,w
∼−→

◦
Rv,w.

Remark 3.2. Both [Lec16] and [SSBW19] work with the left-sided flag variety B−\G. In

particular, Leclerc shows that the map g 7→ B−g gives an isomorphism v̇Nv,w
∼−→ B−\(B−v̇B∩

B−ẇB−). Lemma 3.1 follows from this statement by replacing g, v, w with their inverses.
However, since in either case one works with rightmost positive distinguished subexpressions,
switching from B−\G to G/B− has a drastic effect on the combinatorics of Leclerc’s quivers,
as one can see by comparing Section 2 with [Lec16, Section 7] or [SSBW19]. In fact, when
working with B−\G, Leclerc’s cluster structure does not in general coincide with (either
source or target labeled versions of) the cluster structure coming from Postnikov diagrams,
see [SSBW19, Appendix B].

For u ∈ W and a ∈ [n−1], let ωa and µ(u, a) be as in Section 2.2. Leclerc [Lec16] considers
a family of functions on the unipotent groupN : for each r ∈ J◦v, the corresponding function is

(3.2) fr := ∆v(r−1)ωir ,w
(r−1)ωir

: N → C

where ∆A,B is the minor whose rows and columns are indexed by A and B respectively. The
functions fr restrict to functions on Nv,w. Leclerc proves that the irreducible (as elements
of C[N ]) factors of {fr | r ∈ J◦v} form the initial cluster variables of a cluster subalgebra of
C[Nv,w].

Lemma 3.3. For u′ ≤ u ∈ W , if the skew shape µ(u, a)/µ(u′, a) is connected then the minor
∆u′ωa,uωa is an irreducible element of C[N ].

Proof. The polynomial ∆u′ωa,uωa(g) is homogeneous with deg(gi,j) = j − i. Restricting to
the subspace of N consisting of matrices constant along diagonals, we see that the result is
implied by the Jacobi-Trudi formula combined with the irreducibility [BRvW09, Theorem 1]
of skew Schur functions indexed by connected skew shapes. �

Suppose now that (v, w) ∈ QJ . As we have established in Section 2.2, for all r ∈ J◦v,
the skew shape µ(w(r−1), ir)/µ(v(r−1), ir) is a 180◦ rotation of a Young diagram ν(r), thus we
have shown the following.

Corollary 3.4. For (v, w) ∈ QJ and all r ∈ J◦v, the function fr defined in (3.2) is an
irreducible element of C[N ].

3.3. Face labels. So far the faces of G(D) have been labeled by an abstract set {Fr}r∈J◦vt{0}.
We now identify each face Fr with an (n−k)-element subset of [n], so that it would correspond
to a Plücker coordinate on Gr(n− k, n).

The graph G(D) has n distinguished paths p1, p2, . . . , pn connecting boundary vertices,
called strands. For a ∈ [n], the strand pa starts2 at the boundary vertex labeled a, and then

2This is called the source-labeling of strands. For the other convention, called target-labeling, the path pa
ends at vertex a.
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travels along the edges of G(D), making turns at each vertex tr according to the following
“rules of the road” (cf. [Pos06, Figure 20.2]):

(3.3)
trtr trtr

trtr trtr

In other words, the strand pa zig-zags in the northwest direction until it hits the north or
west boundary, after which it goes straight southward or straight eastward until it arrives
at the boundary again. If there is no edge of G(D) incident to the boundary vertex a then
pa is taken to be a small clockwise or counterclockwise loop depending on whether a is on a
vertical or horizontal edge of λ. Every face Fr of G(D) is labeled by an (n−k)-element subset
of [n], consisting of those a such that Fr lies to the right of pa. See Figure 6 for the labeling
of the Le-diagram from Example 1.1. From now on, we identify Fr with the corresponding
subset, and write ∆Fr for the corresponding Plücker coordinate on Gr(n− k, n).

It is known that F0 coincides with the lexicographically maximal (n− k)-element subset

S ⊂ [n] such that ∆S is not identically zero on
◦
Πv,w. Moreover, we have ∆Fr(x) 6= 0 for

any x ∈
◦
Πv,w and any r ∈ ∂J◦v t {0}. Since the image of the Plücker embedding lies in

the projective space, we always assume that the Plücker coordinates are rescaled (“gauge

fixed”) so that ∆F0(x) = 1 for all x ∈
◦
Πv,w.

3.4. Main result. Recall from Section 1.4 that the cluster algebra A(QD) is a subring of
the field of rational functions in the variables {xFr}r∈J◦v . The following result is explicitly
conjectured in [MS17, Remark 4.6]; the statement may be considered implicitly conjectured
in [Pos06, Sco06].

Theorem 3.5. For all (v, w) ∈ QJ , the map sending xFr 7→ ∆Fr for each r ∈ J◦v induces a

ring isomorphism η : A(QD)
∼−→ C[

◦
Πv,w] (with ∆F0 = 1 on

◦
Πv,w).

When v = 1 and w is the maximal element of W J (i.e., when D(v, w) is a k × (n − k)

rectangle filled with dots),
◦
Πv,w is the top-dimensional positroid variety in Gr(n − k, n), in

which case Theorem 3.5 was shown by Scott [Sco06].
Recall that ∂J◦v ⊂ J◦v is the set of r ∈ J◦v such that Fr labels a boundary face of G(D).

Theorem 3.5 is equivalent to the following two explicit statements for Plücker coordinates

on
◦
Πv,w:

(1) We have η(A(QD)) ⊆ C[
◦
Πv,w], that is, the image η(x) of every cluster variable

x ∈ A(QD) is a regular function on
◦
Πv,w. Equivalently, η(x) can be written as a

polynomial in the Plücker coordinates divided by a monomial in {∆Fr}r∈∂J◦v .

(2) We have η(A(QD)) ⊇ C[
◦
Πv,w], that is, the images of cluster variables generate C[

◦
Πv,w]

as a ring.

In general, both of these statements are non-obvious. We will deduce (1) from Leclerc’s
results in the next subsection. The non-trivial part of (2) is that unlike in the case of the
top-dimensional positroid variety [Sco06], not every Plücker coordinate is the image of a
cluster variable. But Theorem 3.5 implies that every Plücker coordinate can be written as
a polynomial in the images of cluster variables divided by a monomial in {∆Fr}r∈∂J◦v . We
will prove this in Section 4.
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126146

234236
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456

Figure 6. Labeling the faces of a Le-diagram by subsets. The strand p5 is
shown in red and p3 is shown in blue. Here we abbreviate {a, b, c} as abc.

3.5. Converting Leclerc’s functions into Plücker coordinates. Let v · fr ∈ C[v̇Nv,w]
denote the image of fr under the isomorphism C[Nv,w] ' C[v̇Nv,w]. Explicitly, we have

v ·fr := ∆v(r)ωir ,w
(r−1)ωir

. Recall that the map g 7→ gB− gives an isomorphism v̇Nv,w
∼−→

◦
Rv,w,

while the map πJ : G/B− → G/P J
− restricts to an isomorphism

◦
Rv,w

∼−→
◦
Πv,w. For a function

v · f ∈ C[v̇Nv,w], denote by v · f ∈ C[
◦
Πv,w] the image of v · f under the composition of these

isomorphisms.

Lemma 3.6. Let (v, w) ∈ QJ and gauge-fix ∆F0 = 1 on
◦
Πv,w. Then for all r ∈ J◦v, the

regular functions v · f r,∆Fr ∈ C[
◦
Πv,w] agree on

◦
Πv,w. Equivalently, we have

(3.4) fr(g) =
∆Fr(v̇gP

J
−)

∆F0(v̇gP
J
−)

for all g ∈ Nv,w and r ∈ J◦v.

Proof. We will prove (3.4) more generally for all g ∈ N . Observe that F0 = v[k + 1, n]
(see [GKL19, Example 9.5]). Therefore for any g ∈ N , the submatrix of g with row set
v−1F0 = [k+1, n] and column set [k+1, n] is an (n−k)× (n−k) upper-triangular unipotent
matrix, thus ∆F0(v̇g) = 1. It remains to show that fr(g) = ∆Fr(v̇g) for all r ∈ J◦v.

Fix r ∈ J◦v. We have fr = ∆Ar,Br , where

(3.5) Ar = v(r−1)ωir = svim · · · s
v
irωir and Br = w(r−1)ωir = sim · · · sirωir .

Recall from Section 2.2 that we have two Young diagrams µ(v(r−1), ir) ⊂ µ(w(r−1), ir) that fit
inside an (n− ir)× ir rectangle, and moreover, µ(w(r−1), ir) is itself a rectangle. Thus there
exist integers ar ∈ [0, k] and br ∈ [k, n] such that Br = [1, ar]t[k+1, br], so ar+br−k = |Br| =
ir. And because µ(v(r−1), ir) ⊂ µ(w(r−1), ir), we find that [1, ar] ⊂ Ar and Ar∩ [br+1, n] = ∅.
Let us define Cr := (Ar \ [1, ar]) t [br + 1, n], thus |Cr| = n − k. (See Figure 7(b) for an
example.) It is clear that the functions fr = ∆Ar,Br and ∆Cr,[k+1,n] agree on N . Therefore
it suffices to show

(3.6) Fr = vCr.

Let us first give a pictorial description of Ar and Br using wiring diagrams. It is analogous
to [MR04, Section 9]. Draw a wiring diagram WD(w) for w, and for each r ∈ J◦v, place a
dot labeled tr at the crossing that corresponds to sir . Denote this dotted wiring diagram
by WD•(v, w), cf. Figure 7(a). A wiring diagram WD(v) for v is obtained from WD•(v, w)
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1 1

2 2

3 3

4 4

5 5

6 6

t1

t2
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t4
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t8

13, 45

1, 4

1235, 1456

123, 145

13, 14

12345, 12456

1235, 1245

123, 124

1, 1

12, 12

123, 123

1234, 1234

12345, 12345 r Ar Br Cr
1 13 45 136
2 1 4 156
3 1235 1456 235
4 123 145 236
6 12345 12456 345
8 123 124 356

(a) Labeling the regions of WD•(v, w) by (Ar, Br). (b) Ar, Br, Cr for r ∈ J◦v.
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(c) The graph WD•(v, w). (d) Strands p4 (red) and p2 (blue) in WD•(v, w).

Figure 7. Constructing the graphs WD•(v, w) and WD•(v, w) from the
proof of Lemma 3.6. Here k = 3, n = 6, and (v, w) is as in Example 1.1.

by “uncrossing” each dot, i.e., replacing each crossing of WD•(v, w) that has a dot by a
pair of parallel wires. Label each wire in WD(w) and WD(v) by its right endpoint (the
right endpoints are labeled 1, . . . , n from bottom to top). To each chamber R of WD(w)
we associate a set BR of wires that are below R in WD(w). Similarly, we introduce a set
AR′ of wires that are below each chamber R′ of WD(v). Any chamber R of WD(w) is
contained inside a unique chamber R′ of WD(v), so we label the corresponding chamber R
of WD•(v, w) by the pair (AR, BR), where AR := AR′ , see Figure 7(a). For each r ∈ J◦v, let
Rr be the chamber of WD•(v, w) that is immediately to the left of the dot labeled by tr. It
is straightforward to check (see also [MR04, Section 9]) that

(3.7) Ar = ARr and Br = BRr for all r ∈ J◦v,

where Ar, Br are as in (3.5).

Let us now introduce a certain planar graph WD•(v, w) drawn in a disk, with boundary
vertices labeled by 1, . . . , n and interior vertices labeled by tr for r ∈ J◦v. The same con-

struction appears in [Kar16, Figure 5]. The graph WD•(v, w) is obtained from WD•(v, w)
by removing the redundant part of each wire, that is, the part to the right of the rightmost
dot that is placed on an intersection involving this wire, see Figure 7(c). (The redundant
part of each wire is common to WD(v) and WD(w).)

Observe that there is a simple isomorphism between the graphs G(D) and WD•(v, w)
that preserves the labels of the vertices (i.e., 1, . . . , n for boundary vertices and {tr}r∈J◦v



14 PAVEL GALASHIN AND THOMAS LAM

for interior vertices). This isomorphism can be obtained by reflecting G(D) along the line
y = 2x in the xy-plane. For example, compare Figure 7(c) with Figure 4(left).

For each a ∈ [n], we introduce a path pa in WD•(v, w) that starts at v−1(a) on the left
and ends at w−1(a) on the left. First, consider a path p′a in WD•(v, w) that starts at v−1(a)
on the left, goes right following the strands of WD(v) (i.e., ignores all intersections that have
dots on them) until it reaches a on the right, and then goes left following the strands of
WD(w) until it reaches w−1(a) on the left. The path p′a in WD•(v, w) travels right and then
left along the redundant part of the wire whose right endpoint is a. We define pa to be the
path in WD•(v, w) obtained from p′a by removing this redundant part. See Figure 7(d) for
an example. Comparing the “rules of the road” (3.3) with the definition of the paths pa in

WD•(v, w), we find that for each a ∈ [n], our graph isomorphism G(D) ∼= WD•(v, w) sends

the path pa in G(D) to the path pv(a) in WD•(v, w). For example, compare Figure 7(d) with
Figure 6.

Note that for each r ∈ J◦v, the chamber Rr of WD•(v, w) is contained inside a unique

chamber (also denoted Rr) of WD•(v, w). We claim that for each a ∈ [n] and r ∈ J◦v,

(3.8) a belongs to Cr if and only if the chamber Rr is to the left of the path pa.

To show this, suppose first that a ≤ k. Then

a ∈ Cr ⇐⇒ a ∈ Ar \ [1, ar]⇐⇒ a ∈ Ar \Br (for a ≤ k).

On the other hand, a ≤ k implies v−1(a) ≤ w−1(a), so a belongs to Ar \Br if and only if the
wire labeled a in WD(v) (resp., in WD(w)) is below (resp., above) the chamber Rr, which
is equivalent to Rr being to the left of the path pa.

Suppose now that a ≥ k + 1. Then

a ∈ Cr ⇐⇒ a ∈ Ar t [br + 1, n]⇐⇒ a ∈ (Ar ∩Br) or a /∈ (Ar ∪Br) (for a ≥ k + 1).

On the other hand, a ≥ k + 1 implies v−1(a) ≥ w−1(a), so a belongs to Ar ∩ Br if and
only if the chamber Rr is above both wires of p′a, in which case Rr is to the left of pa. The
only other case when Rr is to the left of pa is when Rr is below both wires of p′a, and this
corresponds precisely to a /∈ (Ar ∪Br). This shows (3.8). Combining (3.8) with the rule for
face labels in Section 3.3, we obtain a proof of (3.6). �

In view of Corollary 3.4, Leclerc’s result [Lec16, Theorem 4.5] implies in the case (v, w) ∈
QJ that the map xr 7→ v · f r extends to an injective ring homomorphism A(Q̃) ↪→ C[

◦
Πv,w].

He conjectured that this map is actually an isomorphism. Thus Theorem 3.5 confirms his
conjecture in the case (v, w) ∈ QJ .

Combining Proposition 2.6 and Lemma 3.6, we have the following result.

Corollary 3.7. Let (v, w) ∈ QJ and assume ∆F0 = 1 on
◦
Πv,w.

(i) The cluster structure of [Lec16] coincides with that of Theorem 3.5.

(ii) We have an injection η : A(QD) ↪→ C[
◦
Πv,w] sending xFr to ∆Fr for all r ∈ J◦v.

4. Surjectivity

In view of Corollary 3.7(ii), in order to complete the proof of Theorem 3.5, it suffices to

show that the map η : A(QD) ↪→ C[
◦
Πv,w] is surjective.



POSITROID VARIETIES AND CLUSTER ALGEBRAS 15

4.1. Paths in Le-diagrams. The space
◦
Rv,w contains a distinguished torus of the same

dimension, called the open Deodhar stratum. We describe a parametrization of this torus
following [MR04].

For t = (tr)r∈J◦v ∈ (C∗)|J◦v|, define an element

(4.1) gv,w(t) = g1 · · · gm ∈ Nv̇ ∩B−wB− where gr =

{
ṡir if r /∈ J◦v,

xir(tr) if r ∈ J◦v.

The map (C∗)J◦v →
◦
Rv,w given by t 7→ gv,w(t)B− is an isomorphism onto its image, the open

Deodhar stratum in
◦
Rv,w.

Let
◦
Xw = (B−ẇB−)/B− be a Schubert cell inside G/B−. We have an isomorphism

N−ẇ ∩ ẇN
∼−→

◦
Xw sending g 7→ gB−. Let φw :

◦
Xw → N−ẇ ∩ ẇN denote the inverse of this

isomorphism. Since
◦
Rv,w ⊂

◦
Xw, for each t ∈ (C∗)J◦v , we have a unique h := φw(gv,w(t)B−) ∈

N−ẇ ∩ ẇN satisfying hB− = gv,w(t)B−. When (v, w) ∈ QJ , computing the matrix h
amounts to computing the column-echelon form of gv,w(t)P J

− ∈ Gr(n− k, n). Our goal is to
describe the entries of h in terms of the variables t. The answer essentially coincides with
the boundary measurement map of [Pos06, Definition 4.7].

Let ~G(D) be obtained from G(D) by orienting every vertical edge down and every horizon-
tal edge left. Suppose that i ∈ w[k+1, n] (resp., j ∈ w[k]) labels a horizontal (resp., vertical)

boundary edge of λ. For r ∈ J◦v and a directed path P in ~G(D), we write r ∈ P if P passes
through the vertex labeled tr, and let wtP (t) :=

∏
r∈P t

−1
r . Denote Measi,j(t) :=

∑
P wtP (t),

where the sum is taken over all directed paths in ~G(D) connecting i to j. Finally, for
i, j ∈ [n], set invi,j := #{j′ > j : w(j′) < i}, so that when i = w(j), the (i, j)-th entry of
ẇ equals (−1)invi,j . The following result can be deduced from [TW13, Theorem 5.10]. We
include a proof here for completeness.

Proposition 4.1. Let h = φw(gv,w(t)B−), where gv,w(t) is as in (4.1). For i ∈ w[k] and
j ∈ [k + 1, n], the (i, j)-th entry of h equals (−1)invi,j Measi,w(j)(t).

Proof. Because w ∈ W J and h ∈ N−ẇ ∩ ẇN , the left k columns of h coincide with the left
k columns of ẇ, so we are interested in the right n − k columns of h, which contain the
identity submatrix with row set w[k + 1, n]. Let us denote by |h] the submatrix of h with
column set [k + 1, n].

We proceed by induction on the length m = `(w) of w. The case m = 0 is clear: the
matrix |h] has 0-s in all entries except for the identity matrix in the rows k+ 1, k+ 2, . . . , n.
Suppose the result is known for (v′, w′), where w′ = siw < w, v′ = svi v ≤ v, and i := i1.
Then D = D(v, w) is obtained from D′ := D(v′, w′) by adding a box (which may or may
not contain a dot), whose horizontal and vertical boundary edges are labeled by i and i+ 1.
Let g′v′,w′(t) = g2g3 · · · gm and h′ := φw′(g

′
v′,w′(t)B−).

Suppose that g1 = ṡi. Then v′ = siv < v, gv,w(t) = ṡig
′
v′,w′(t), h = ṡih

′, and the extra
box of D does not contain a dot. The definition of a Le-diagram implies that either there are
no paths involving i or no paths involving i+ 1 in D′. The paths in D are thus in bijection
with the paths in D′ with the roles of i and i + 1 swapped. This agrees with h = ṡih

′, and
the signs of the entries change in accordance with (−1)invi,j .

Suppose that g1 = xi(t1). Then v′ = v, gv,w(t) = xi(t1)g
′
v′,w′(t), and we have |h] =

xi(t1)|h′]dy, where d = diag(dk+1, . . . , dn) is an (n − k) × (n − k) diagonal matrix and
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y = (yab)k+1≤a,b≤n is an (n− k)× (n− k) lower-triangular unipotent matrix given by

da =

{
1/t1, if a = w−1(i),

1, otherwise;
yab =


−h′i,b if a = w−1(i) and k + 1 ≤ b < a,

1 if a = b,

0 otherwise.

Since dy is lower-triangular, we have hB− = gv,w(t)B−. Multiplying by dy on the right “kills
off” all nonzero entries corresponding to non-inversions of w and yields h ∈ N−ẇ∩ ẇN , thus
h = φw(gv,w(t)). Note also that the extra box of D contains a dot labeled by t1. Thus the
matrix entries of h correspond again exactly to paths in G(D), and the sign of each entry
agrees with (−1)invi,j . �

Example 4.2. Let (v′, w′) = (s2, s2s1s4s3s2). We find

g′v′,w′(t) = x2(t2)x1(t3)x4(t4)x3(t5)ṡ2 =

[
1 0 t3 0 0
0 −t2 1 t2t5 0
0 −1 0 t5 0
0 0 0 1 t4
0 0 0 0 1

]
, h′ =

 0 0 1 0 0
0 0 0 1 0
1 0 − 1

t2t3

1
t2

0

0 0 0 0 1
0 −1 1

t2t3t4t5
− 1

t2t4t5

1
t4

 .
The matrices g′v′,w′(t) and h′ = φw′

(
g′v′,w′(t)P

J
−
)

represent the same element of G/B−,
which can be checked by comparing their right-justified flag minors : for each j ∈ [n], the
linear span of the last j columns of g′v′,w′(t) equals that of h′.

Let now v = v′, and w = s3w
′. Thus ~G(D′) and ~G(D) are given by

(4.2)

1 2

4
3

5

t3 t2

t4t5

,
~G(D′) =

1 2 3

4

5

t1t3 t2

t4t5

.
~G(D) =

We see that the entries of h′ are indeed expressed as sums over paths in ~G(D′). Next,
temporarily denoting the non-trivial entries of h′ by a, b, c, d, e (with a := 1

t2t3
, . . . , e := 1

t4
),

the calculation of h = φw
(
x3(t1)g

′
v′,w′(t)P

J
−
)

in the proof of Proposition 4.1 proceeds as
follows:

|h′] =

[
1 0 0
0 1 0
−a b 0
0 0 1
c −d e

]
, x3(t1)|h′] =

[
1 0 0
0 1 0
−a b t1
0 0 1
c −d e

]
, x3(t1)|h′]d =

 1 0 0
0 1 0
−a b 1
0 0 1

t1

c −d e
t1

 ,
|h] = x3(t1)|h′]dy =


1 0 0
0 1 0
0 0 1
a
t1

− b
t1

1
t1

c+ae
t1
−
(
d+ be

t1

)
e
t1

 =


1 0 0
0 1 0
0 0 1
1

t1t2t3
− 1

t1t2

1
t1

1
t2t3t4t5

+ 1
t1t2t3t4

−
(

1
t2t4t5

+ 1
t1t2t4

)
1

t1t4

 .
We indeed see that the entries of h are given by sums over directed paths in ~G(D).

4.2. Muller–Speyer twist. Fix (v, w) ∈ QJ . Muller and Speyer [MS17, Section 1.8] have

defined a right twist isomorphism τ :
◦
Πv,w

∼−→
◦
Πv,w. We shall not recall the definition here,

however, see Example 4.6 below. For r ∈ J◦v, we let qr := ∆Fr ◦ τ ∈ C[
◦
Πv,w] denote the

twisted minor indexed by the corresponding face label of G(D).
Let r ∈ J◦v, and suppose that the faces of G(D) adjacent to tr are labeled by Fa, Fb, Fc, Fr

as in Figure 2.
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Proposition 4.3. Let x := gv,w(t) be given by (4.1). Then with ∆F0 = 1,

(4.3) tr =
qa(x)qb(x)

qc(x)qd(x)
and qr(x) =

∏
r′

1

tr′
,

where the product is taken over all r′ ∈ J◦v such that the vertex of G(D) labeled tr′ is northwest
of Fr.

Proof. We associate to the vertex-labeled graph G(D) a planar, bipartite, edge-weighted
graph N(t) via the following local substitution at each vertex tr of G(D):

tr
tr

Here the horizontal (resp., vertical) dashed edge is present in N(t) if and only if it is present
in G(D), and the weights of all horizontal and vertical edges in N(t) are set to 1. We make
the following observations concerning N(t):

(a) N(t) is a reduced plabic graph in the language of [Pos06]. It satisfies the assumptions
of [MS17, Section 3.1].

(b) The strands from [Pos06, MS17] agree with the strands described in Section 3.3.
(c) The point gv,w(t)P J

− ∈ Gr(n−k, n) is equal to the image of N(t) in Gr(n−k, n) under
the boundary measurement map (denoted D in [MS17]). This has been verified in
e.g. [TW13] or [Kar16], or can be easily checked using Le-diagram induction directly
from the setup of [MS17].

(d) The downstream wedge ([MS17, Section 5]) of an edge of weight tr in N(t) consists
precisely of the faces Fr′ to the southeast of the vertex labeled tr in G(D).

The formula for qr(x) in (4.3) follows from (d) and [MS17, Proposition 5.5 and Theorem 7.1]:

they denote this monomial transformation by
−→
M. The formula for tr in (4.3) is then ob-

tained by expressing the values qa(x), qb(x), qc(x), qd(x) in t using the above monomial
transformation. �

We have the following relationship between the cluster structure and the totally nonneg-
ative Grassmannian studied in [Lus98, Pos06].

Corollary 4.4. Assume ∆F0 = 1 on
◦
Πv,w. Then the following subsets of

◦
Πv,w coincide:

(1) the positroid cell Π>0
v,w :=

{
x ∈

◦
Πv,w | ∆I(x) ∈ R≥0 for all I ⊂ [n] of size n− k

}
;

(2) the subset of
◦
Πv,w where all cluster variables of A(QD) take positive real values.

Proof. Since {∆Fr}r∈J◦v is the image (under η) of a single cluster of A(QD), and since the mu-

tation rule (1.1) is subtraction-free, the subset in (2) equals
{
x ∈

◦
Πv,w | ∆Fr(x) ∈ R>0 ∀r ∈ J◦v

}
.

But then applying the twist of [MS17], we see that this set coincides with the image of the

boundary measurement map D applied to the graph N(t) when t takes values in RJ◦v
>0, and

this set coincides with Π>0
v,w by either [Pos06] or [MR04, Section 12]. �

Remark 4.5. For arbitrary v ≤ w ∈ W , there exists a simple automorphism τv,w :
◦
Rv,w

∼−→
◦
Rv,w which gives a common generalization of the twist maps of [BFZ05] (when v = 1)
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and [MS17] (when (v, w) ∈ QJ), and shares many properties with them. For example,

τv,w preserves the positive part R>0
v,w of

◦
Rv,w and satisfies a generalization of the chamber

ansatz (4.3). The map τv,w will be studied in a separate paper [GL].

Example 4.6. Let (v′, w′) = (s2, s2s1s4s3s2) and x := g′v′,w′(t) be as in Example 4.2. Then
x and its twist τ(x) are represented by the following n× (n− k) matrices:

(4.4) |x] =

[
t3 0 0
1 t2t5 0
0 t5 0
0 1 t4
0 0 1

]
, |τ(x)] =

 1
t3
− 1

t2t3t5

1
t2t3t4t5

1 0 0
0 1

t5
− 1

t4t5
0 1 0
0 0 1

 .
For each i ∈ [n], the i-th row of |τ(x)] is orthogonal to the (i + 1)-th row of |x], and has
scalar product 1 with the i-th row of |x], in agreement with [MS17, Section 1.8]. For G(D′)
as in (4.2), we have F0 = {2, 4, 5}, and we see that the matrix |τ(x)] above is gauge-fixed to
have ∆F0 = 1. The values of qr(x) = ∆Fr(τ(x)) for r ∈ J◦v t {0} are given by:

(4.5)

r 0 2 3 4 5

Fr {2, 4, 5} {1, 2, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5}
qr(x) 1 1

t2t3t5
1
t3

1
t4t5

1
t5

This agrees with (4.3).

4.3. Proof of Theorem 3.5. Our approach is similar to that of [BFZ05], who gave an
upper cluster algebra structure on double Bruhat cells.

Fix (v, w) ∈ QJ . Let η(τ) : A(QD) ↪→ C[
◦
Πv,w] be obtained by composing the map η from

Corollary 3.7(ii) with the twist isomorphism τ :
◦
Πv,w

∼−→
◦
Πv,w. Explicitly, for r ∈ J◦v, η(τ)

sends xr ∈ A(QD) to the element qr ∈ C[
◦
Πv,w] from Section 4.2.

By Proposition 4.3, this injection is induced by the invertible monomial transforma-
tion (4.3) between t := {tr}r∈J◦v and q := {qr}r∈J◦v . By Section 3.1, we have an injection

(C∗)J◦v ↪→
◦
Rv,w sending t 7→ gv,w(t)B−, whose image is an open Zariski dense subset of

◦
Rv,w.

This gives rise to an injection

(4.6) C[
◦
Πv,w] ↪→ C[t±1] = C[q±1], where t±1 := {t±1r }r∈J◦v and q±1 := {q±1r }r∈J◦v .

For r ∈ J◦v, let q′r := η(τ)(x′r) (where x′r is given in (1.1)), and let q′r := {qa}a∈J◦v\{r} t {q
′
r}.

Lemma 4.7. For each r ∈ J◦v, we have an injection C[
◦
Πv,w] ↪→ C[(q′r)

±1]. In other words,

every element of C[
◦
Πv,w] can be written as a Laurent polynomial in the variables q′r.

Proof. Let T := Spec(C[(q)±1]) denote the initial cluster torus, and let T ′r := Spec(C[(q′r)
±1])

denote the mutated cluster torus in the r-th direction. The intersection T ∩ T ′r is Zariski

dense in T ′r, thus the map (4.6) gives a rational map T ′r 99K
◦
Πv,w. (This is also the map

induced by the inclusion η(τ) : A(QD) ↪→ C[
◦
Πv,w].) The required statement is equivalent to

showing that this rational map T ′r 99K
◦
Πv,w is in fact an inclusion T ′r ↪→

◦
Πv,w. Each qi and q′r

is a regular function on
◦
Πv,w and hence we have a regular map

◦
Πv,w → Spec(C[q′r]) ' CJ◦v .

It thus suffices to show that the rational map T ′r 99K
◦
Πv,w is a regular map on the torus

T ′r. (Indeed, in this case, the composition T ′r →
◦
Πv,w → Spec(C[q′r]) is a regular map whose

restriction to the open dense subset T ′r∩T agrees with the inclusion map T ′r ↪→ Spec(C[q′r]).
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Therefore this composition coincides with the identity map on T ′r, and in particular the map

T ′r →
◦
Πv,w is automatically injective.)

We begin by showing that the map T ∩T ′r ↪→ Gr(n−k, n) given by t 7→ gv,w(t)P J
− extends

to a regular map θr : T ′r → Gr(n− k, n). It suffices to write each matrix entry of |h] (where
h = φw(gv,w(t)B−) as in Section 4.1) as an element of C[(q′r)

±1]. By Proposition 4.1, each

such matrix entry is a sum of wtP (t) over paths P in ~G(D). We may restrict our attention
to paths P such that the monomial wtP (t) contains qr in the denominator. Let r1 (resp.,
r2) be the bottom-left (resp., top-right) vertex of the face of G(D) labeled by Fr. Then
wtP (t) contains qr in the denominator precisely when P passes through both r1 and r2, and
either contains the top-left or the bottom-right boundary of the face Fr. We may group such
paths into pairs (P1, P2) where P1 contains the top-left boundary of Fr, while P2 contains
the bottom-right boundary of Fr, and otherwise P1 and P2 agree. By Proposition 4.1, the
contribution of such a pair is

wtP1(t) + wtP2(t) =
M

qr
·

(
qc
qaqb

+

∏
Fr→Fj :j 6=a,b qj∏
Fi→Fr:i 6=c qi

)
=
M

qr
·

(
qrq
′
r

qaqb
∏

Fi→Fr:i 6=c qi

)
,

where Fa, Fb, Fc, Fr are the labels of the faces adjacent to tr as in Figure 2, M is a monomial
in {qa}a∈J◦v\{r}, and the products in the second term are taken over the arrows of the quiver
QD not involving Fa, Fb, Fc. The common factor qr cancels, and we have constructed our
desired map θr : T ′r → Gr(n− k, n).

The intersection T∩T ′r is dense in T ′r, and θr(T∩T ′r) ⊆
◦
Πv,w, so we must have θr(T

′
r) ⊆ Πv,w,

where Πv,w is the Zariski closure of
◦
Πv,w. By [MS17, Equation (9)], we have ∆Fr = 1

qr
for

all r ∈ ∂J◦v t {0}. (For example, compare the minors ∆Fr(x) and ∆Fr(τ(x)) for x, τ(x)
from (4.4) and Fr from (4.5).) Thus ∆Fr is nonzero on θr(T

′
r) for any r ∈ ∂J◦v t {0}. By

[KLS13, Section 5],
◦
Πv,w is exactly the locus in Πv,w where the Plücker variables indexed

by the Grassmann necklace are nonvanishing, and this Grassmann necklace is precisely the
collection {Fr}r∈∂J◦vt{0}, see [Pos06] and [MS17, Proposition 4.3]. We conclude that we have

a regular map θr : T ′r →
◦
Πv,w. �

Example 4.8. Let k = 3, n = 6, (v, w) = (s2s4, s2s1s4s3s2s5s4s3) as in Example 1.1. Using
Figure 4 and Proposition 4.3, we find

(4.7) t8 =
1

q8
, t6 =

q8
q6
, t4 =

q8
q4
, t3 =

q4q6
q3q8

, t2 =
q8
q2
, t1 =

q2q4
q1q8

,

and the mutation rule (1.1) gives q′8 = q2q4q6+q1q3
q8

. We now express h = φw(gv,w(t)B−) both

in terms of t and in terms of q using Proposition 4.1 and Equation (4.7):

|h] =


1 0 0
0 1 0

− 1
t1t2

1
t1

0

0 0 1
1

t1t2t3t4
− 1

t1t3t4

1
t3

t1t3t4+t8
t1t2t3t4t6t8

− 1
t1t3t4t6

1
t3t6

 =


1 0 0
0 1 0
− q1

q4

q1q8
q2q4

0

0 0 1
q1q3
q4q6

− q1q3q8
q2q4q6

q3q8
q4q6

q2q4q6+q1q3
q4q8

− q1q3
q2q4

q3
q4

 .
Thus the only entry of h that has q8 in the denominator is

t1t3t4 + t8
t1t2t3t4t6t8

=
q2q4q6 + q1q3

q4q8
=
q′8
q4
.
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In particular, all matrix entries of h can be written as Laurent polynomials in the cluster
q′8 = {q1, q2, q3, q4, q6, q′8}, in agreement with Lemma 4.7.

Before we finish the proof, we need one more technical statement. Given an ice quiver
Q with vertex set V = Vf t Vm partitioned as in Section 1.4, the extended exchange matrix

B̃(Q) = (br,r′)r∈V,r′∈Vm of Q has rows indexed by the vertices of Q and columns indexed by
the mutable vertices of Q. We have br,r′ ∈ {1,−1, 0}, depending on whether there is an
arrow r → r′, or an arrow r′ → r, or no arrows between r and r′ (assuming no two vertices
of Q are connected by more than one arrow).

Proposition 4.9. The extended exchange matrix B̃(QD) is of full rank (i.e., has rank |Vm|).

Proof. We proceed by induction on the size of the Young diagram λ of D, the case |λ| = 0
being trivial. Suppose |λ| > 0. Let D′ be obtained from D by removing a box (i, j) adjacent
to the boundary of λ. If D does not contain a dot inside the box (i, j) then B̃(QD) = B̃(QD′)
so the result holds by induction. Thus assume that D contains a dot labeled tr inside the
box (i, j). Then Fr is a boundary face. If either the row or the column of (i, j) contains
no other dots, then B̃(QD) is obtained from B̃(QD′) by removing the row indexed by Fr,
and this row is 0; the result holds by induction. Finally, suppose that both the row and the
column of (i, j) contains another dot. Let Fa, Fb, Fc, Fr be the labels of faces adjacent to
tr as in Figure 2. Thus Fa and Fb are boundary faces. If Fc is also a boundary face, then
again B̃(QD) and B̃(QD′) differ by a 0 row. So assume that Fc is an interior face, then Fc
becomes a boundary face in G(D′). The matrix B̃(QD) satisfies bFr,Fc = −1, and this is the

only nonzero entry in the row indexed by Fr. The matrix B̃(QD′) is obtained from B̃(QD)
by deleting the row of Fr and the column of Fc. It is clear that B̃(QD) has full rank if and
only if B̃(QD′) has full rank, so the result again holds by induction. �

Proof of Theorem 3.5. By Proposition 4.9 and [BFZ05, Corollary 1.9], the intersection of
Laurent polynomial rings (called the upper bound in [BFZ05])

C[(q)±1] ∩

(⋂
r

C[(q′r)
±1]

)
is equal to the upper cluster algebra A(QD), defined to be the intersection of Laurent poly-

nomial rings for all clusters of A(QD). By Lemma 4.7, we have C[
◦
Πv,w] ⊆ η(τ)(A(QD)). By

[MS16], A(QD) is a locally acyclic cluster algebra, and by [Mul13, Theorem 4.1], we have

A(QD) = A(QD). Recall that τ :
◦
Πv,w

∼−→
◦
Πv,w is an isomorphism and η(τ) = τ ◦ η. By

Corollary 3.7(ii), we have η(τ)(A(QD)) ⊆ C[
◦
Πv,w], and therefore η(τ)(A(QD)) = C[

◦
Πv,w]. We

conclude that η(A(QD)) = C[
◦
Πv,w], completing the proof. �
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