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Abstract. A vertex of a randomly growing graph is called a per-
sistent hub if at all but finitely many moments of time it has
the maximal degree in the graph. We establish the existence of
a persistent hub in the Barabási–Albert random graph model with
probability one. We also extend this result to the class of convex
preferential attachment graphs, where a vertex of degree k gets a
new edge with probability proportional to some convex function of
k.

1. Introduction

The preferential attachment model was introduced by R. Albert and
A. L. Barabási in [3] in order to create a natural model for a dynami-
cally growing random network with a scale-free power-law distribution
of degrees of vertices. This distribution appears in many large real
random graphs such as internet, social networks, etc.

Since then the model became very popular and has been investigated
mathematically and empirically in many works, for example [4, 9, 11,
13, 7]. Many generalizations have been suggested: [1, 5, 12] etc.

The Barabási–Albert (BA) preferential attachment model is defined
as follows:

(1) Before the first step we have a natural number m0 and a tree
which contains one vertex v1 and zero edges.

(2) At the k-th step (k ≥ 1) we attach one new vertex vk and m0

new edges to the graph. These edges are attached one-by-one.
Every edge connects vk to some old vertex vi of the graph. This
vertex vi is chosen randomly, with probability proportional to
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its degree deg(vi). The degrees are being refreshed after every
edge attachment.

The convex preferential attachment model involves the same algo-
rithm, but the old vertex vi is chosen with probability proportional to
W(deg(vi)), where W : Z+ → R+ is a fixed positive, convex and un-
bounded function defined on the set of non-negative integers. Formal
definitions of these models are given below.

1.1. The main result. Investigation of vertices of maximal degree
became one of the most popular research directions in preferential at-
tachment, because the presence of vertices with large degrees is one of
the features of preferential attachment model as opposed to the classi-
cal Erdős–Rényi model. While the graph grows, different vertices can
have maximal degrees at different steps.

If a vertex has the maximal degree at some step, then it is called a
hub. If some vertex is a hub for all but finitely many steps, then it is
called a persistent hub. This notion has appeared in the literature, see,
for example, [5].

Now we can ask the following question: does the hub change infinitely
many times, or does there appear a persistent hub after some number
of steps?

The following theorem answers this question:

Theorem 1. In the BA and convex preferential attachment models with
probability 1 there exist numbers n and k such that at any step after
the n-th step the vertex vk has the highest degree among all vertices. In
other words, the persistent hub appears with probability one.

1.2. Previous research. S. Dereich and P. Mörters consider in [5]
a model very similar to the BA preferential attachment model with
m0 = 1: one starts with a single vertex and a fixed concave function
f : Z+ → R+, such that f(n) ≤ n+ 1 for all n ∈ Z+. At the k-th step:

• one new vertex vk is added
• for every old vertex vi the edge eik connecting vi to vk is added

with probability

f(deg(vi))

k
.

The main difference is that here for i 6= j the decisions of adding the
edges eik and ejk are made independently, while in the BA model
exactly one (if m0 = 1) old vertex becomes connected to the new
vertex.
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The question of existence of a persistent hub for this model has
been answered completely in [5], but the difference between the models
makes it too hard to apply those results to the BA case.

Theorem 1.7 from [5] states that a persistent hub appears if and only
if

∞∑
k=1

1

f(k)2
<∞.

This condition is of course satisfied if f is convex and unbounded. But,
even though the models are different, it remains an interesting open
question if the same result also holds in our situation after we drop the
convexity assumption. A weaker conjecture is that a persistent hub in
the BA model appears if the weight function is superlinear.

1.3. Outline of the paper. The proof of Theorem 1 assumes m0 = 1
and deals with random trees. We extend it to the case of an arbitrary
m0 in the last subsection.

(1) In Subsection 1.4 we give precise specifications of all considered
models.

(2) In Section 2 we investigate the joint behavior of two fixed ver-
tices. The main result of this section is Proposition 3, which
states that if at the n-th step there is some vertex vk with a
high degree, then with high probability the degree of vn+1 will
be lower than the degree of vk at every step.

(3) In Section 3 we prove the main result:
(a) In Subsection 3.1 we prepare some tools to make a com-

parison between the convex model and the BA model.
(b) In Subsection 3.2 we show that the maximal degree tends

to infinity fast enough, even though the degree of any fixed
vertex may be bounded.

(c) In Subsection 3.3 we use Borel–Cantelli lemma to show
that with probability 1 all but finite number of vertices
never have the highest degree.

(d) For every pair of the remaining vertices we prove in Sub-
section 3.4 that there is only a finite number of steps at
which their degrees coincide. This completes the proof for
the case m0 = 1.

(e) In Subsection 3.5 we modify the steps of the proof so that
they work for an arbitrary m0.

Throughout the paper every weight function is assumed to be convex.

1.4. Definitions of the models. First we define all models for m0 =
1, because the major part of the proof is concentrated around this case.
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1.4.1. Basic model for m0 = 1. Let Xk
n be the degree of the vertex vk

before the n-th step. Note that before the n-th step there are n vertices
and n − 1 edges in the tree, and the total degree of all vertices has a
very simple form:

n∑
k=1

Xk
n = 2(n− 1).

By pkn denote the probability that the new edge at the n-th step is
attached to the vertex vk, k ≤ n. Then

pkn :=

{
1, k = n = 1,
Xk
n

2(n−1) , n > 1, 1 ≤ k ≤ n.

Since in this paper we are not interested in the topological structure
of the tree, we can just consider the Markov chain of vectors Xn :=
(Xk

n)1≤k≤n.

1.4.2. Generalized model for m0 = 1. Let W : Z+ → R+ be a strictly
positive function.

In this model, a vertex vk of degree Xk
n has weight W(Xk

n), and the
probability pkn that the new edge is attached to the vertex vk at the
n-th step is defined as a ratio of the weight of vk to the total weight of
all vertices:

pkn :=

{
1, k = n = 1,
W(Xk

n)
wn

, n > 1, 1 ≤ k ≤ n.

where

wn :=
n∑
k=1

W(Xk
n).

(Here, unlike the basic model, wn is a random variable).
This model is also common, for example, in [5], [14] the cases of

superlinear (W(n) � n) and sublinear (W(n) � n) preferential at-
tachment are considered, in [15] the asymptotical degree distribution
for a wide range of weight functions is given, and in [16] the Hausdorff
dimension of some natural measure on the leaves of the limiting tree is
evaluated.

1.4.3. Convex model for m0 = 1. The convex model is a special case
of the generalized model. Here W(n) must be convex and unbounded.
Note that W(n) is not assumed to be increasing.

The convex model includes several popular special cases. We have
already discussed the basic model. In [14] the case W(n) = np, p > 1,
is considered. In [12] and [11] the case W(n) = n + β, β > −1 is
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considered. We call this case the linear model. Some similar models
have been considered earlier, for example, in [6] the concave preferential
attachment rule is investigated.

The convexity condition is pretty mild, but, on the other hand, it is
very convenient and simplifies proofs and calculations.

1.4.4. Generalized model for an arbitrary m0.

• We start with no vertices and no edges.

• Let n ≥ 0 be the number of the current step. Put N :=
⌊
n
m0

⌋
.

• If n ≡ 0 mod m0, then add one new vertex vN .
• Connect the vertex vN to exactly one of the vertices v0, . . . , vN−1,

if this set is not empty.
• A vertex vi, 0 ≤ i ≤ N − 1 is chosen with probability

W(deg(vi))∑N−1
j=0 W(deg(vj))

.

The basic, linear and convex models are just special cases of the gen-
eralized model, so it is enough to specify the generalized model for an
arbitrary m0.

2. Pairwise vertex degree analysis

In this section we investigate a random walk on the two-dimensional
integer lattice. In terms of preferential attachment, we consider two
fixed vertices, and we are interested only in steps at which the degree
of one of these vertices increases. We obtain a random walk by putting
a point on N2, whose coordinates are equal to the degrees of these two
vertices.

Consider the following random walk Rk on N2. From the point (A,B)

it moves either to the point (A + 1, B) with probability W(A)
W(A)+W(B)

or

to the point (A,B+ 1) with probability W(B)
W(A)+W(B)

. Note that the sum

of the coordinates of Rk increases by 1 at every step.

2.1. The number of paths. We are interested in the probability that
Rk moves from some fixed point to the diagonal {(m,m)}m∈N. It means
that the degrees of the two considered vertices become equal.

The event {Rk crosses the diagonal} can be partitioned into events
{Rk moves to the point (m,m), and this is the first time it crosses
the diagonal}m∈N. We evaluate the probabilities of these events. To
do it, we first need to count all admissible paths connecting the initial
point and the point (m,m), where by admissible we mean that only
the endpoints of this path may belong to the diagonal.
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Lemma 2. Let m ≥ A > B be some natural numbers. By G(A,B,A′, B′)
denote the number of admissible paths connecting (A,B) to (A′, B′).

Then

G(A,B,m,m) =
(2m− 1− A−B)!(A−B)

(m− A)!(m−B)!
.

Proof. ByA(A,B,A′, B′) denote the number of different up-right paths
connecting the point (A,B) with the point (A′, B′). Then

A(A,B,A′, B′) =

(
A′ +B′ − A−B

A′ − A

)
,

because this is the number of ways to choose at which of A′+B′−A−B
steps the path goes up, and at the remaining steps the path goes to
the right.

By

B(A,B,A′, B′) := A(A,B,A′, B′)− G(A,B,A′, B′)

denote the number of non-admissible paths between these two points.
To evaluate G(A,B,m,m) we use André’s reflection principle. Let

us show that there is a one-to-one correspondence between all paths
from (A,B) to (m− 1,m) and all non-admissible paths from (A,B) to
(m,m−1). Consider an arbitrary path between (A,B) and (m−1,m).
It crosses the diagonal, because A > B but m−1 < m. Now we perform
the following operation: all steps before the intersection with the diag-
onal remain the same while all steps after the intersection are inverted
(right↔ up). The part of the path after the intersection connected the
point (k, k) and the point (m− 1,m) for some k. Therefore, after the
inversion it connects the point (k, k) and the point (m,m− 1). Hence,
now we have a non-admissible path from (A,B) to (m,m − 1). This
process can be reversed, because the first intersection point with the
diagonal remains the same, hence the required bijection is constructed.

We get a formula

B(A,B,m,m− 1) = A(A,B,m− 1,m).

Since all admissible paths from (A,B) to (m,m) must have an in-
ner point (m,m − 1), we get the following chain of equalities, which
concludes the proof:
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G(A,B,m,m) = G(A,B,m,m− 1)

= A(A,B,m,m− 1)− B(A,B,m,m− 1)

= A(A,B,m,m− 1)−A(A,B,m− 1,m)

=

(
2m− 1− A−B

m− A

)
−
(

2m− 1− A−B
m− A− 1

)
=

(2m− 1− A−B)!

(m− A)!(m−B − 1)!
− (2m− 1− A−B)!

(m− A− 1)!(m−B)!

=
(2m− 1− A−B)!

(m− A− 1)!(m−B − 1)!

(
1

m− A
− 1

m−B

)
=

(2m− 1− A−B)!(A−B)

(m− A)!(m−B)!
.

�

2.2. The upper bound for the diagonal intersection probabil-
ity. By q(A,m) denote the probability that Rk moves from the point
(A, 1) to the point (m,m) following an admissible path.

Proposition 3. There exists a polynomial (with coefficients depending
only on the weight function W) P (·) such that for sufficiently large A
and for any m ≥ A it is true that

q(A,m) <
P (A)

2Am3/2
.

Proof. We evaluate upper bounds for the number of paths G(A, 1,m,m)
and for the probability of every fixed path from (A, 1) to (m,m) sepa-
rately.

Lemma 4. There exists a polynomial P1(·) such that

G(A, 1,m,m) ≤ P1(A) 22m

2Am3/2
∀ A,m ≥ A .

Proof. By Lemma 2,

G(A, 1,m,m) =
(2m− 2− A)!(A− 1)

(m− A)!(m− 1)!

=
(2m− 2)!

(m− 1)!(m− 1)!
· A− 1

2m− 1− A
· (m− A+ 1) · . . . · (m− 1)

(2m− A) · . . . · (2m− 2)
.

In the last expression, the first fraction is a binomial coefficient. Note
that the numerator and denominator of the last fraction have the same
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number of factors (A−1), and every factor of the numerator is at most
the half of the corresponding factor of the denominator. Therefore

G(A, 1,m,m) ≤ 22m

√
m
· P1(A)

m
· 1

2A

(all appearing constants are already included in the polynomial). The
lemma is proved. �

Lemma 5. There exist a polynomial P2(·) and a number A1 such that
if m ≥ A > A1 then for every path S from (A, 1) to (m,m) it is true
that

p(S) ≤ P2(A)

22m
.

Proof. Consider a composite path consisting of two simple paths:

S∗ = S1, S2

where
S1 = (A, 1), (A, 2), . . . , (A,A),

S2 = (A,A), (A+1, A), (A+1, A+1), (A+2, A+1), (A+2, A+2) . . . , (m,m).

Proposition 6. Among all paths with the same endpoints S∗ has the
largest probability.

Proof. The probabilities of any two paths with the same endpoints are
two fractions with same numerators but with different denominators.
Therefore it is sufficient to find the path with a minimal denomina-
tor. Every denominator is a product of several expressions of the form
W(Ak) +W(Bk) where Ak + Bk is fixed. Due to the convexity of W ,
the smaller |Ak − Bk| is the smaller W(Ak) +W(Bk) is. Clearly, the
path S∗ minimizes |Ak −Bk| at each step. �

By P(S) denote the probability of the path S.
Obviously, we have an upper bound for P(S2):

P(S2) ≤
1

22(m−A) =
22A

22m
.

Now to conclude the lemma proof it suffices to show that

P(S1) ≤
P2(A)

22A
.

for some polynomial P2(A) and sufficiently large A.
The explicit formula for P(S1) looks as follows:

P(S1) =
W(1)

W(1) +W(A)

W(2)

W(2) +W(A)
. . .

W(A− 1)

W(A− 1) +W(A)
.
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We introduce some notations. By W̃A(·) denote a function that
interpolates W at the points 1 and A in a linear way.

W̃A(n) has a form W̃A(n) = kAn+ bA for some real numbers kA and
bA. Let β(A) := bA/kA ∈ [−∞,+∞].

The function W(·) is required to be unbounded, so let A0 ∈ N be
such that W(A0) >W(1) and put β0 := β(A0). Then for any A > A0

it is obvious that

(1) −1 < β(A) < β0 .

Remark 7. The function β(A) + 1 is not necessarily separated from
zero, unlike the linear model. On the contrary, if A = o(W(A)) then
limA→∞ β(A) = −1.

Every fraction here will increase if we replace W(k) by W̃A(k), be-
cause all fractions are less than 1, and we add the non-negative number

W̃A(k)−W(k) to both numerator and denominator. Therefore,

P(S1) ≤
W̃A(1)

W̃A(1) + W̃A(A)

W̃A(2)

W̃A(2) + W̃A(A)
. . .

W̃A(A− 1)

W̃A(A− 1) + W̃A(A)
.

We know that W̃A(n) = kAn+bA. After substituting it and reducing
all fractions by kA we get

P(S1) ≤
1 + β(A)

1 + A+ 2β(A)

2 + β(A)

2 + A+ 2β(A)
. . .

A− 1 + β(A)

2A− 1 + 2β(A)
.

Now we want to replace β(A) by a larger number β0. Note that if
β(A) < β0, then for any B,C,D,E ∈ N such that D + Eβ(A) > 0 the
following holds:

B + Cβ(A)

D + Eβ(A)
<
B + Cβ0
D + Eβ0

⇔ BE − CD < 0.(2)

The condition on the right-hand side is satisfied, thus after replacing
β(A) by β0 we get the following inequality:

P(S1) ≤
(1 + β0)(2 + β0) . . . (A+ β0 − 1)

(A+ 1 + 2β0) . . . (2A− 1 + 2β0)

=
Γ(A+ β0)Γ(A+ 2β0 + 1)

Γ(β0 + 1)Γ(2A+ 2β0)
.

By Stirling’s formula for any z ≥ 1 it is true that Γ(z+1) �
√
z( z

e
)z.

After applying this and hiding all the constants into the polynomial we
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get

P(S1) ≤
P4(A)e2A+2β0

eA+2β0eA+β0
(A+ β0 − 1)A+β0−1(A+ 2β0)

A+2β0

(2A+ 2β0 − 1)2A+2β0−1

≤ P3(A) ·
(

A+ β0 − 1

2A+ 2β0 − 1

)A+β0−1
·
(

A+ 2β0
2A+ 2β0 − 1

)A+2β0

= P3(A) · 1

22A+3β0−1
·
(

A+ β0 − 1

A+ β0 − 1 + 1/2

)A+β0−1
·
(

A+ 2β0
A+ 2β0 − (1/2 + β0)

)A+2β0

≤ P2(A) · 1

22A
.

The last inequality is not as obvious as the other ones. Note that(
x

x+ a

)x
=

(
1− a

x+ a

)x
≤ exp(−ax/(a+ x))

and that for large x and bounded a this expression is also bounded by
some constant, which has also been already included into the polyno-
mial. �

The conclusion of Proposition 3 follows from our lemmas by multi-
plication of the corresponding inequalities. �

Corollary 8. By q(A) denote the probability that our random walk
moves from the point (A, 1) to the diagonal. Then for sufficiently large
values of A and for some polynomial P (·) it is true that

q(A) <
P (A)

2A
.

Proof. By Proposition 3 we get that

q(A) ≤
∞∑

m=A

q(A,m) ≤ P (A)

2A

∞∑
m=A

1

m3/2
.

It remains to note that the series
∑

1
m3/2 is convergent. �

2.3. Limit distribution of the random walk in the linear case.
SupposeW(n) = n+β, β > −1. In this case, the following proposition
provides an explicit asymptotic form of the random walk distribution.

Proposition 9. If Rk starts at the point (A, 1) then the quantity Ak/(Ak+
Bk) tends with probability 1 to some random variable H(A) as k tends
to infinity. Moreover, H(A) has a beta probability distribution:

H(A) ∼ Beta(1 + β,A+ β) .
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Figure 1. Replacing the weight function increases the
relative weight of all vertices except for the current hub.

Proof. As noted in [2], this random walk is a special case of Pólya urn
model with initial parameters (1 + β,A + β). Recall that for the urn
model the limit distribution of that fraction is well known, see, for
example, [10] or [8]. �

3. The proof of the main result

3.1. Comparison between the convex model and the linear
model. Motivated by (1), for the convex model with weight function

W we introduce the linear model with W̃(n) = n + β0 and call it the
linear comparison model.

Lemma 10 (The comparison lemma). Suppose in the convex model
before the n-th step the vertex vt has the maximal degree m, and the
degrees of all other vertices are fixed. Let m > A0. By p denote the
probability that the next edge is attached to the vertex vt. Now consider
exactly the same situation (all the degrees remain the same), but in the
linear comparison model. By p̃ denote the probability that the next edge
is attached to the vertex vt in the linear case.

Then p ≥ p̃.
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Proof. Note that for all 1 ≤ k ≤ m, W(k) ≤ W̃m(k) due to the con-
vexity of W . Then

p =
W(m)∑

v(W(deg(v)))
≥ W̃m(m)∑

v(W̃m(deg(v)))

=
m+ β(m)

2(n− 1) + nβ(m)
≥ m+ β0

2(n− 1) + nβ0
= p̃ .

First we increase the denominator (see Figure 1), then we reduce the
fraction, and then we use (2).

�

Remark 11. Unlike the expressions on the left hand side, p̃ depends
only on m and on the total degree of vertices.

3.2. The maximal degree grows fast enough. In the linear and
basic models the degree of any fixed vertex grows fast enough to provide
the convergence of the series

∑
q(A) with probability 1, see Remark

14 below. Unfortunately, this is not always the case in the convex
model, for example, if W(n) = 22n then with positive probability the
degree of the first vertex will be bounded, because the second one will
be connected to almost all vertices. So, any fixed vertex degree can be
bounded. However, the maximal degree (the degree of random vertex),
as we will see, grows fast enough with probability 1.

By Mn denote the maximal degree before the n-th step.

Proposition 12. There exists a sequence Cn of positive real numbers
satisfying the following conditions:

(1) Cn grows fast enough: the expression Cnn
−1/(4+2β0) converges

to a positive finite limit,
(2) Cn/Mn is a supermartingale with respect to the filtration

σn = σ(M1, . . . ,Mn).

Corollary 13. There exists a positive random variable M such that
for all n ≥ 2,

(3) Mn ≥Mn1/(4+2β0).

Proof. Cn/Mn is a positive supermartingale, hence by Doob’s theorem
it tends to a finite limit with probability 1, therefore this sequence with
probability 1 is bounded by some positive random variable C. But this
implies Mn ≥ Cn/C with probability 1, i.e. with probability 1 for all
n ≥ 2 we get (3). �

Proof of Proposition 12. Let n be sufficiently large. By Vn denote the
set of vertices before the n-th step, and by pn denote the probability
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that the maximal degree increases at the n-th step. We can bound it
from below:

pn ≥
W(Mn)∑

v∈VnW(deg(v))
≥ W̃Mn(Mn)∑

v∈Vn W̃Mn(deg(v))
≥ Mn + β0

w̃n
=: p̃n .

Here w̃n = 2(n− 1) + nβ0.
Denote α := 1

4+2β0
.

For the sequence Yn := Cn/Mn to be a supermartingale it is neces-
sary to show that

E (Yn+1|Fn) ≤ Yn .

Note that

Yn+1/Cn+1 =

{
1

Mn+1
with probability pn,

1
Mn

with probability 1− pn.

It follows that

E (Yn+1/Cn+1|Fn) =
pn

Mn + 1
+

1− pn
Mn

=
pnMn +Mn + 1− pnMn − pn

Mn(Mn + 1)

=
Mn + 1− pn
Mn(Mn + 1)

=
1

Mn

− pn
Mn(Mn + 1)

≤ 1

Mn

− p̃n
Mn(Mn + 1)

≤ 1

Mn

− p̃n
2M2

n

=
1

Mn

− 1 + β0/Mn

2Mnw̃n
≤ 1

Mn

− 1

2Mnw̃n

=
1

Mn

(
1− 1

2(2(n− 1) + nβ0)

)
=

1

Mn

(
1− 1/(4 + 2β0)

n− 4/(4 + 2β0))

)
=

1

Mn

(
1− α

n− 4α

)
=

1

Mn

(
n− 5α

n− 4α

)
.

Now it is clear that the following inequality is sufficient for Yn to be
a supermartingale:

Cn+1

Mn

(
n− 5α

n− 4α

)
≤ Cn
Mn

.

To make this inequality true put, for example, Cn+1 = Cn(1 + α
n−5α)
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A simple computation shows that the sequence Cn/n
α has a pos-

itive and finite limit, therefore Cn satisfies both conditions from the
statement of the proposition. This completes the proof.

�

3.3. Finite number of hubs. In this subsection we prove that the set
of vertices that have been hubs at some step is finite with probability
1.

Consider a decreasing sequence of events

BM = {∀nMn > Mn1/(4+2β0)} .

for any real M > 0.
Let vl(n) be some vertex which has the maximal degree before the

n-th step (in general, there can be several such vertices). Consider the
following event

Hn = {the vertex vn+1 has the same degree as vl(n) at some future step}.

We recall that the joint behaviour of vertices vl(n) and vn+1 is described
by the random walk from Section 2, starting from the point (Mn, 1).
Using Corollary 8, we get that for any M > 0 and for sufficiently large
n the following is true:

P(Hn ∩BM) ≤ max
A≥Mn1/(4+2β0)

P (A)

2A
≤ P1(Mn1/(4+2β0))

2Mn1/(4+2β0)
.

where P, P1 are some polynomials. The expressions at the right hand
side form a convergent series, therefore, using Borel–Cantelli lemma
one can show that the event Hn ∩ BM occurs for only finitely many
indices n with probability 1. Moreover, because of (3), we see that
P (BM) → 1 as M → 0. Therefore, the event Hn also occurs for only
finitely many indices n with probability 1.

Hence only finitely many vertices have been hubs.

Remark 14. In the linear and basic models the proof can be simplified
using any fixed vertex for comparison instead of the leader l(n), because
in these models even the degree of any fixed vertex grows fast enough,
i.e. like some power of n.

3.4. Finite number of leader changes between any two fixed
vertices. It remains to prove the following result:

Theorem 15. For any two vertices the set of all steps at which their
degrees coincide is finite.
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Proof. Consider any two vertices and the corresponding two-dimensional
random walk. Suppose the random walk starts from the point (Ak, Bk),
which means that the degrees of these two vertices were at first equal
to Ak and Bk respectively. We can always consider k to be sufficiently
large so that Ak +Bk > A0. Consider the linear two-dimensional com-
parison random walk (according to Lemma 10) starting from the same

point, but with the other weight function W̃(A) = A+ β0.
First we introduce some notation. By ∆n := |An − Bn| denote the

difference between An and Bn, and by ∆̃n := |Ãn − B̃n| denote the
corresponding difference in the linear comparison model.

Proposition 16. There exists a coupling between ∆n and ∆̃n, such

that ∆n stochastically dominates ∆̃n for any n ≥ k.

Proof. We construct both functions ∆n and ∆̃n on the same probability
space preserving every independency relation each of them must satisfy.

Using induction on n, we now show that for every n, ∆n ≥ ∆̃n with
probability 1. For n = k it is true.

Now consider a (maximal by inclusion) set L ⊂ Ω of positive measure

p such that the functions ∆n and ∆̃n are constants on L, and, by

induction, ∆n ≥ ∆̃n on L.
By q denote the probability that ∆n increases by 1 (therefore, it

decreases by 1 with probability 1− q), and by q̃ denote the probability

that ∆̃n increases by 1. Let ∆̃n be positive on L. Then, by Lemma

10, q > q̃. Let L′ be a subset of L on which ∆n+1 = ∆n + 1, and L̃′

be a subset of L on which ∆̃n+1 = ∆̃n + 1. Clearly, the probability

of the set L′ is greater than the probability of the set L̃′, therefore we

can choose them in such a way that L̃′ ⊂ L′. So on L the induction

inequality ∆n+1 ≥ ∆̃n+1 now holds.

The only remaining set is the set where ∆̃n = 0. On its subset where

∆n 6= 1 the required inequality ∆n+1 ≥ ∆̃n+1 holds automatically, and

now all we need is to note that ∆n and ∆̃n are of the same parity
(because their parities both change at every step), so the set where

∆̃n = 0 and ∆n = 1 is empty. This concludes the construction of the

functions ∆n and ∆̃n.
�

Now we show that with probability 1 the sequence ∆̃n is equal to
zero only finitely many times. Then it is also true for ∆n, because

∆n ≥ ∆̃n.
It follows from Proposition 9 and from the absolute continuity of

beta-distribution that the probability of every particular value equals
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to zero. Therefore with probability 1 An/(An +Bn) converges to some
y 6= 1

2
. Hence this fraction can be equal to 1

2
only finitely many times,

and it means that ∆̃n equals to zero only finitely many times with
probability 1, q.e.d.

�

Now the result of Theorem 1 for m0 = 1 obviously follows from those
of Subsections 3.3 and 3.4.

From Theorem 1 we can easily deduce an important known result
about the behaviour of maximal degrees in the linear model from [12]:

Corollary 17. In the linear model the variable Mn satisfies the fol-
lowing:

Mnn
−1/(2+β) → µ ,

where µ is an almost surely positive and finite random variable.

Proof. We know thatMn behaves like the degree of some fixed vertex.
Moreover, it is known that in the linear model the degree of every vertex
is asymptotically equivalent to n−1/(2+β) multiplied by some random
constant. �

3.5. Generalization to the case of an arbitrary m0. The case of
m0 > 1 is often considered to be much more complicated than the
case of m0 = 1, because the graph is not a tree. But it turns out
that all steps of the presented proof (pairwise vertex degree analysis,
the sufficiently fast growth of the maximal degree, finite number of
hubs and leader changes) remain literally the same for m0 > 1, except
for just one change: in the pairwise analysis part, the random walk
related to the degrees of the vertices starts not from the point (A, 1),
but from the point (A,m0). This obstacle can be easily avoided by
introducing a new (convex and unbounded) weight function W ′(n) :=
W(n + m0 − 1). Then the random walk with the weight function W
starting from the point (A,m0) is isomorphic to the random walk with
the weight functionW ′ starting from the point (A−m0 + 1, 1), and for
this case we have already provided all necessary bounds.
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