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Abstract. Given a finite rhombus tiling of a polygonal region in the plane, the associated
critical Z-invariant Ising model is invariant under star-triangle transformations. We give a
simple matrix formula describing spin correlations between boundary vertices in terms of
the shape of the region. When the region is a regular polygon, our formula becomes an
explicit trigonometric sum.

1. Introduction

Consider a rhombus tiling T of a polygonal region R in the plane, such as the one in Fig-
ure 1(a). To this data, one can attach a weighted isoradial graph GT which depends on the
geometry of the tiling in a simple local way. The associated critical Z-invariant Ising model
was introduced by Baxter [Bax78, Bax86] and has been studied extensively since then; see
e.g. [AYP87, CS11, CS12, BdT10, BdT11, BdTR19]. It is a probability measure on the space
of spin configurations on the vertices of GT, generalizing the Ising model at critical tempera-
ture on the square, triangular, and hexagonal lattices. Denote by b1, b2, . . . , bn the vertices of
GT that belong to the boundary of R, listed in counterclockwise order. For all 1 ≤ j, k ≤ n,
let 〈σjσk〉R be the spin correlation between bj and bk. By definition, 〈σjσk〉R is the difference
between the probability that the spins at bj and bk are equal and the probability that these
spins are different. See Section 2.2 for details.

It is known [Ken93] that any two rhombus tilings of the same region can be related by a
sequence of flips as in Figure 1(d). Applying a flip to a rhombus tiling results in applying
a star-triangle move to the weighted graph GT. The boundary correlations 〈σjσk〉R are
preserved by such moves, and therefore depend only on the region R itself, and not on
the particular choice of a rhombus tiling T. It is thus natural to look for an expression
for 〈σjσk〉R purely in terms of R. In this paper, building on our previous results with
P. Pylyavskyy [GP20], we give such an expression for an arbitrary region R.

1.1. Regular polygons. In general, our formula involves computing the inverse of an n×n
matrix. However, in the most symmetric case when R is a regular 2n-gon, the matrix can
be inverted explicitly, which gives rise to the following result.

Theorem 1.1. Let Rn be a regular 2n-gon. Then for 1 ≤ p, q ≤ n and k := |p− q|, we have

(1.1) 〈σpσq〉Rn =
2

n

(
1

sin ((2k − 1)π/2n)
− 1

sin ((2k − 3)π/2n)
+ · · · ± 1

sin (π/2n)

)
∓ 1.
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Figure 1. (a) A rhombus tiling of an arbitrary polygon R; (b) a rhombus
tiling of a regular polygon Rn for n = 6; (c) the associated isoradial graph GT
consists of black vertices and black solid edges; (d) a flip of a rhombus tiling
resulting in a star-triangle move on GT.

As we explain in Remark 1.15, this formula describes the unique n×n boundary correlation
matrix of the Ising model that is invariant under the Kramers–Wannier duality [KW41]. The
proof of Theorem 1.1 and its asymptotic consequences are presented in Section 5.

1.2. Arbitrary regions. We now present our main result, Theorem 1.6 and Corollary 1.9,
which gives a formula for an arbitrary polygonal region R. We identify vectors in the plane
with complex numbers and denote [2n] := {1, 2, . . . , 2n}.

Let R be a region whose boundary is a simple closed polygonal chain comprised of 2n unit
vectors v1, v2, . . . , v2n ∈ C listed and directed in the counterclockwise order. Any rhombus
tiling of R is dual to a pseudoline arrangement obtained by connecting the midpoints of the
opposite edges of each rhombus; see Figure 2(c). Each pseudoline connects the midpoints of
vj and vk for some j, k ∈ [2n], and we record the associated matching as a fixed-point-free
involution τ = τR : [2n]→ [2n]. By definition, we set τ(j) := k and τ(k) := j whenever the
midpoints of vj and vk are connected by the same pseudoline. Clearly, we have

(1.2) vτ(j) = −vj for all j ∈ [2n].

Note that τ depends only on R and not on the choice of a rhombus tiling. For example, if
R is given in Figure 2(a), then we have n = 9 and τ : [2n]→ [2n] satisfies (cf. Figure 2(c))

τ(1) = 7, τ(2) = 18, τ(3) = 12, τ(4) = 10, τ(5) = 8, τ(6) = 17, . . . , τ(17) = 6, τ(18) = 2.

We would like to extract a square root of each vj ∈ C in a particular way. Namely, we
choose angles θ1, θ2, . . . , θ2n ∈ R satisfying

vk = exp(2iθk), for all k ∈ [2n];(1.3)

θτ(k) = θk + π/2, when k < τ(k);(1.4)

θj < θk < θτ(j) < θτ(k), when j < k < τ(j) < τ(k).(1.5)

For instance, if R is convex and arg(v1) ≤ arg(vk) for all k ∈ [2n], we may choose θk :=
arg(vk)/2 for all k ∈ [2n].

For the purposes of this introduction, we will impose the following “non-alternating”
restriction on R; see Figure 3. It will be lifted later in Section 6.
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Figure 2. The boundary vectors v1, . . . , v2n, the isoradial graph GT, and the
pseudoline arrangement (which determines the matching τ) associated with a
rhombus tiling T of a polygonal region R.

Definition 1.2. We say that R is alternating if there exist 1 ≤ a < b < c < d ≤ 2n such that

(1.6) va = −vb = vc = −vd.

Otherwise, we say that R is non-alternating.

For example, in the generic case where vj 6= vk for all j 6= k, the region R is non-alternating.

Definition 1.3. For a, b, c ∈ [2n], we say that (a, b, c) form a counterclockwise triple if either
a < b < c, or b < c < a, or c < a < b. For a matching τ : [2n]→ [2n] and k ∈ [2n], we set

Jk := {j ∈ [2n] | (k, j, τ(j)) form a counterclockwise triple}.

Thus Jk is an (n− 1)-element subset of [2n] which contains exactly one element out of each
pair {j, τ(j)} disjoint from {k, τ(k)}.

Definition 1.4. To any region R we associate a curve γR : R → R2n with coordinates
γR(t) = (γ1(t), γ2(t), . . . , γ2n(t)) given by

(1.7) γk(t) = (−1)|Jk∩[k]|
∏
j∈Jk

sin(t− θj) for k ∈ [2n].

We remark that Jk ∩ [k] = {j ∈ [2n] | j < τ(j) < k}. With a more natural “cyclically
symmetric” choice of conventions (2.8), the extra sign (−1)|Jk∩[k]| disappears.

Proposition 1.5. Suppose that R is non-alternating. Then the linear span Span(γR) ⊂ R2n

of the vectors {γR(t)}t∈R has dimension n.

When R is alternating, Span(γR) has dimension strictly less than n.
Recall that any rhombus tiling of R gives rise to the critical Z-invariant Ising model whose

boundary correlations are denoted by 〈σjσk〉R for j, k ∈ [n]. We assume that the boundary
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Figure 3. The formula in Corollary 1.9 applies to non-alternating regions
shown on the left. In Section 6, we give a formula that applies to arbitrary
regions, including the alternating regions shown on the right. We indicate the
vectors va, vb, vc, vd satisfying (1.6) for each alternating region.

M =


1 m12 m13 m14

m12 1 m23 m24

m13 m23 1 m34

m14 m24 m34 1

 7→ M̃ =


1 1 m12 −m12 −m13 m13 m14 −m14

−m12 m12 1 1 m23 −m23 −m24 m24

m13 −m13 −m23 m23 1 1 m34 −m34

−m14 m14 m24 −m24 −m34 m34 1 1


Figure 4. An example of applying the doubling map of [GP20] for n = 4.

Modulo changing some signs in an alternating fashion, M̃ contains two copies of

each column of M . By definition, φ(M) is the row span of M̃ . See Section 2.3.

vertex bj is adjacent to v2j−1 and v2j for each j ∈ [n]. We introduce the boundary correlation
matrix

(1.8) MR = (mj,k), where mj,k := 〈σjσk〉R for j, k ∈ [n].

It is a symmetric n× n matrix.
In our joint work with Pylyavskyy [GP20], we introduced the doubling map φ. (See

Figure 4 for an example and Section 2.3 for the definition.) To any symmetric n×n matrix M
with ones on the diagonal, it associates an n-dimensional linear subspace φ(M) of R2n. The
map φ is injective: M can be recovered from φ(M) via a simple linear-algebraic procedure
outlined below in Corollary 1.9. The map φ has remarkable properties: for instance, the
Kramers–Wannier duality [KW41], which has a complicated effect on the spin correlations,
translates under the map φ into the cyclic shift operator R2n → R2n given in (2.4). Similarly,
the main result of the present paper can be stated most cleanly in terms of the map φ.

Theorem 1.6. For any non-alternating region R, we have

φ(MR) = Span(γR).

An analogous result holds for arbitrary regions; see Theorem 6.1.
In order to recover the boundary correlation matrix MR from φ(MR) = Span(γR), one

needs to pick a basis of Span(γR). The easiest way to achieve that is to just take n distinct
points on the curve γR.

Proposition 1.7. Suppose that R is non-alternating. Then for any 0 ≤ t1 < t2 < · · · <
tn < π, the vectors γR(t1),γR(t2), . . . ,γR(tn) form a basis of Span(γR).
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In the generic case, the proof of Proposition 3.3 below gives a particularly nice set of points.

Remark 1.8. A more canonical (and computationally robust) way to produce a basis of
Span(γR) is to observe that each coordinate γj(t) is a trigonometric polynomial of degree
n− 1. Therefore it has precisely n non-trivial Fourier coefficients. The rows of the resulting
n× 2n matrix FR of Fourier coefficients form a basis of Span(γR) which does not depend on
anything besides the angles θ1, θ2, . . . , θ2n; see Section 3.

Lastly, we introduce a 2n× n matrix Kn defined as

(1.9) Kn =
1

2



1 0 . . . 0
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 1


.

Observe that for n = 4 and for the n × 2n matrix M̃ from Figure 4, the product M̃Kn is
the n × n identity matrix. We are ready to translate Theorem 1.6 into an explicit matrix
formula for boundary correlations of the critical Z-invariant Ising model.

Corollary 1.9. Let R be a non-alternating region. Choose an n × 2n matrix A whose
row span equals Span(γR). (See e.g. Proposition 1.7, Remark 1.8, and Theorem 6.1.) Let
B = (bj,k) be the n× 2n matrix given by

(1.10) B := (AKn)−1A.

Then, up to a sign, the entries of B are the boundary correlations: we have

〈σjσk〉R = 〈σkσj〉R = |bj,2k−1| = (−1)k−j+1bj,2k−1 for all 1 ≤ j < k ≤ n.

Remark 1.10. Part of the content of Corollary 1.9 is that the matrix AKn is always in-
vertible and that in the notation of Figure 4, the matrix B = (AKn)−1A coincides with the

matrix M̃R; see Proposition 2.2.

Example 1.11. Consider the case n = 2 and let R := Rn be a square. We have

θ1 = 0, θ2 = π/4, θ3 = π/2, θ4 = 3π/4 and τ(1) = 3, τ(2) = 4, τ(3) = 1, τ(4) = 2.

Thus J1 = {2}, J2 = {3}, J3 = {4}, J4 = {1} and

γR(t) = (sin(t− π/4), sin(t− π/2), sin(t− 3π/4),− sin(t)) .

Let us take A to be the matrix with rows, say, γR(0) and γR(3π/4):

A =

(
−
√

2/2 −1 −
√

2/2 0

1
√

2/2 0 −
√

2/2

)
, thus AKn =

1

2

(
−1−

√
2/2 −

√
2/2

1 +
√

2/2 −
√

2/2

)
.

We calculate

(AKn)−1 =

(√
2− 2 2−

√
2

−
√

2 −
√

2

)
and (AKn)−1A =

(
1 1

√
2− 1 1−

√
2

1−
√

2
√

2− 1 1 1

)
.

By Corollary 1.9, we find 〈σ1σ2〉 =
√

2−1. This is indeed the correct value; see Example 2.1.
It is also consistent with Theorem 1.1.
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Remark 1.12. The formula (1.10) involves inverting the matrix AKn. In general, correla-
tions of the Ising model may be computed in terms of the Kasteleyn matrix or the Kac–Ward
matrix associated with G [KW52, Kas61, Fis61, Fis66, DZM+99]. These matrices depend
on the choice of the rhombus tiling and are roughly of size n2 × n2. On the other hand, the
matrix AKn is of size n × n and depends manifestly only on the angles θ1, θ2, . . . , θ2n (cf.
Remark 1.8).

Remark 1.13. Many of our constructions are special cases of objects arising in the total
positivity literature. In the main body of the paper, we present them in a self-contained
way, and explain their relations to total positivity in Section 7.1.

Remark 1.14. Theorem 1.6 and most of our other results generalize directly to the setting
of the totally nonnegative Grassmannian Gr≥0(k, n) studied in [Lus98, Pos06]: one replaces
a matching with a decorated permutation, a rhombus tiling with a plabic tiling [Pos06,
OPS15], the critical Z-invariant Ising model with a suitable critical dimer model [Ken02]
on a plabic graph, and the doubling map φ with Postnikov’s boundary measurement map.
This simultaneously includes the cases of the Ising model (for Gr≥0(n, 2n)) and electrical
resistor networks (for Gr≥0(n−1, 2n); cf. [Lam18]), providing partial progress towards [GP20,
Question 9.2]. These results will appear in a forthcoming paper [Gal].

Remark 1.15. We showed in [GP20, Proposition 3.6] that for each n ≥ 2, there exists
a unique n × n boundary correlation matrix M0 that is invariant under Kramers–Wannier
duality [KW41]. Applying this duality to the graph GT associated with a rhombus tiling T
amounts to switching the black/white colors of vertices of T and relabeling (v1, v2, . . . , v2n) 7→
(v2, . . . , v2n, v1). For the case when R = Rn is a regular 2n-gon, any rhombus tiling can be
connected by a sequence of flips to its rotation by π/n. Thus MRn coincides with the unique
self-dual n× n matrix M0.

Acknowledgments. I am indebted to Pasha Pylyavskyy for his numerous contributions
at various stages of this project. I also thank Clément Hongler for bringing several useful
references to my attention. This work was partially supported by the National Science
Foundation under Grant No. DMS-1954121.

2. Background

2.1. Matchings, regions, tilings, and pseudoline arrangements. Since our proof will
necessarily pass through very degenerate regions and their rhombus tilings, we need to define
these objects formally.

For 1 ≤ j < k ≤ 2n, we introduce cyclic intervals [j, k] := {j, j + 1, . . . , k} and [j, k]c :=
[2n] \ [j, k]. By a matching we mean a map τ : [2n] → [2n] such that τ(j) = k implies
τ(k) = j and j 6= k. (Such a map is also called a fixed-point-free involution.) We say that a
sequence θ = (θ1, θ2, . . . , θ2n) is a τ -shape if it satisfies (1.4) and (1.5) for all j, k ∈ [2n]. For
a τ -shape θ, we let the vectors v1, v2, . . . , v2n ∈ C be defined by (1.3). By a valid region we
mean a pair R = (τ,θ) consisting of a matching τ and a τ -shape θ. We draw R in the plane
as a polygonal chain with sides v1, v2, . . . , v2n (in this order). By (1.2), this polygonal chain
is closed. In general, it may intersect itself.

Let us say that a matching τ : [2n]→ [2n] is disconnected if there exist 1 ≤ j < k ≤ 2n such
that τ([j, k]) = [j, k] but [j, k] 6= [2n]; otherwise τ is called connected. When τ([j, k]) = [j, k],
the restriction of τ to [j, k] and [j, k]c is defined in an obvious way. By (1.2), τ([j, k]) = [j, k]
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implies vj + vj+1 + · · · + vk = 0, so if τ is disconnected then the boundary of R is self-
intersecting. A connected component of τ is a cyclic interval I such that the restriction of τ
to I is connected. The conditions (1.4) and (1.5) only involve pairs of indices from the same
connected component. All our constructions will work independently for each connected
component of τ .

We say that a valid region R is simple if its boundary is a simple (non-self-intersecting)
polygonal chain. In this case, τ must be connected, but the converse need not hold. A
rhombus tiling of a simple region R is a finite collection of rhombi whose sides are unit
vectors parallel to the vectors v1, v2, . . . , v2n, whose interiors do not overlap, and whose
union is the region bounded by R. The critical Z-invariant Ising model defined below is
most naturally associated to a rhombus tiling of a given simple region, but in fact it is well
defined for any valid region in terms of pseudoline arrangements.

Consider 2n points d1, d2, . . . , d2n drawn counterclockwise on a circle. A pseudoline ar-
rangement is a collection A of n embedded line segments (“pseudolines”) such that any two
pseudolines intersect at most once, all intersection points are in the interior of the disk,
and no three pseudolines intersect at one point. The set of endpoints of the pseudolines is
assumed to be {d1, d2, . . . , d2n} (thus the endpoints are pairwise distinct). Each pseudoline
connects some dj to dk and this gives rise to a matching τ = τA : [2n]→ [2n] sending j 7→ k
and k 7→ j for each such pseudoline. The procedure in Section 1.2 describes how pseudoline
arrangements are naturally the dual objects to rhombus tilings; see Figure 2(c). It is easy to
see that any matching is realized by some pseudoline arrangement: one can choose generic
boundary points d1, d2, . . . , d2n and take each pseudoline to be just a straight line segment
connecting dj to dτ(j).

2.2. Ising model. Let G = (V,E) be a finite simple undirected graph. A spin configuration
is an assignment σ = (σv)v∈V ∈ {±1}V of spins to the vertices of G, where we have σv = ±1
for each v ∈ V . Given an assignment x = {xe}e∈E of positive real edge weights, the Ising
model is a probability distribution on the set {±1}V of all spin configurations: the probability
of a given spin configuration σ equals

(2.1) Prob(σ) :=
1

Z

∏
{u,v}∈E:σu=σv

x{u,v}, where Z :=
∑

σ∈{±1}V

∏
{u,v}∈E:σu=σv

x{u,v}

is the partition function. Given two vertices u, v ∈ V , we define their correlation as

(2.2) 〈σuσv〉 := Prob(σu = σv)− Prob(σu 6= σv).

Suppose we are given a rhombus tiling T of a simple region R = (τ,θ). Color the vertices
of T in a bipartite way so that the vertex adjacent to v2j−1 and v2j is black for each j ∈ [n].
The graph GT = (V,E) is defined as follows: the vertex set V consists of all black vertices
of T, and the edge set E contains, for each rhombus in T, the diagonal connecting its two
black vertices. For an edge e ∈ E, let 2θe ∈ (0, π) be the angle at a white vertex of the
rhombus containing e. The edge weights xT = (xe)e∈E are defined as follows: for e ∈ E, we
set xe := cot(θe/2) ∈ (1,∞); see Figure 5(a). The Ising model associated with the weighted
graph (GT,xT) is referred to as the critical Z-invariant Ising model.

Example 2.1. Consider the case n = 2 and R = Rn. Then G is a single edge e connecting
b1 to b2. The rhombus containing e has all angles equal to π/2, thus θe = π/4, and xe =



8 PAVEL GALASHIN

2θe

e

(a) rhombus tiling

j

τ(j)

τ(k)

k

e

(b) 2θe := θk − θj
j

τ(j)

τ(k)

k

e

(c) 2θe := θτ(j) − θk

Figure 5. In each case, we assign xe := cot(θe/2). (a) For a rhombus in a
rhombus tiling, 2θe is the angle at a white vertex; (b) and (c) refer to the case
of an edge e in the graph GA associated to a pseudoline arrangement A; here
j < k < τ(j) < τ(k).

cot(π/8) =
√

2 + 1. By (2.1) and (2.2), we have

Z = xe + 1 and 〈σ1σ2〉R =
xe − 1

xe + 1
=

√
2√

2 + 2
=
√

2− 1,

in agreement with Example 1.11 and Theorem 1.1.

A flip is a local operation T 7→ T′ on rhombus tilings which replaces three rhombi in
T whose union is a convex hexagon with the other three rhombi whose union is the same
hexagon. The associated weighted graphs (GT,xT) and (GT′ ,xT′) are related by a star-
triangle move; see Figure 1(d). The edge weights xT,xT′ have the important property that
applying a flip preserves the correlations 〈σuσv〉 whenever u, v are black vertices present in
both T and T′. (We caution that the partition function Z is in general not preserved by
star-triangle moves.)

More generally, given any valid region R = (τ,θ), choose a pseudoline arrangement A
such that τ = τA. (For example, A may be chosen to consist of straight line segments as
above.) The complement of A in the disk may be colored black and white in a checkerboard
fashion so that the arc connecting d2j−1 to d2j is adjacent to a black region for each j ∈ [n];
see e.g. [Bax78, Figure 1]. We now let GA = (V,E) be the graph whose vertices are the
black regions of A (including n boundary regions b1, b2, . . . , bn, where bj is adjacent to the arc
between d2j−1 and d2j for j ∈ [n]), and whose edges correspond to intersection points between
the pseudolines in A. Each such intersection point p involves a pseudoline connecting j to
τ(j) and a pseudoline connecting k to τ(k) for some j < k < τ(j) < τ(k). The corresponding
edge e connects (the vertices of G corresponding to) the two black regions adjacent to p. We
set xe := cot(θe/2), where we either have 2θe := θk − θj or 2θe := θτ(j) − θk, depending on
how the two black regions are located relative to j, k, τ(j), τ(k); see Figure 5(b,c). We set
xA := (xe)e∈E. For each triangular interior region of A, one may perform a Yang–Baxter
move which is dual to a flip of a rhombus tiling. The associated weights still satisfy a similar
star-triangle relation which preserves the boundary correlations of the associated critical Z-
invariant Ising model. If a single black region contains several boundary points bj1 , . . . , bjk ,
they are treated as if they were “contracted” into a single vertex, and we set 〈σjsσjt〉 := 1
for all s, t ∈ [k]. See [GP20, Definition 6.1] for details.

The above construction associates a weighted graph (GT,xT) (resp., (GA,xA)) to any
rhombus tiling T (resp., pseudoline arrangement A) of a valid region R = (τ,θ). The graph
GT has n boundary vertices b1, b2, . . . , bn, and the Ising model associated with (GT,xT) yields
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an n × n boundary correlation matrix MR defined in (1.8). The construction of (GT,xT)
depends on a rhombus tiling T (or a pseudoline arrangement A), but the resulting boundary
correlation matrix MR depends only on R.

2.3. The doubling map. We describe the map φ introduced in [GP20]. For a symmetric

n×n matrix M = (mj,k) with ones on the diagonal, introduce an n× 2n matrix M̃ = (m̃j,k)
satisfying |mj,k| = |m̃j,2k−1| = |m̃j,2k| for all j, k ∈ [n]; see Figure 4. The signs are chosen in
a simple alternating fashion: for j = k, set m̃j,2k−1 = m̃j,2k := mj,j = 1, and for j 6= k, set

(2.3) m̃j,2k−1 = −m̃j,2k := (−1)j+k+1(j<k)mj,k, where 1(j < k) :=

{
1, if j < k,

0, otherwise.

We let φ(M) ⊂ R2n denote the linear subspace spanned by the rows of M̃ . Recall that we
have introduced a 2n× n matrix Kn in (1.9).

Proposition 2.2 ([GP20]). Let M be a symmetric n× n matrix with ones on the diagonal.

(i) The subspace φ(M) has dimension n.
(ii) For any n×2n matrix A whose rows form a basis of φ(M), the matrix AKn is invertible

and satisfies

(AKn)−1A = M̃.

Proof. By construction, M̃Kn is the n × n identity matrix. Both of the above statements
now follow in a straightforward way. Alternatively, see the proof of [GP20, Lemma 6.7]. �

Thus Corollary 1.9 follows from Theorem 1.6 via Proposition 2.2.
The image of the space of n× n Ising boundary correlation matrices under the map φ is

invariant under the cyclic shift operator

(2.4) S : R2n → R2n, (x1, x2, . . . , x2n) 7→
(
(−1)n−1x2n, x1, x2, . . . , x2n−1

)
.

The sign twist is chosen in such a way that S preserves the totally nonnegative Grassmannian;
see [Pos06, Remark 3.3]. By [GP20, Theorem 3.4], S is the image of the Kramers–Wannier
duality (cf. Remark 1.15) under the map φ.

2.4. Affine notation. All of our constructions respect the cyclic shift action (2.4). At times,
it will be more convenient to use notation that is invariant under this cyclic symmetry.

Given a matching τ : [2n]→ [2n], we extend it to the unique bijection τ̃ : Z→ Z satisfying
the following conditions:

(1) τ̃(k + 2n) = τ̃(k) + 2n for all k ∈ Z;
(2) k < τ̃(k) < k + 2n for all k ∈ Z;
(3) τ̃(k) ≡ τ(k) (mod 2n) for all k ∈ [2n].

Similarly, we extend θ to the unique sequence θ̃ = (θ̃k)k∈Z satisfying θ̃k = θk for k ∈ [2n] and

θ̃k+2n = θ̃k + π for all k ∈ Z. For k ∈ Z, we set ṽk := exp(2iθ̃k), which satisfies ṽk+2n = ṽk
for all k ∈ Z. We also have “affine analogs” of (1.4)–(1.5):

θ̃τ̃(k) = θ̃k + π/2, for all k ∈ Z;(2.5)

θ̃j < θ̃k < θ̃τ̃(j) < θ̃τ̃(k), for all j, k ∈ Z satisfying j < k < τ̃(j) < τ̃(k).(2.6)

Finally, for each k ∈ Z, we set

(2.7) J̃k = {τ̃(j) | j ∈ Z such that j < k and τ̃(j) > k}.
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We find that for k ∈ [2n], the sets J̃k and Jk coincide modulo 2n. We can now explain the
signs appearing in (1.7): for k ∈ [2n], we have

(2.8) γk(t) =
∏
j∈J̃k

sin(t− θ̃j).

We extend the definition of γk(t) to all k ∈ Z using (2.8). It satisfies γk+2n(t) = (−1)n−1γk(t),
in agreement with (2.4).

Clearly, τ (resp., θ) determines and is uniquely determined by its affine analog τ̃ (resp., θ̃).
In what follows, we switch freely between the two conventions.

2.5. Removing a crossing. Given a matching τ , we define

xing(τ) := #{j, k ∈ [2n] | j < k < τ(j) < τ(k)}.
If xing(τ) = 0 then τ is called non-crossing. In this case, the graph G has no edges, and the
correlation matrix MR consists of zeroes and ones. Otherwise, we can find an index k ∈ [2n]
satisfying k < k + 1 < τ̃(k) < τ̃(k + 1). We call such an index k a τ -descent.

Definition 2.3. Let R = (τ,θ) be a valid region and k ∈ [2n] be a τ -descent. We introduce
another pair R · sk = (τ ′,θ′) defined as follows: we put

τ̃ ′(k) := τ̃(k + 1), τ̃ ′(k + 1) := τ̃(k), τ̃ ′(τ̃(k)) := k + 1 + 2n, τ̃ ′(τ̃(k + 1)) := k + 2n,

and τ̃ ′(j) := τ̃(j) for j ∈ Z not equal to one of k, k + 1, τ(k), or τ(k + 1) modulo 2n.

Similarly, θ̃′ = (θ̃′j)j∈Z is defined by setting θ̃′k := θ̃k+1, θ̃
′
k+1 := θ̃k, and θ̃j := θj for all j ∈ Z

not equal to either k or k + 1 modulo 2n.

The following is straightforward to check.

Proposition 2.4. If R = (τ,θ) is a valid region and k ∈ [2n] is a τ -descent then R · sk is
also a valid region. If R is non-alternating then so is R · sk. �

In order to make an inductive argument, we need one more ingredient from [GP20]. Let
R = (τ,θ) be a valid region. For each τ -descent k ∈ [2n], we will define a 2n × 2n matrix

gθk . Denote sk := sin(θ̃k+1 − θ̃k) and ck := cos(θ̃k+1 − θ̃k) and let

Bθ
k :=

(
1/ck sk/ck
sk/ck 1/ck

)
.

For k < 2n, the matrix gθk coincides with the 2n×2n identity matrix except for a 2×2 block
Bθ
k which appears in rows and columns k, k + 1. For k = 2n, the matrix gθ2n coincides with

the 2n× 2n identity matrix except for the following four entries:

(gθ2n)1,1 = (gθ2n)2n,2n = 1/c2n, and (gθ2n)1,2n = (gθ2n)2n,1 = (−1)n−1s2n/c2n.

Clearly, for a τ -descent k ∈ [2n], we have τ̃(k) 6= k+ 1. Furthermore, by (2.6), we must have

θ̃k < θ̃k+1 < θ̃k + π/2. In particular, ck 6= 0 for any τ -descent k.

Example 2.5. For n = 2, we have

gθ1 (t) =


1/c1 s1/c1 0 0
se/c1 1/c1 0 0

0 0 1 0
0 0 0 1

 , gθ4 (t) =


1/c4 0 0 −s4/c4

0 1 0 0
0 0 1 0

−s4/c4 0 0 1/c4

 .
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The above 2n × 2n matrices represent linear operators on R2n. Given an n-dimensional
subspace X ⊂ R2n and a 2n× 2n matrix g, the subspace X · g is defined as {x · g | x ∈ X},
where x is treated as a row vector.

Proposition 2.6 ([GP20, Theorem 3.22]). Let R = (τ,θ) be a valid region and k ∈ [2n] be
a τ -descent. Then for R′ := R · sk, we have

(2.9) φ(MR) = φ(MR′) · gθk .

Remark 2.7. Suppose that a rhombus tiling T contains a rhombus adjacent to the boundary
edges ṽk and ṽk+1 for some k ∈ [2n], and let e ∈ E be the edge of GT inside this rhombus.
To this edge, one can associate two quantities se and ce; see [GP20, Eq. (3.6)]. When k
is odd, the vertex of T adjacent to vk and vk+1 is black, and when k is even, it is white.
Therefore we see that the weight xe of e is equal to cot((θ̃k+1 − θ̃k)/2) when k is odd and to

cot(π/4− (θ̃k+1 − θ̃k)/2) when k is even. Comparing this to [GP20, Eq. (3.6)], we find that
se = sk, ce = ck when k is odd and se = ck, ce = sk when k is even. In [GP20], se and ce
were swapped in the definition of gθk whenever k was even. Therefore we do not ever need
to swap sk and ck in our definition of gθk .

2.6. Real and complex subspaces. The space R2n is naturally embedded as a subset
of C2n. If V ⊂ R2n is an n-dimensional linear subspace, one can consider its C-span VC ⊂ C2n.
Conversely, given an n-dimensional subspace U ⊂ C2n that is invariant under conjugation,
its intersection with R2n ⊂ C2n will be an n-dimensional real subspace. Given any complex
n× 2n matrix A whose C-row span (i.e., row span with complex coefficients) coincides with
VC for some V ⊂ R2n, and given any real 2n × n matrix K such that AK is invertible,
the matrix (AK)−1A will be real and its R-row span will be equal to V . Therefore in
Corollary 1.9, it suffices to find any complex n × 2n matrix A whose C-row span coincides
with SpanC(γR) := (Span(γR))C. We will present a canonical such matrix in the next section.
In what follows, we will freely switch between R-spans and C-spans.

3. Fourier transform

Let R be a valid region. Recall the expression for γR(t) = (γ1(t), γ2(t), . . . , γ2n(t))

from (2.8). Denote T := exp(it) and Tk := exp(iθ̃k) for each k ∈ Z. Using the formula

sin(x) = exp(ix)−exp(−ix)
2i

, we get

(3.1) γk(t) =
1

(2i)n−1

∏
m∈J̃k

(
T

Tm
− Tm

T

)
=

1

(2i)n−1

n∑
j=1

(−1)n−jfj,kT
2j−n−1.

Here each coefficient fj,k is, up to a constant that depends only on k, the (j−1)-th elementary
symmetric polynomial1 in the variables (T 2

m)m∈J̃k , and we let FR be the corresponding n× 2n
Fourier coefficient matrix :

(3.2) FR := (fj,k), where fj,k =
ej−1((T

2
m)m∈J̃k)∏

m∈J̃k Tm
for j ∈ [n], k ∈ [2n].

1By definition, we have ea(x1, x2, . . . , xb) :=
∑

1≤j1<j2<···<ja≤b xj1xj2 · · ·xja .
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Example 3.1. In the case R := R2 of Example 1.11, we have

T1 = 1, T2 =
1 + i√

2
, T3 = i, T4 =

−1 + i√
2

, T5 = −T1, . . . .

We have e0(T
2
j ) = 1 and e1(T

2
j ) = T 2

j , thus (3.1) yields

FR =

(
1/T2 1/T3 1/T4 −1/T1
T2 T3 T4 −T1

)
.

One can check that (FRKn)−1FR coincides with the matrix (AKn)−1A from Example 1.11.

Substituting t = t0 into (2.8) corresponds to substituting T = exp(it0) into (3.1), thus the

C-row span of FR contains the subspace SpanC(γR). (The factor (−1)n−j
(2i)n−1 does not affect the

row span of FR.)
Given 0 ≤ t1 < t2 < · · · < tn < π as in Proposition 1.7, let A be the n × 2n matrix

with rows γR(t1),γR(t2), . . . ,γR(tn). Then by (3.1), we have A = V · FR where V is a

Vandermonde-like n × n matrix with (m, j)-th entry given by (−1)n−j
(2i)n−1 exp((2j − n − 1)itm).

One readily checks that this matrix is invertible, which implies that A and FR have the same
C-row span. We have shown the following result.

Lemma 3.2. Let R be a valid region.

(i) The C-row span of FR equals SpanC(γR).
(ii) The dimension of SpanC(γR) is at most n.

(iii) For any 0 ≤ t1 < t2 < · · · < tn < π, the C-span of the vectors γR(t1),γR(t2), . . . ,γR(tn)
coincides with the C-row span of the matrix FR. �

We will see later that whenever R is non-alternating, the matrix FR has rank n, which
will finish the proof of Proposition 1.5. For now, we observe that this is very easy to see in
the generic case.

Proposition 3.3. Suppose that R is generic, i.e., satisfies vj 6= vk for all j, k ∈ [2n] such
that j 6= k. Then Span(γR) has dimension n.

Proof. By Lemma 3.2, it suffices to choose some values 0 ≤ t1 < t2 < · · · < tn < π such that
the matrix A with rows γR(t1),γR(t2), . . . ,γR(tn) has rank n. The rank of A is invariant
under permuting the rows, so it suffices to ensure that the values t1, t2, . . . , tn belong to [0, π)
and are pairwise distinct. Let us write J1 t {1} = {j1 < j2 < · · · < jn}, so j1 = 1. For
each m ∈ [n], let tm ∈ [0, π) be equal to θjm modulo π. Because R is generic, the vectors
vj = exp(2iθj) are pairwise distinct, thus t1, t2, . . . , tn are pairwise distinct. Now consider
the matrix A with rows γR(t1),γR(t2), . . . ,γR(tn). Its submatrix with columns J1 t {1} is
an n × n upper-triangular matrix with nonzero diagonal entries. Thus the matrix A has
rank n. �

4. Proof of the formula

Let R = (τ,θ) be a non-alternating region. Our goal is to prove Theorem 1.6 by induction
on xing(τ). Along the way, we will show that the space Span(γR) has dimension n, which,
in view of Lemma 3.2, will complete the proofs of Propositions 1.5 and 1.7.

The base case xing(τ) = 0 corresponds to τ being a non-crossing matching. Let j, k ∈ [2n]
be such that j < k = τ(j). Then τ([j, k]) = [j, k]. The difference k− j must be odd, and we
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set εj,k := (−1)(k−j−1)/2. We see that Jj = Jk, so (1.7) implies γj(t) = εj,kγk(t). Let us show
by induction on k − j that Span(γR) contains the vector ej + εj,kek, where e1, e2, . . . , e2n
is the standard basis of R2n. When k = j + 1, the non-alternating condition implies that
γj(θj), γk(θj) 6= 0 while γm(θj) = 0 for all m ∈ [2n] \ {j, k}. Thus γ(θj) is proportional to

ej + εj,kek, which shows the result for k = j+ 1. We may now modify the curve γR: let γ
[j,k]
R

be obtained from γR by setting the j-th and k = (j + 1)-th coordinates to zero and dividing
all other coordinates by sin(t− θj) (which appears as a factor in γm(t) for m ∈ [2n] \ {j, k}).
Observe that Span(γR) coincides with Span(γ

[j,k]
R ) ⊕ Span(ej + εj,kek). We may now omit

the pair {j, k} from τ and repeat the process. Eventually, we decompose the space Span(γR)
as a direct sum of spaces of the form Span(ej + εj,kek) over all pairs j, k ∈ [2n] satisfying
j < k = τ(j). Such vectors are linearly independent, which completes the base case for
Propositions 1.5 and 1.7. It is also easy to see that the span of these vectors equals φ(MR),
finishing the base case for Theorem 1.6. We note that the signs εj,k are uniquely determined
by the property that the row vectors (ej + εj,τ(j)eτ(j))j∈J1t{1} form an n × 2n matrix all of
whose nonzero maximal minors have the same sign, cf. [GP20].

In order to complete the induction step, we need the following simple observation.

Lemma 4.1. Let R = (τ,θ) be a valid region and k ∈ [2n] be a τ -descent. Then for
R′ := R · sk and all t ∈ R, we have

(4.1) γR(t) = γR′(t) · gθk .

Proof. Denote γR(t) = (γ1(t), γ2(t), . . . , γ2n(t)) and γR′(t) = (γ′1(t), γ
′
2(t), . . . , γ

′
2n(t)). In

order to treat the case k = 2n uniformly, we consider these sequences to be defined for all
k ∈ Z via (2.8). Let a := τ̃(k) and b := τ̃(k + 1), thus we have k < k + 1 < a < b. Denote

R′ = (τ ′,θ′), thus τ̃ ′(k) = b, τ̃ ′(k + 1) = a, θ̃′k = θ̃k+1, and θ̃′k+1 = θ̃k.

Let J̃m and J̃ ′m be obtained from τ̃ and τ̃ ′ respectively by (2.7). By comparing J̃m to
J̃ ′m, we see that γm(t) = γ′m(t) for all m ∈ Z not equal to k or k + 1 modulo 2n. A subtle
point here is that for a < m ≤ b, J̃m contains k + 2n while J̃ ′m contains k + 1 + 2n instead.

However, we have θ̃k+2n = θ̃′k+1+2n, so we also get γm(t) = γ′m(t). It remains to consider the
cases m = k and m = k + 1. We claim that there exists a function Φ(t) such that

γk(t) = sin(t− θ̃k+1) · Φ(t), γk+1(t) = − cos(t− θ̃k) · Φ(t);(4.2)

γ′k(t) = sin(t− θ̃k) · Φ(t), γ′k+1(t) = − cos(t− θ̃k+1) · Φ(t).(4.3)

Indeed, we find that k + 1 ∈ J̃k, a ∈ J̃k+1, k + 1 ∈ J̃ ′k, and b ∈ J̃ ′k+1, with all other

elements being common to J̃k, J̃k+1, J̃
′
k, and J̃ ′k+1. Using the fact that θ̃a = θ̃k + π/2 and

θ̃′b = θ̃k+1+π/2, and letting Φ(t) be the product of sin(t−θ̃m) for m ranging over the common
elements of these four sets, (4.2)–(4.3) follow. We find

(γ′k(t), γ
′
k+1(t)) ·

(
1/ck sk/ck
sk/ck 1/ck

)
=

Φ(t)

ck

(
sin(t− θ̃k)− sin(θ̃k+1 − θ̃k) cos(t− θ̃k+1),

sin(t− θ̃k) sin(θ̃k+1 − θ̃k)− cos(t− θ̃k+1)

)
.

Writing

sin(t− θ̃k) = sin
(

(t− θ̃k+1) + (θ̃k+1 − θ̃k)
)
, cos(t− θ̃k+1) = cos

(
(t− θ̃k)− (θ̃k+1 − θ̃k)

)
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and expanding using sum/difference formulas, we get

(γ′k(t), γ
′
k+1(t)) ·

(
1/ck sk/ck
sk/ck 1/ck

)
= (γk(t), γk+1(t)).

Since we have shown above that γ′m(t) = γm(t) for m not equal to k, k + 1 modulo 2n, we
are done with the proof of (4.1). �

Let us now complete the induction step in our proof. Let R = (τ,θ) and R′ = (τ ′,θ′) be
as in Lemma 4.1, thus xing(τ) = xing(τ ′) + 1. Assume that the statement has been shown
for γR′(t). Thus Span(γR′) has dimension n and equals φ(MR′). Comparing (4.1) to (2.9),
we see that the same conclusions hold for Span(γR). (Note that the matrix gθk is always
invertible.) This finishes the proof of Proposition 1.5, Theorem 1.6, and Proposition 1.7.
Recall that Corollary 1.9 has already been deduced from Theorem 1.6 in Section 2.3. �

5. Regular polygons

In this section, we prove Theorem 1.1. Before we proceed, we discuss some convergence
results for the case of regular polygons approximating the unit disk.

5.1. Asymptotics and convergence. Let us discuss our formula (1.1) in more detail.
First, we clearly have 〈σ1σ1〉Rn = 1, and the next few values are

〈σ1σ2〉Rn =
2

n
· 1

sin(π/2n)
− 1,

〈σ1σ3〉Rn =
2

n

(
1

sin(3π/2n)
− 1

sin(π/2n)

)
+ 1,

〈σ1σ4〉Rn =
2

n

(
1

sin(5π/2n)
− 1

sin(3π/2n)
+

1

sin(π/2n)

)
− 1.

We stress that (1.1) is valid not just asymptotically, but for all finite values of n. Due to
the explicit nature of this formula, computing the asymptotics becomes a straightforward
exercise. For example, we have

〈σ1σ2〉Rn →
4

π
− 1, 〈σ1σ3〉Rn →

4

π

(
1

3
− 1

)
+ 1, 〈σ1σ4〉Rn →

4

π

(
1

5
− 1

3
+ 1

)
− 1, . . .

as n→∞. By the Leibniz formula for π

(5.1)
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · ,

the above sequence limn→∞ 〈σ1σk〉Rn tends to zero as k increases. To get a nonzero limit, we
need to multiply the correlations by n.

Corollary 5.1. For 0 < x < 1, we have

lim
n→∞

n · 〈σ1σbnxc〉Rn =
1

sin(πx)
.

Note that the scaling limit 1
sin(πx)

is consistent with the predictions of conformal field the-

ory [BPZ84a, BPZ84b]; see [Hon10].
Despite the simplicity of these results, we have not been able to find any of them in the

literature. The only result dealing with convergence of boundary spin correlations is due to
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Hongler [Hon10, Theorem 5]. It applies to the case of the square lattice approximating a
wide variety of regions, however, the unit disk is not among these regions, since its vertical
and horizontal boundary parts are empty.

Remark 5.2. Existing convergence results for Ising model correlations rely on the powerful
technique of fermionic observables developed in breakthrough work by Smirnov et al. [Smi10,
CS12, HS13, CDCH+14, CHI15]. In particular, conformal invariance and universality for spin
correlations in the interior of the region was shown by Chelkak–Smirnov [CS12]. They work
in the context of arbitrary infinite rhombus tilings of the plane, however, a crucial assumption
imposed e.g. in [CS12, Section 1.2] and [CS11, Section 1.2] is that

the angles of all rhombi are uniformly bounded away from 0 and π.

It appears that this widely used assumption is completely necessary for the fermionic ob-
servables approach to apply. On the other hand, any rhombus tiling of a regular 2n-gon
Rn must contain a rhombus with angle π/n. (In fact, for n > 2, it contains exactly n such
rhombi.) In this sense, Corollary 5.1 is “orthogonal” to the convergence results obtained
previously in the literature.

5.2. Proof of Theorem 1.1. Recall that Rn is a regular 2n-gon, MRn is its correlation

matrix, and M̃Rn = (m̃j,k) is the associated “doubled” matrix defined in (2.3). By symmetry,
it suffices to compute 〈σ1σj〉Rn for j ∈ [n]. We are thus interested in the first row of MRn ,

which is determined by the first row of M̃Rn . We have m̃1,1 = m̃1,2 = 1. Theorem 1.1 is
immediately implied by the following result.

Lemma 5.3. For 1 < k < 2n, we have

(5.2) m̃1,k + m̃1,k+1 =

{
0, if k is odd;

(−1)
k
2
+1 · 2

n sin((k−1)π/2n) , if k is even.

Example 5.4. For the matrix M̃ = (AKn)−1A from Example 1.11, we have

m̃1,2 + m̃1,3 = 1 + (
√

2− 1) =
√

2 =
1

sin(π/4)
and m̃1,3 + m̃1,4 = (

√
2− 1) + (1−

√
2) = 0.

Proof. Let ζ := exp(πi/2n). For j ∈ [n], set zj := ζ2j−n−1. These are the 2n-th roots of
(−1)n−1 with positive real part. Let A = (aj,k) be an n× 2n matrix given by aj,k = zk−1j . It
is not hard to see from (3.2) that for each j ∈ [n], the j-th row of A is a scalar multiple of
the j-th row of FRn . In particular, the row span of A equals Span(γRn) = φ(MRn), and we

have (AKn)−1A = M̃Rn . We compute the first row of (AKn)−1A explicitly.
First, we have AKn = DV where D = diag

(
1+z1
2
, 1+z2

2
, . . . , 1+zn

2

)
is an n × n diagonal

matrix and V = (z
2(k−1)
j ) is an n × n Vandermonde matrix. In fact, V is a variant of the

discrete Fourier transform (DFT) matrix, and similarly to the standard DFT matrix, it
satisfies V −1 = 1

n
V ∗, where V ∗ is the conjugate transpose of V . We find that (AKn)−1 =

V −1D−1, thus its entries are given by

((AKn)−1)r,j =
2

n(1 + zj)z
2(r−1)
j

for r, j ∈ [n].
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We can now multiply (AKn)−1 by A and focus on the first row of the resulting matrix:

m̃1,k =
2

n

n∑
j=1

zk−1j

(1 + zj)
for k ∈ [2n].

Computing m̃1,k + m̃1,k+1, we see that (1 + zj) cancels out and we get

m̃1,k + m̃1,k+1 =
2

n

n∑
j=1

zk−1j for 1 ≤ k < 2n.

This is a geometric progression; the result is easily seen to be given by (5.2). �

5.3. Proof of Corollary 5.1. By symmetry, we only need to prove the result for x ≤ 1
2
, so

fix 0 < x ≤ 1
2
. We treat the cases of k odd and k even differently, so fix ε ∈ {0, 1} and let

k = k(n, x, ε) be the integer closest to nx such that k ≡ ε (mod 2). Rewrite (1.1)–(5.1) as
follows:

(−1)k〈σ1σk+1〉 = 1− 2

n sin(π/2n)
+

2

n sin(3π/2n)
− · · ·+ (−1)k · 2

n sin((2k − 1)π/2n)
;(5.3)

4

π

∞∑
m=k

(−1)m

2m+ 1
= 1− 4

π
+

4

3π
− · · ·+ (−1)k · 4

(2k − 1)π
.(5.4)

We subtract (5.4) from (5.3), multiply the result by n, and take the limit as n → ∞. The
left hand side becomes

(−1)ε
(

lim
n→∞

〈σ1σk〉 −
1

πx

)
.

For the right hand side, we write:

2

n sin((r − 2)π/2n)
− 2

n sin(rπ/2n)
− 4

(r − 2)π
+

4

rπ
=

4 sin(π/2n) cos((r − 1)π/2n)

n sin(rπ/2n) sin((r − 2)π/2n)
− 8

r(r − 2)π
.

This gives a Riemann sum approximating the integral of a continuous function:∫ x

0

(
π cos(πy)

(sin(πy))2
− 1

πy2

)
dy = − 1

sin(πx)
+

1

πx
.

Since we are grouping the terms in the right hand sides of (5.3)–(5.4) in pairs, there will
be one extra term whenever k is even. Multiplying this term by n, we get

n

(
2

n sin((2k − 1)π/2n)
− 4

(2k − 1)π

)
→ 2

(
1

sin(πx)
− 1

πx

)
as n→∞.

Combining the pieces together, we find

(−1)ε
(

lim
n→∞

〈σ1σk〉 −
1

πx

)
= − 1

sin(πx)
+

1

πx
+

{
0, if ε is odd

2
(

1
sin(πx)

− 1
πx

)
, if ε is even.

This shows limn→∞ 〈σ1σk〉 = 1
sin(πx)

, regardless of the parity of ε. �
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6. Alternating regions

So far we have only covered the case of non-alternating regions R. The goal of this section
is to extend our approach to arbitrary valid regions.

Let R = (τ,θ) be a valid region as defined in Section 2.1. For v ∈ C, we let

Lv := {k ∈ [2n] | vk = ±v}.
By (1.2), we have τ(Lv) = Lv. The following is straightforward to check.

(a) The restriction τ |Lv of τ to Lv is a non-crossing matching for each v ∈ C.
(b) If R is alternating then the indices 1 ≤ a < b < c < d ≤ 2n in (1.6) may be chosen

so that b = τ(a) and d = τ(c).

In view of (b), when R is an alternating region with a, b, c, d as above, we see from (1.7) that
each γk(t) becomes divisible by sin(t− θa) = ± sin(t− θc). Rescaling γR(t) by 1

sin(t−θa) does

not change Span(γR), however, the coordinates of γR(t)
sin(t−θa) are trigonometric polynomials of

degree n−2. Thus when R is alternating, Span(γR) has dimension strictly less than n, by the
arguments in Section 3. In order to fix this, we need to take into account the “derivatives”
of γR(t).

For k ∈ [2n], let Tk := exp(iθk) so that T 2
k = vk. Let

ΓR(T ) = (Γ1(T ),Γ2(T ), . . . ,Γ2n(T )), where Γk(T ) :=
∏
j∈J̃k

T − vj
Tj

for k ∈ [2n].

Comparing with (3.1), we find that ΓR(T 2) = (2iT )n−1 · γR(t) for T = exp(it). Thus the
curves ΓR and γR have the same C-span. For k ∈ [2n], let

suppτ (k) :=

{
{k, k + 1, . . . , τ(k)}, if k < τ(k),

{k, k + 1, . . . , n, 1, . . . , τ(k)}, if k > τ(k).

For a vector x ∈ C2n and a set S ⊂ [2n], we let x|S ∈ C2n be the vector obtained from x by

(x|S)k :=

{
xk, if k ∈ S,

0, if k /∈ S.

For m ≥ 0, denote by Γ
(m)
R (T ) the m-fold derivative of ΓR(T ):

Γ
(m)
R (T ) :=

dm

dTm
ΓR(T ).

Finally, for k ∈ [2n], let mk := #{j ∈ Jk | vj = vk} be the degree with which (T − vk)
divides Γk(T ). Denote

u
(k)
R := Γ

(mk)
R (vk)|suppτ (k) for k ∈ [2n].

Thus u
(k)
R ∈ C2n is obtained by (i) differentiating ΓR(T ) mk times, (ii) substituting T = vk,

and (iii) sending all coordinates not in suppτ (k) to 0.

Theorem 6.1. Let R be a valid region. Then for each k ∈ [2n], the vectors

(6.1) {u(j)R | j ∈ Jk t {k}}
form a basis of φ(MR).
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Proof. As explained after Definition 1.2, any generic region is non-alternating. Clearly, any
valid region R = (τ,θ) can be approximated by a sequence (R(N))N≥0 of non-alternating
valid regions with the same matching τ : R(N) = (τ,θ(N)). When we keep τ fixed, the
matrix MR depends continuously on θ, thus MR(N)

→ MR as N → ∞. The map φ is also

continuous (the topology on the set of n-dimensional subspaces of R2n is inherited from the
Grassmannian Gr(n, 2n)). Thus φ(MR) consists of all vectors x ∈ R2n obtained as limits
of sequences of vectors x(N) ∈ Span(γR(N)

) as N → ∞. Switching from working over R to
working over C as in Section 2.6, it remains to show the following:

(1) the vectors in (6.1) are linearly independent;

(2) for each j ∈ [2n], u
(j)
R can be obtained as a limit of a sequence u(j,N) ∈ SpanC(γR(N)

),

where (R(N))N≥0 is a sequence of generic valid regions approximating R.

Let us first explain (1). Set k = 1 and let {j1 < j2 < · · · < jn} = J1 t {1}. Let A be

the n× 2n matrix with rows u
(j1)
R , u

(j2)
R , . . . , u

(jn)
R . Then the submatrix of A with column set

J1 t{1} is upper triangular with nonzero diagonal entries. Indeed, for j ∈ J1 t{1}, the j-th

coordinate of u
(j)
R is nonzero since we have differentiated Γj(T ) by T exactly mj times before

substituting T = vj. On the other hand, for j′ ∈ J1 such that j′ > j, we have j /∈ suppτ (j
′),

so (u
(j′)
R )j = 0. Thus the vectors in (6.1) are linearly independent for k = 1. Because of the

cyclic symmetry, the same holds for arbitrary k ∈ [2n].
To show (2), we need to introduce certain operators which are similar to the divided

difference operators appearing in Schubert calculus. For a rational function P (T ) ∈ C(T )
defined at a ∈ C, we set

∂̄aP (T ) :=
P (T )− P (a)

T − a
.

Such operators commute: for a 6= b, we have ∂̄a ◦ ∂̄b = ∂̄b ◦ ∂̄a, and for a finite sequence
(a1, a2, . . . , am) of pairwise distinct complex numbers, we set

∂̄(a1,a2,...,am)P (T ) := ∂̄a1 ◦ ∂̄a2 ◦ · · · ◦ ∂̄amP (T ).

If P (T ) ∈ C[T ] is a polynomial then so is ∂̄aP (T ). In this case, we claim

(6.2) lim
a1,...,am,a→a0

[(
∂̄(a1,...,am)P (T )

)
|T=a

]
=

1

m!
· P (m)(a0) for a0 ∈ C.

Indeed, denoting the left hand side of (6.2) by Hm(P ), one can show by induction on m that
for Hm(T d) = 0 for d < m and Hm(T d) =

(
d
m

)
ad−m0 for d ≥ m. Extending this by linearity

proves (6.2) for polynomials in general.
An important property of suppτ (k) that we will need is that for all j ∈ [2n], we have

(6.3) j /∈ suppτ (k) ⇐⇒ k ∈ Jj =⇒ Γj(vk) = 0, thus ΓR(vk) = ΓR(vk)|suppτ (k).

Let us go back to proving (2). We let θ(N) = (θ(N,1), θ(N,2), . . . , θ(N,2n)) and v(N,k) :=
exp(2iθ(N,k)). Thus for each N , the complex numbers (v(N,k))k∈[2n] are pairwise distinct, and
we have v(N,k) → vk as N →∞. Fix j ∈ [2n] and let

J ′j := {k ∈ Jj ∩ suppτ (j) | vk = vj}, J ′′j := {k ∈ Jj \ suppτ (j) | vk = vj}.

Thus J ′j t J ′′j ⊂ Lvj , and by our observation (a) above, we have

(6.4) suppτ (k
′) ⊂ suppτ (j) for k′ ∈ J ′j, suppτ (k

′′) ∩ suppτ (j) = ∅ for k′′ ∈ J ′′j .
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Let m′ := |J ′j|, {k′1, . . . , k′m′} := J ′j, and (a1, . . . , am′) := (v(N,k′1), . . . , v(N,k′m′ )). Similarly, let

m′′ := |J ′′j |, {k′′1 , . . . , k′′m′′} := J ′′j , and (b1, . . . , bm′′) := (v(N,k′′1 ), . . . , v(N,k′′m′′ )). Thus mj =

m′ +m′′. Let

Γ[
R(N)

(T ) :=
1

(T − b1) · · · (T − bm′′)
· ΓR(N)

(T ).

By (a), we find that for each k′ ∈ suppτ (j), (ΓR(N)
(T ))k′ is divisible by (T − b1) · · · (T − bm′′),

and thus (Γ[
R(N)

(T ))k′ is a genuine polynomial. For k′′ /∈ suppτ (j), (Γ[
R(N)

(T ))k′′ is in general

a rational function in T , but it is well defined at T = a1, . . . , T = am′ . Let a := v(N,j). We

extend the operator P 7→
(
∂̄(a1,a2,...,am′ )P

)
|T=a to act coordinate-wise on tuples of rational

functions and denote

w(j,N) :=
(
∂̄(a1,a2,...,am′ )Γ

[
R(N)

(T )
) ∣∣

T=a
.

The vector w(j,N) ∈ C2n is a linear combination of vectors {Γ[
R(N)

(v(N,k))}k∈J ′jt{j}. First, each

of these vectors belongs to SpanC(ΓR(N)
), therefore so does w(j,N). Second, each of these

vectors has j′′-th coordinate equal to 0 for j′′ /∈ suppτ (j) by (6.3) and (6.4). Thus we have
w(j,N) = w(j,N)|suppτ (j). Third, as we mentioned above, the remaining entries of Γ[

R(N)
(T ) are

polynomials in T , so (6.2) applies to them. Letting a0 := vj and denoting u(N,j) := m′!·w(j,N),

we apply (6.2) to see that u(N,j) → u
(j)
R as N →∞. This shows (2). �

7. Concluding remarks

7.1. Relations to total positivity. We briefly translate the objects studied above to the
objects arising in total positivity. The matching τ is a decorated permutation and the sets
(Jj t {j})j∈[2n] form a Grassmann necklace; see [Pos06]. The affine notation in Section 2.4
is mostly due to [KLS13]: for instance, τ̃ is a bounded affine permutation in their lan-
guage. The recurrence in Section 2.5 is the “BCFW bridge removal” recurrence studied
in [AHBC+16, Lam16] going back to [BCFW05]. The image of the map φ is the totally non-
negative orthogonal Grassmannian introduced in [HW14, HWX14]. The construction [GP20]
of this map was inspired by the results of Lis [Lis17]. The subspace φ(MRn) obtained in the
case of a regular 2n-gon is the unique cyclically symmetric point (cf. Remark 1.15) of the
totally nonnegative Grassmannian studied in [GKL17, Kar19].

7.2. Explicit questions. Let R be a non-alternating region. Combining our results with
the results of [GP20], it follows that Span(γR) belongs to OG≥0(n, 2n). In particular, for an
n× 2n matrix A whose row span is Span(γR) as in Theorem 1.6, we have:

(1) the nonzero maximal minors of A all have the same sign;
(2) the maximal minors of A with complementary sets of columns are equal.

The second condition can be equivalently restated as follows: for all t, t′ ∈ R, we have

γ1(t)γ1(t
′)− γ2(t)γ2(t′) + · · ·+ γ2n−1(t)γ2n−1(t

′)− γ2n(t)γ2n(t′) = 0.

The curve γR(t) is an explicit product of sines (1.7), which makes the above observations
appear quite mysterious. We do not have a conceptual explanation for why they should be
true.

Question 7.1. Give an elementary proof that γR(t) has the above properties.
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