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Abstract. Jim Propp recently introduced a variant of chip-firing on a line where
the chips are given distinct integer labels. Hopkins, McConville, and Propp showed
that this process is confluent from some (but not all) initial configurations of chips.
We recast their set-up in terms of root systems: labeled chip-firing can be seen as a
root-firing process which allows the moves λ−→λ+α for α ∈ Φ+ whenever 〈λ, α∨〉 = 0,
where Φ+ is the set of positive roots of a root system of Type A and λ is a weight of
this root system. We are thus motivated to study the exact same root-firing process
for an arbitrary root system. Actually, this central root-firing process is the subject of
a sequel to this paper. In the present paper, we instead study the interval root-firing
processes determined by λ−→λ + α for α ∈ Φ+ whenever 〈λ, α∨〉 ∈ [−k − 1, k − 1]
or 〈λ, α∨〉 ∈ [−k, k − 1], for any k ≥ 0. We prove that these interval-firing processes
are always confluent, from any initial weight. We also show that there is a natural
way to consistently label the stable points of these interval-firing processes across all
values of k so that the number of weights with given stabilization is a polynomial
in k. We conjecture that these Ehrhart-like polynomials have nonnegative integer
coefficients.
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1. Introduction

The Abelian Sandpile Model (ASM) is a discrete dynamical system that takes place
on a graph. The states of this system are configurations of grains of sand on the vertices
of the graph. A vertex with at least as many grains of sand as its neighbors is said
to be unstable. Any unstable vertex may topple, sending one grain of sand to each of
its neighbors. The sequence of topplings may continue forever, or it may terminate
at a stable configuration, where every vertex is stable. The ASM was introduced (in
the special case of the two-dimensional square lattice) by the physicists Bak, Tang,
and Wiesenfeld [BTW87] as a simple model of self-organized criticality; much of the
general, graphical theory was subsequently developed by Dhar [Dha90, Dha99]. The
ASM is by now studied in many parts of both physics and pure mathematics: for
instance, following the seminal work of Baker and Norine [BN07], it is known that this
model is intimately related to tropical algebraic geometry (specifically, divisor theory for
tropical curves [GK08, MZ08]); meanwhile, the ASM is studied by probabilists because
of its remarkable scaling-limit behavior [PS13, LPS16]; and there are also interesting
complexity-theoretic questions related to the ASM, such as, what is the complexity
of determining whether a given configuration stabilizes [KT15, FL16]. For more on
sandpiles, consult the short survey article [LP10] or the upcoming textbook [CP18].

Independently of its introduction in the statistical mechanics community, the same
model was defined and studied from a combinatorial perspective by Björner, Lovász,
and Shor [BLS91] under the name of chip-firing.1 Instead of grains of sand, we imagine
that chips are placed on the vertices of a graph; the operation of an unstable vertex
sending one chip to each of its neighbors is now called firing that vertex. One funda-
mental result of Björner-Lovász-Shor is that, from any initial chip configuration, either
the chip-firing process always goes on forever, or it terminates at a stable configuration
that does not depend on the choice of which vertices were fired. This is a confluence
result: it says that (in the case of termination) the divergent paths in the chip-firing
process must come together eventually. This confluence property is the essential prop-
erty which serves as the basis of all further study of the chip-firing process; it explains
the adjective “Abelian” in “Abelian Sandpile Model.”

1It is also worth mentioning that essentially the same model was studied even earlier, in the context
of math pedagogy, by Engel [Eng75, Eng76] under the name of the probabilistic abacus.
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A closely related chip-firing process to the one studied by Björner-Lovász-Shor is
where a distinguished vertex is chosen to be the sink. The sink will never become
unstable and is allowed to accumulate any number of chips; hence, any initial chip
configuration will eventually stabilize to a unique stable configuration. This model was
studied for instance by Biggs [Big99] and by Dhar [Dha90, Dha99]. Chip-firing with
a sink has been generalized to several other contexts beyond graphs. One of the most
straightforward but also nicest such generalizations is what is called M-matrix chip-
firing (see e.g. [Gab93, GK15], or [PS04, §13]). Rather than a graph, we take as input
an integer matrix C = (Cij) ∈ Zn×n. The states are vectors c = (c1, c2, . . . , cn) ∈ Zn,
and a firing move replaces a state c with c −Ctei whenever ci ≥ Cii for i = 1, . . . , n.
(Here e1, . . . , en are the standard basis vectors of Zn; i.e., c −Ctei is c minus the ith
row of C.) This firing move is denoted c → c − Ctei. Setting C to be the reduced
Laplacian of a graph (including possibly a directed graph, as in [BL92]) recovers chip-
firing with a sink. But in fact C does not need to be a reduced Laplacian of any graph
for confluence to hold in this setting: the condition required to guarantee confluence
(and termination), as first established by Gabrielov [Gab93], is that C be an M-matrix.

We will discuss M-matrix chip-firing, and its relation to our present research, in
more detail later (see §10). But now let us explain the direct motivation for our work,
namely, labeled chip-firing.

Björner, Lovász, and Shor were motivated to introduce the chip-firing process for
arbitrary graphs by papers of Spencer [Spe86] and Anderson et al. [ALS+89] which
studied the special case of chip-firing on a line. Jim Propp recently introduced a version
of labeled chip-firing on a line that generalizes this original case. In ordinary chip-firing,
the chips are all indistinguishable. But the states of the labeled chip-firing process are
configurations of N distinguishable chips with integer labels 1, 2, . . . , N on the infinite
path graph Z. The firing moves consist of choosing two chips that occupy the same
vertex and moving the chip with the lesser label one vertex to the right and the chip
with the greater label one vertex to the left. Propp conjectured that if one starts with
an even number of chips at the origin, this labeled chip-firing process is confluent and
in particular the chips always end up in sorted order. Propp’s conjecture was recently
proved by Hopkins, McConville, and Propp [HMP17]. Note crucially that confluence
does not hold for labeled chip-firing if the initial number of chips at the origin is odd
(e.g., three). Hence, compared to all the other models of chip-firing discussed above (for
which confluence holds locally and follows from Newman’s diamond lemma [New42]),
confluence is a much subtler property for labeled chip-firing.

The crucial observation that motivated our present research is that we can generalize
Propp’s labeled chip-firing to “other types,” as follows. For any configuration of N
labeled chips on the line, if we define the vector c := (c1, c2, . . . , cN ) ∈ ZN by setting
ci to be the position of the chip with label i, then for i < j we are allowed to fire chips
with label i and j in this configuration as long as c is orthogonal to ei − ej ; and doing
so replaces the vector c by c+ (ei− ej). Note that the vectors ei− ej for 1 ≤ i < j ≤ N
are exactly the positive roots Φ+ of the root system Φ of Type AN−1.

So there is a natural candidate for a generalization of Propp’s labeled chip-firing
to arbitrary (crystallographic) root systems: let Φ be any root system living in some
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Figure 1. The k = 1 symmetric interval-firing process for Φ = A2.

Euclidean vector space V ; then for a vector v ∈ V and a positive root α ∈ Φ+, we allow
the firing move v−→v + α whenever v is orthogonal to α. We call this process central
root-firing (or just central-firing for short) because we allow a firing move whenever
our point v lies on a certain central hyperplane arrangement (namely, the Coxeter
arrangement of Φ).

Central-firing is actually the subject of our sequel paper [GHMP17].
In the present paper we instead study two “affine” deformations of central-firing.

Let us explain what these deformations look like. First of all, it turns out to be best
to interpret the condition “whenever v is orthogonal to α” as “whenever 〈v, α∨〉 = 0,”
where 〈·, ·〉 is the standard inner product on V and α∨ is the coroot associated to α.
Also, rather than consider all vectors v ∈ V to be the states of our system, it is better to
restrict to a discrete setting where the states are weights λ ∈ P , where P is the weight
lattice of Φ (this is akin to only allowing vectors c ∈ ZN above). The central-firing
moves thus become

λ→ λ+ α whenever 〈λ, α∨〉 = 0 for λ ∈ P , α ∈ Φ+.

The deformations of central-firing we consider involve changing the values of 〈λ, α∨〉
at which we allow the firing move λ−→λ + α to be some wider interval. In fact, we
study two very particular families of intervals. For k ∈ Z≥0, the symmetric interval
root-firing process is the binary relation −−−→

sym,k
on P defined by

λ−−−→
sym,k

λ+ α, for λ ∈ P and α ∈ Φ+ with 〈λ, α∨〉+ 1 ∈ {−k,−k + 1, . . . , k}

and the truncated interval root-firing process is the relation −−→
tr,k

on P defined by

λ−−→
tr,k

λ+ α, for λ ∈ P and α ∈ Φ+ with 〈λ, α∨〉+ 1 ∈ {−k + 1,−k + 2, . . . , k}.

We refer to these as interval-firing processes for short.
As mentioned, the central-firing process may or may not be confluent, depending on

the initial weight we start at (e.g., our comment about three labeled chips above says
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that the central-firing process is not confluent from the origin for the root system of
Type A2). The first main result of the present paper is the following, which we prove
in §9 and §11.

Theorem 1.1. For any k ≥ 0, both the symmetric and truncated interval-firing pro-
cesses are confluent from all initial weights.

For example, Figure 1 depicts the k = 1 symmetric interval-firing process for Φ = A2:
the edges of this graph correspond to firing moves; that this process is confluent means
that all paths starting from a given vertex must terminate at the same final vertex.
For more such pictures, see Example 4.1.

We call these processes interval-firing processes because they allow firing a root from
a weight when the inner product of that weight with the corresponding coroot is in
some fixed interval. Alternately, we could say that the firing moves are allowed when
our weight belongs to a certain affine hyperplane arrangement whose hyperplanes are
orthogonal translates of the Coxeter arrangement hyperplanes; this is precisely the
sense in which these processes are “affine.” The symmetric process is so called because
the symmetric closure of the relation −−−→

sym,k
is invariant under the action of the Weyl

group. The truncated process is so-called because the interval defining it is truncated
by one element on the left compared to the symmetric process.

Note that these processes are not truly “deformations” of central-firing in the sense
that we cannot recover central-firing by specializing k. But observe that the k = 0 case
of symmetric interval-firing has the firing moves

λ−−−→
sym,0

λ+ α whenever 〈λ, α∨〉 = −1 for λ ∈ P , α ∈ Φ+

and the k = 1 case of truncated interval-firing has the firing moves

λ−−→
tr,1

λ+ α whenever 〈λ, α∨〉 ∈ {−1, 0} for λ ∈ P , α ∈ Φ+.

So these two interval-firing processes are actually very “close” to central-firing, and
suggest that central-firing (in particular, labeled chip-firing) is somehow right on the
“cusp” of confluence. Hence, it is not surprising that some of the tools we develop in the
present paper are applied to the study of central-firing in the sequel paper [GHMP17].
We also note that these interval-firing processes themselves have a direct chip-firing
interpretation in Type A; see Remark 4.2 for more details.

Moreover, we contend that these interval-firing processes are interesting not just
because of their connection to central-firing (and hence labeled chip-firing), but also
because of their remarkable geometric structure. To get a sense of this geometric
structure, the reader is encouraged to look at the depictions of these interval-firing
processes for the irreducible rank 2 root systems in Example 4.1. As we will show, the
symmetric and truncated interval-firing processes are closely related to permutohedra,
and indeed we will mostly investigate these processes from the perspective of convex,
polytopal geometry. For example, a key ingredient in our proof of confluence is an
exact formula for traverse lengths of root strings in permutohedra.

The most striking geometric objects that come out of our investigation of interval-
firing are certain “Ehrhart-like” polynomials that count the number of weights with
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given stabilization as we vary our parameter k. To make sense of “with given stabi-
lization,” first we show that there is a consistent way to label the stable points of the
symmetric and truncated interval-firing processes across all values of k: these stable
points are (a subset of) ηk(λ) for λ ∈ P , where η : P → P is a certain piecewise-linear
“dilation” map depicted in Figure 8. Then we ask: for λ ∈ P , how many weights stabi-
lize to ηk(λ), as a function of k? Let us denote by Lsym

λ (k) (resp., Ltr
λ (k)) the number

of weights µ ∈ P that −−−→
sym,k

-stabilize (resp., −−→
tr,k

-stabilize) to ηk(λ). The following is

our second main result, which we prove in §13 and §16.

Theorem 1.2.

• For any root system Φ, Lsym
λ (k) is a polynomial in k with integer coefficients.

• For any simply laced root system Φ, Ltr
λ (k) is a polynomial in k with integer

coefficients.

We conjecture for all root systems Φ that these functions are polynomials in k with
nonnegative integer coefficients. We call these polynomials Ehrhart-like because they
count the number of points in some discrete region as it is dilated, but we note that in
general the set of weights with given stabilization is not the set of lattice points of any
convex polytope, or indeed any convex set (although these Ehrhart-like polynomials do
include the usual Ehrhart polynomials of regular permutohedra).

That these Ehrhart-like polynomials apparently have nonnegative integer coefficients
suggests that our interval-firing processes may have a deeper connection to the repre-
sentation theory or algebraic geometry associated to the root system Φ, although we
have no precise idea of what such a connection would be. There is some similarity be-
tween our interval-firing processes and the space of quasi-invariants of the Weyl group
(see [ES03]). We thank Pavel Etingof for pointing this out to us.

As for possible connections to algebraic geometry: one can see in the above defini-
tions of the interval-firing processes that rather than record the intervals corresponding
to the values of 〈λ, α∨〉 at which we allow firing, we recorded the intervals correspond-
ing to the values of 〈λ, α∨〉+ 1 = 〈λ+ α

2 , α
∨〉 at which we allow firing. This turns out

to be more natural in many respects. And with this convention, the intervals defining
the symmetric and truncated interval-firing processes are exactly the same as the in-
tervals defining the (extended) Φ∨-Catalan and (extended) Φ∨-Shi hyperplane arrange-
ments [PS00, Ath00]. The Catalan and Shi arrangements are known to have many re-
markable combinatorial and algebraic properties, such as freeness [ER96, Ter02, Yos04].
Although we have no precise statement to this effect, empirically it seems that many of
the remarkable properties of these families of hyperplane arrangements are reflected in
the interval-firing processes. See Remark 11.8 for more discussion of connections with
hyperplane arrangements.

Finally, we remark that a kind of “chip-firing for root systems” was recently studied
by Benkart, Klivans, and Reiner [BKR18]. However, what Benkart-Klivans-Reiner
studied was in fact M-matrix chip-firing with respect to the Cartan matrix C of the
root system Φ. As we discuss later (see §10), this Cartan matrix chip-firing is analogous
to root-firing where we only allow firing of the simple roots of Φ. The root-firing
processes we study in this paper allow firing of all the positive roots of Φ. Hence, our
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set-up is quite different than the set-up of Benkart-Klivans-Reiner: for instance, the
simple roots are always linearly independent, but there are many linear dependencies
among the positive roots. Establishing confluence for Cartan matrix chip-firing is easy
since the fact that the simple roots are pairwise non-acute implies confluence holds
locally; whereas two positive roots may form an acute angle and hence confluence for
interval-firing processes is a much more delicate question. Nevertheless, we do explain
in Remark 10.3 how Cartan matrix chip-firing can be obtained from our interval-firing
processes by taking a k →∞ limit.

Now let us outline the rest of the paper. In Part 1 we prove that the symmetric
and truncated interval-firing processes are confluent. To do this, we first identify some
Weyl group symmetries for both of the interval-firing processes (Theorem 5.1); in par-
ticular, we demonstrate that symmetric interval-firing is invariant under the action of
the whole Weyl group (explaining its name). We then introduce the map η and explain
how it labels the stable points for symmetric interval-firing (Lemma 6.6). We proceed
to prove some polytopal results: we establish the aforementioned formula for traverse
lengths of permutohedra (Theorem 7.6); this traverse length formula leads directly to
a “permutohedron non-escaping lemma” (Lemma 8.2) which says that interval-firing
processes get “trapped” inside of certain permutohedra. The confluence of symmet-
ric interval-firing (Corollary 9.2) follows easily from the permutohedron non-escaping
lemma. Finally, we establish the confluence of truncated interval-firing (Corollary 11.5)
by first explaining how the map η also labels the stable points in the truncated case
(Lemma 11.1), and then combining the permutohedron non-escaping lemma with a
careful analysis of truncated interval-firing in rank 2.

In Part 2 we study the Ehrhart-like polynomials. We establish the existence of the
symmetric Ehrhart-like polynomials (Theorem 13.3) via some basic Ehrhart theory for
zonotopes (see, e.g., Theorem 13.1). Then, to establish the existence of the truncated
Ehrhart-like polynomials in the simply laced case (Theorem 16.1), we study in detail
the relationship between symmetric and truncated interval-firing and in particular how
the connected components of the graphs of these processes “decompose” into smaller
connected components in a way consistent with the labeling map η (see §15). In the
final section, §17, we explain how these Ehrhart-like polynomials also count the sizes of
fibers of iterates of a certain operator on the weight lattice, another surprising property
of these polynomials that would be worth investigating further.

Acknowledgements: We thank Jim Propp, both for several useful conversations
and because his introduction of labeled chip-firing and his infectious enthusiasm for
exploring its properties launched this project. The second author was supported by
NSF grant #1122374.

Part 1. Confluence of symmetric and truncated interval-firing

2. Background on root systems

Here we review the basic facts about root systems we will need in the study of
certain vector-firing processes we define in terms of a fixed root system Φ. For details,
consult [Hum72], [Bou02], or [BB05].
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Fix V , an n-dimensional real vector space with inner product 〈·, ·〉. For a nonzero
vector α ∈ V \ {0} we define its covector to be α∨ := 2α

〈α,α〉 . Then we define the

reflection across the hyperplane orthogonal to α to be the linear map sα : V → V given
by sα(v) := v − 〈v, α∨〉α.

Definition 2.1. A root system is a finite collection Φ ⊆ V \ {0} of nonzero vectors
such that:

(1) SpanR(Φ) = V ;
(2) sα(Φ) = Φ for all α ∈ Φ;
(3) SpanR({α}) ∩ Φ = {±α} for all α ∈ Φ;
(4) 〈β, α∨〉 ∈ Z for all α, β ∈ Φ.

We remark that sometimes the third condition is omitted and those root systems satis-
fying the third condition are called reduced. On the other hand, sometimes the fourth
condition is omitted and those root systems satisfying the fourth condition are called
crystallographic. We will assume that all root systems under consideration are reduced
and crystallographic and from now on will drop these adjectives.

From now on in the paper we will fix a root system Φ in V . The vectors α ∈ Φ are
called roots. The dimension of V (which is n) is called the rank of the root system.
The vectors α∨ for α ∈ Φ are called coroots and the set of coroots forms another root
system, denoted Φ∨, in V .

We use W to denote the Weyl group of Φ, which is the subgroup of GL(V ) generated
by the reflections sα for α ∈ Φ. By the first and second conditions of the definition of
a root system, W is isomorphic as an abstract group to a subgroup of the symmetric
group on Φ, and hence is finite. Observe that the Weyl group of Φ∨ is equal to the
Weyl group of Φ. Also note that all transformations in W are orthogonal.

It is well-known that we can choose a set ∆ ⊆ Φ of simple roots which form a basis
of V , and which divide the root system Φ = Φ+ ∪ Φ− into positive roots Φ+ and
negative roots Φ− := −Φ+ so that any positive root α ∈ Φ+ is a nonnegative integer
combination of simple roots. The choice of ∆ is equivalent to the choice of Φ+; one
way to choose Φ+ is to choose a generic linear form and let Φ+ be the set of roots
which are positive according to this form. There are many choices for ∆ but they are
all conjugate under W . From now on we will fix a set of simple roots ∆, and thus
also a set of positive roots Φ+. It is known that any α ∈ Φ appears in some choice
of simple roots (in fact, every α ∈ Φ is W -conjugate to a simple root appearing with
nonzero coefficient in its expansion in terms of simple roots) and hence W (∆) = Φ.
We use ∆ = {α1, . . . , αn} to denote the simple roots with an arbitrary but fixed order.
The coroots α∨i for i = 1, . . . , n are called the simple coroots and they of course form a
set of simple roots for Φ∨. We will always make this choice of simple roots for the dual
root system, unless stated otherwise. With this choice of simple roots for the dual root
system, we have (Φ∨)+ = (Φ+)∨.

We use C := (〈αi, α∨j 〉) ∈ Zn×n to denote the Cartan matrix of Φ. Clearly one can
recover the root system Φ from the Cartan matrix C, which is encoded by its Dynkin
diagram. The Dynkin diagram of Φ is the graph with vertex set [n] := {1, 2, . . . , n}
obtained as follows: first for all 1 ≤ i < j ≤ n we draw 〈αi, α∨j 〉〈αj , α∨i 〉 edges between i
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and j; then, if 〈αi, α∨j 〉〈αj , α∨i 〉 /∈ {0, 1} for some i and j, we draw an arrow on top of

the edges between them, from i to j if |αi| > |αj |. If there are no arrows in the Dynkin
diagram of Φ then we say that Φ is simply laced.

There are two important lattices related to Φ, the root lattice Q := SpanZ(Φ) and the
weight lattice P := {v ∈ V : 〈v, α∨〉 ∈ Z for all α ∈ Φ}. The elements of P are called
the weights of Φ. By the assumption that Φ is crystallographic, we have Q ⊆ P . We use
Ω := {ω1, . . . , ωn} to denote the dual basis to the basis of simple coroots {α∨1 , . . . , α∨n}
(in other words, the ωi are defined by 〈ωi, α∨j 〉 = δi,j); the elements of Ω are called

fundamental weights. Observe that Q = SpanZ(∆) and P = SpanZ(Ω).
We use PR

≥0 := SpanR≥0
(Ω), P≥0 := SpanZ≥0

(Ω) and similarly QR
≥0 := SpanR≥0

(∆),

Q≥0 := SpanZ≥0
(∆). Note that PR

≥0 and QR
≥0 are dual cones; moreover, because the

simple roots are pairwise non-acute, we have PR
≥0 ⊆ QR

≥0. The elements of P≥0 are

called dominant weights. For every λ ∈ P there exists a unique element in W (λ)∩P≥0

and we use λdom to denote this element. A dominant weight of great importance is the
Weyl vector ρ :=

∑n
i=1 ωi. It is well-known (and easy to check) that ρ = 1

2

∑
α∈Φ+ α.

The connected components of {v ∈ V : 〈v, α∨〉 6= 0 for all α ∈ Φ} are called the
chambers of Φ. The fundamental chamber is C0 := {v ∈ V : 〈v, α∨〉 > 0 for all α ∈ Φ+}.
The Weyl group acts freely and transitively on the chambers and hence every chamber
is equal to wC0 for some unique w ∈W . Observe that PR

≥0 is the closure of C0.
If U ⊆ V is any subspace spanned by roots, then Φ∩U is a root system in U , which

we call a sub-root system of Φ. The root lattice of Φ ∩ U is of course SpanZ(Φ ∩ U)
while the weight lattice is πU (P ). Moreover, Φ+∩U is a set of positive roots for Φ∩U ,
although ∆ ∩ U may not be a set of simple roots for Φ ∩ U . We will always consider
the positive roots of Φ ∩ U to be Φ+ ∩ U unless explicitly stated otherwise. The case
of parabolic sub-root systems (where in fact ∆∩U is a set of simple roots for Φ∩U) is
of special significance: for I ⊆ [n] we set ΦI := Φ ∩ SpanR({αi : i ∈ I}).

If there exists an orthogonal decomposition V = V1 ⊕ V2 with ∅ ( V1, V2 ( V such
that Φ = Φ1∪Φ2 with Φi ⊆ Vi for i = 1, 2, then we write Φ = Φ1×Φ2 and we say the root
system Φ is reducible. Otherwise we say that it is irreducible. (Let us also declare by
fiat that the empty set, although it is a root system, is not irreducible.) In other words,
a root system is irreducible if and only if its Dynkin diagram is connected. The famous
Cartan-Killing classification classifies all irreducible root systems up to isomorphism,
where an isomorphism of root systems is a bijection between roots induced from an
invertible orthogonal map, potentially composed with a global rescaling of the inner
product. Figure 2 shows the Dynkin diagrams of all the irreducible root systems: these
are the classical infinite series An for n ≥ 1, Bn for n ≥ 2, Cn for n ≥ 3, Dn for n ≥ 4,
together with the exceptional root systems G2, F4, E6, E7, and E8. Our numbering of
the simple roots is consistent with Bourbaki [Bou02]. In every case the subscript in the
name of the root system denotes the number of nodes of the Dynkin diagram, which is
also the number of simple roots, that is, the rank of Φ. These labels An, Bn, etc. are
the type of the root system; we may also talk about, e.g., “Type A” root systems.

All constructions that depend on the root system Φ decompose in a simple way as
a direct product of irreducible factors. Hence without loss of generality we will from
now on assume that Φ is irreducible.
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1 2 n− 1 n
An

1 2 n− 1 n
Bn

1 2 n− 1 n
Cn

1 2 n− 2
n− 1

n

Dn

1 2
G2

1 2 3 4
F4

1

2

3 4 5 6
E6

1

2

3 4 5 6 7
E7

1

2

3 4 5 6 7 8
E8

Figure 2. Dynkin diagrams of all irreducible root systems. The nodes
corresponding to minuscule weights are filled in.

In an irreducible root system, there are at most two values of lengths |α| among the
roots α ∈ Φ. Those roots whose lengths achieve the maximum value are called long,
and those which do not are called short. The Weyl group W acts transitively on the
long roots, and it also acts transitively on the short roots.

There is a natural partial order on P called the root order whereby µ ≤ λ for µ, λ ∈ P
if λ−µ ∈ Q≥0. When restricted to Φ+, this partial order is graded by height ; the height
of α =

∑n
i=1 ciαi ∈ Φ is

∑n
i=1 ci. Because we have assumed that Φ is irreducible, there

is a unique maximal element of Φ+ according to root order, denoted θ and called the

highest root. The highest root is always long. We use θ̂ to denote the unique (positive)

root such that θ̂∨ is the highest root of the dual root system Φ∨ (with respect to the

choice of {α∨1 , . . . , α∨n} as simple roots). If Φ is simply laced then θ = θ̂ and θ is the

unique root which is a dominant weight; if Φ is not simply laced then θ and θ̂ are

the two roots which are dominant weights. In the non-simply laced case we call θ̂ the
highest short root : it is the maximal short root with respect to the root ordering.

The root lattice Q is a full rank sublattice of P ; hence the quotient P/Q is some
finite abelian group. Note that P/Q ' coker(Ct) where we view the transposed matrix
as a map Ct : Zn → Zn. The order of this group is called the index of connection of Φ
and is denoted f := |P/Q|. There is a nice choice of coset representatives of P/Q,
which we now describe. A dominant, nonzero weight λ ∈ P≥0 \ {0} is called minuscule
if 〈λ, α∨〉 ∈ {−1, 0, 1} for all α ∈ Φ. Let us use Ωm to denote the set of minuscule
weights. Note that Ωm ⊆ Ω, i.e., a minuscule weight must be a fundamental weight. In
Figure 2, the vertices corresponding to minuscule weights are filled in. In fact, there are
f −1 minuscule weights and the minuscule weights together with zero form a collection
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of coset representatives of P/Q. We use Ω0
m := Ωm ∪ {0} to denote the set of these

representatives.
There is another characterization of minuscule weights that we will find useful.

Namely, for a dominant weight λ ∈ P≥0 we have that λ ∈ Ω0
m if and only if λ is

the minimal element according to root order in (Q+ λ) ∩ P≥0.
This last characterization of minuscule weight can also be described in terms of

certain polytopes called (W )-permutohedra. Permutohedra will play a key role for us
in our understanding of interval-firing processes, so let us review these now. For v ∈ V ,
we define the permutohedron associated to v to be Π(v) := ConvexHullW (v), a convex
polytope in V . And for a weight λ ∈ P , we define ΠQ(λ) := Π(λ) ∩ (Q+ λ), which we
call the discrete permutohedron associated to λ.

The following simple proposition describes the containment of permutohedra (see
also [Ste98, 1.2]):

Proposition 2.2. For u, v ∈ PR
≥0 we have Π(u) ⊆ Π(v) if and only if v − u ∈ QR

≥0.

Hence for µ, λ ∈ P≥0 we have ΠQ(µ) ⊆ ΠQ(λ) if and only if µ ≤ λ (in root order).

Proof. First suppose that u and v are strictly inside the fundamental chamber C0, i.e.,
that we have 〈u, α∨i 〉 > 0 and 〈v, α∨i 〉 > 0 for all i ∈ [n]. By the inner cone of polytope
at a vertex, we mean the affine convex cone spanned by the edges of the polytope
incident to that vertex in the direction “outward” from that vertex. Note that a point
belongs to a polytope if and only if it belongs to the inner cone of that polytope at
every vertex. Since the walls of the fundamental chamber are orthogonal to the simple
roots, it is easy to see that if u and v are strictly inside the fundamental chamber then
the inner cone of Π(u) at u is spanned by the negatives of the simple roots, and ditto
for the inner cone of Π(v) and v. So if we do not have v−u ∈ QR

≥0, then clearly u does

not belong to Π(v). Hence suppose that v− u ∈ QR
≥0. Every vertex of Π(u) belongs to

the inner cone of Π(u) at u; i.e., u−u′ ∈ QR
≥0 for all u′ ∈W (u). Thus for all u′ ∈W (u)

we have v − u′ ∈ QR
≥0; i.e., every point in Π(u) is in the inner cone of Π(v) at v. But

then by the W -invariance of permutohedra, we conclude that every point in Π(u) is in
the inner cone of Π(v) at every vertex of Π(v), and hence that Π(u) ⊆ Π(v), as claimed.

For arbitrary u, v ∈ PR
≥0, note Π(u) =

⋂
ε>0 Π(u + ερ) and Π(v) =

⋂
ε>0 Π(v + ερ),

and u + ερ and v + ερ will be strictly inside the fundamental chamber for all ε > 0.
Thus the result for arbitrary u, v ∈ PR

≥0 follows from the preceding paragraph. �

So in light of Proposition 2.2, we see that minuscule weights can also be characterized
as follows: for λ ∈ P≥0 we have λ ∈ Ω0

m if and only if ΠQ(λ) = W (λ). For references for
all these various characterizations of and facts about minuscule weights, see [BKR18,
Proposition 3.10] (who in particular credit Stembridge [Ste98] for some of these facts).

3. Background on binary relations and confluence

Interval-firing will formally be defined to be a binary relation on the weight lattice
of Φ. Before giving the precise definition, we review some general notation and results
concerning binary relations. Let X be a set and −→ a binary relation on X. We use
Γ−→ to denote the directed graph (from now on, “digraph”) with vertex set X and
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with a directed edge (x, y) whenever x−→y. Clearly Γ−→ contains exactly the same
information as −→ and we will often implicitly identify binary relations and digraphs
(specifically, digraphs without multiple edges in the same direction) in this way. We

use
∗−→ to denote the reflexive, transitive closure of −→: that is, we write x

∗−→y to mean

that x = x0−→x1−→· · ·−→xk = y for some k ∈ Z≥0. In other words, x
∗−→y means there is a

path from x to y in Γ−→. We use←→ to denote the symmetric closure of −→: x←→y means
that x−→y or y−→x. For any digraph Γ, we use Γun to denote the underlying undirected
graph of Γ; in fact, we view Γun as a digraph: it has edges (x, y) and (y, x) whenever

(x, y) is an edge of Γ. Hence Γ←→ = Γun−→. Finally, we use
∗←→ to denote the reflexive,

transitive, symmetric closure of −→: x
∗←→y means that x = x0←→x1←→· · ·←→xk = y for

some k ∈ Z≥0. In other words, x
∗←→y means there is a path from x to y in Γun−→.

Now let us review some notions of confluence for binary relations. Here we generally
follow standard terminology in the theory of abstract rewriting systems, as laid out for
instance in [Hue80]; however, instead following chip-firing terminology, we use “stable”
in place of what would normally be called “irreducible,” and rather than “normal
forms” we refer to “stabilizations.” We say that −→ is terminating (also sometimes
called noetherian) if there is no infinite sequence of relations x0−→x1−→x2−→· · · ; i.e., −→
is terminating means that Γ−→ has no infinite paths (which implies in particular that
this digraph has no directed cycles). Generally speaking, the relations we are most
interested in will all be terminating and it will be easy for us to establish that they

are terminating. For x ∈ X, we say that −→ is confluent from x if whenever x
∗−→y1

and x
∗−→y2, there is y3 such that y1

∗−→y3 and y2
∗−→y3. We say x ∈ X is −→-stable (or

just stable if the context is clear) if there is no y ∈ X with x−→y. In graph-theoretic
language, x is −→-stable means that x is a sink (vertex of outdegree zero) of Γ−→. If −→
is terminating, then for every x ∈ X there must be at least one stable y ∈ X with x

∗−→y.
On the other hand, if −→ is confluent from x ∈ X, then there can be at most one stable

y ∈ X with x
∗−→y. Hence if −→ is terminating and is confluent from x, then there exists a

unique stable y with x
∗−→y; we call this y the −→-stabilization (or just stabilization if the

context is clear) of x. We say that −→ is confluent if it is confluent from every x ∈ X.
As we just explained, if −→ is confluent and terminating then a unique stabilization
of x exists for all x ∈ X. A weaker notion than confluence is that of local confluence:
we say that −→ is locally confluent if for any x ∈ X, if x−→y1 and x−→y2, then there is

some y3 with y1
∗−→y3 and y2

∗−→y3. Figure 3 gives some examples of relations comparing
these various notions of confluence and termination. Observe that there is no example
in this figure of a relation that is locally confluent and terminating but not confluent.
That is no coincidence: Newman’s lemma, a.k.a. the diamond lemma, says that local
confluence plus termination implies confluence.

Lemma 3.1 (Diamond lemma, see [New42, Theorem 3] or [Hue80, Lemma 2.4]). Sup-
pose −→ is terminating. Then −→ is confluent if and only if it is locally confluent.

4. Definition of interval-firing

In this section we formally define the interval-firing processes in their most general
form. We use the notation k ∈ Z[Φ]W to mean that k is an integer-valued function on
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x y
. . . . . .

(I) (II) (III)

. . . . . .

(IV) (V) (VI)

Figure 3. Examples of various relations: (I) is confluent from x but not
from y; (II) and (III) are confluent but not terminating; (IV) and (VI)
are locally confluent but not confluent; (V) is confluent and terminating.

the roots of Φ that is invariant under the action of the Weyl group. We write a ≤ b
to mean that a(α) ≤ b(α) for all α ∈ Φ. We use the notation k = k to mean that k is
constantly equal to k. We also use the obvious notation aa+bb for linear combinations
of these functions. We use N[Φ]W to denote the set of k ∈ Z[Φ]W with k ≥ 0. We write
ρk :=

∑n
i=1 k(αi)ωi. Since we have assumed that Φ is irreducible, there are at most

two W -orbits of Φ: the short roots and the long roots. If Φ is simply laced then it has
a single Weyl group orbit and k = k for some constant k ∈ Z; otherwise, we have two
constants ks, kl ∈ Z so that k(α) = ks if α is short and k(α) = kl if α is long.

For k ∈ N[Φ]W , the symmetric interval-firing process is the binary relation −−−→
sym,k

on P defined by

λ−−−→
sym,k

λ+ α, for λ ∈ P and α ∈ Φ+ with 〈λ+
α

2
, α∨〉 ∈ [−k(α),k(α)]

and the truncated interval-firing process is the binary relation −−→
tr,k

on P defined by

λ−−→
tr,k

λ+ α, for λ ∈ P and α ∈ Φ+ with 〈λ+
α

2
, α∨〉 ∈ [−k(α) + 1,k(α)].

From now own we will often think about a relation −→ as Γ−→. So we use the
shorthand notations Γsym,k := Γ−−−→

sym,k
and Γtr,k := Γ−−→

tr,k
.

Example 4.1. The irreducible rank 2 root systems are A2, B2 and G2. The posi-
tive roots and fundamental weights for these root systems are depicted in Figure 4.
In Figures 5, 6, and 7 we depict the the truncated and symmetric interval-firing pro-
cesses Γtr,k and Γsym,k for k = 0, 1, 2 for these three root systems. Of course these
graphs are infinite, so we depict the “interesting part” of the graphs near the origin
(which is circled in black). The colors in these drawings correspond to classes of weights
modulo the root lattice (hence there are three colors in the A2 graphs, two in the B2

graphs, and one in the G2 graphs). Note that as k increases, the scale of the drawing is
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α1

α2

α1 + α2

ω2

ω1

0

A2

α1

α2

α1 + α2 α1 + 2α2

ω2

ω1

0

B2

α2

α1

α1 + α2 2α1 + α2 3α1 + α2

3α1 + 2α2

ω2

ω1

0

G2

Figure 4. The positive roots of the rank 2 root systems A2, B2, andG2.
The elements of Ω ∪ {0} are shown in red.

not maintained. Most, if not all, of the features of truncated and symmetric interval-
firing that we care about are visible already in rank 2. Thus the reader is encouraged,
while reading the rest of this paper, to return to these figures and understand how each
of the results apply to these two dimensional examples.

Remark 4.2. Let us recall Propp’s labeled chip-firing process (studied in [HMP17]),
which motivated our study of interval-firing processes. The states of labeled chip-firing
are configurations of labeled chips on the infinite path graph Z, such as:

−2 −1 0 1 2

1

2

3

If two chips with labels occupy the same position, we may fire them, which sends the
lesser-labeled chip one vertex to the right and the greater-labeled chip one vertex to
the left. For instance, firing the chips 1 and 2 above leads to

−2 −1 0 1 2

12 3

Firing the chips i and j with i < j corresponds to c−→c + (ei − ej), where the

integer vector c := (c1, . . . , cN ) ∈ ZN is given by ci := the position of the chip i .
In this way central-firing (the subject of our sequel paper [GHMP17]) is the same as
the labeled chip-firing process for Φ of Type A. Via this same correspondence between
lattice vectors and configurations of chips, symmetric and truncated interval-firing in
Type A can also be seen as “labeled chip-firing processes” that consist of the same
chip-firing moves, which send chip i one vertex to the right and chip j one vertex
to the left for any i < j, but where we allow these moves to be applied under different
conditions: namely, when the position of chip i minus the position of chip j is either
in the interval [−k−1, k−1] (in the symmetric case) or in the interval [−k, k−1] (in the
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k Γtr,k Γsym,k

0

1

2

Figure 5. The graphs Γtr,k and Γsym,k for Φ = A2 and k = 0, 1, 2.
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k Γtr,k Γsym,k

0

1

2

Figure 6. The graphs Γtr,k and Γsym,k for Φ = B2 and k = 0, 1, 2.
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k Γtr,k Γsym,k

0

1

2

Figure 7. The graphs Γtr,k and Γsym,k for Φ = G2 and k = 0, 1, 2.
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truncated case). For example, consider the smallest non-trivial case of these interval-
firing processes, which is symmetric interval-firing with k = 0. This corresponds to
the labeled chip-firing process that allows the transposition of the chips i and j

with i < j when i is one position to the left of j . It is immediately apparent that
this process is confluent; for instance, the configuration

−3 −2 −1 0 1 2 3

1 2 3

4

5 6

7

−−−→
sym,0

-stabilizes to

−3 −2 −1 0 1 2 3

1

2

34 5

6

7

In general the stabilization will weakly sort each collection of contiguous chips, while
leaving the underlying unlabeled configuration of chips the same. The next smallest
case to consider is truncated interval-firing with k = 1. This corresponds to the labeled
chip-firing process that allows both the transposition moves from the symmetric k = 0
case, and the usual labeled chip-firing moves from the central-firing case. The reader
can verify that for instance the configuration

−2 −1 0 1 2

1

2

3

4

−−→
tr,1

-stabilizes to

−2 −1 0 1 2

1234

Here it is less obvious that confluence holds (although it is not too hard to prove this fact
directly via a diamond lemma argument). The reader is now encouraged to experiment
with this labeled chip-firing interpretation of symmetric and truncated interval-firing
for higher values of k. Note that increasing k allows for the firing of chips i and j

when they are further apart.

In our further treatment of the interval-firing processes we will focus on the geomet-
ric picture (on display in Example 4.1) and not the chip-firing picture (discussed in
Remark 4.2).

To close out this section, let us demonstrate that the interval-firing processes are
always terminating. This is straightforward because the collection Φ+ of vectors we
are adding is acyclic.

Proposition 4.3. For k ∈ N[Φ]W , the relations −−−→
sym,k

and −−→
tr,k

are terminating.

Proof. It is enough to show this for −−−→
sym,k

, which has more firing moves than −−→
tr,k

.

For λ ∈ P define ϕ(λ) := 〈ρk+1−λ, ρk+1−λ〉; in other words, ϕ(λ) is the length of the
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vector ρk+1 − λ. Suppose λ−−−→
sym,k

λ+ α for α ∈ Φ+. Then,

ϕ(λ)− ϕ(λ+ α) = 〈ρk+1 − λ, ρk+1 − λ〉 − 〈ρk+1 − (λ+ α), ρk+1 − (λ+ α)〉
= 2〈ρk+1, α〉 − 2〈λ, α〉

≥ 4

〈α, α〉
(k(α) + 1− k(α)) =

4

〈α, α〉
,

where we use the fact that 〈λ, α〉 ≤ 2
〈α,α〉k(α) since λ−−−→

sym,k
λ+ α. So each firing move

causes the quantity ϕ(λ) to decrease by at least some fixed nonzero amount. But we
have ϕ(λ) ≥ 0 because it is measuring the length of a vector. Thus indeed −−−→

sym,k
is

terminating. �

5. Symmetries of interval-firing processes

In this section we study the symmetries of the two interval-firing processes. Since the
set of positive roots Φ+ is an “oriented” set of vectors, we do not expect the directed
graphs Γsym,k and Γtr,k to have many symmetries, and certainly none coming from
the Weyl group. But if we consider instead the undirected graphs Γun

sym,k and Γun
tr,k

(corresponding to the symmetric relations ←−−→
sym,k

and ←−→
tr,k

), we will see that both of

these do in fact have symmetries coming from the Weyl group.
For the symmetric interval-firing process, the graph Γun

sym,k is invariant under the
action of the whole Weyl group W . This explains the name “symmetric” for the
process: it has the biggest possible group of symmetries. As for the truncated process,
in order to understand its symmetries we need to introduce a certain subgroup of
the Weyl group C ⊆ W . In fact this C is an abelian group and satisfies C ' P/Q.
In our definition of C we follow Lam and Postnikov [LP12]2. The Coxeter number

of Φ, another fundamental invariant of the root system, is h := 〈ρ, θ̂∨〉 + 1. (The
Coxeter number is also equal to h = 1 +

∑n
i=1 ai where θ =

∑n
i=1 aiαi). Lam and

Postnikov [LP12, §5] defined the subgroup C := {w ∈W : ρ−w(ρ) ∈ hP} of the Weyl
group and explained (using the affine Weyl group, which we will not discuss here) that
C is naturally isomorphic to P/Q: the isomorphism is explicitly given by w 7→ ω ∈ Ω0

m

if and only if ρ − w(ρ) = hω. (Since ρ − w(ρ) ∈ Q for any w ∈ W , a consequence of
this description of the isomorphism is that h · (P/Q) = {0}.) As they mention, this
subgroup was also studied before by Verma [Ver75], but in spite of its significance it
does not seem to have any name other than C in the root system literature. Lam
and Postnikov gave another characterization [LP12, Proposition 6.4] of C that will be
useful for us: C = {w ∈ W : w({α∨0 , α∨1 , . . . , α∨n}) = {α∨0 , α∨1 , . . . , α∨n}}, where we use

the suggestive notation α∨0 := −θ̂∨.

Theorem 5.1. Let k ∈ N[Φ]W . Set Γ := Γun
sym,k or Γ := Γun

tr,k. Then,

• if Γ = Γun
sym,k, the linear map v 7→ w(v) is an automorphism of Γ for all w ∈W ;

2Lam and Postnikov worked in a completely dual setting to ours: that is, they described a copy of

the coweight lattice modulo the coroot lattice inside of W ; hence, they used θ instead of θ̂, etc.
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• if Γ = Γun
tr,k, the affine map v 7→ w(v − 1

hρ) + 1
hρ is an automorphism of Γ for

all w ∈ C ⊆W .

Proof. If Γ = Γun
sym,k set c := 0, and if Γ = Γun

tr,k set c := 1. Consider the hyperplane ar-

rangement H :=
{
Hα∨, c

2
: α ∈ Φ+

}
with hyperplanes Hα∨, c

2
:=
{
v ∈ V : 〈v, α∨〉 = c

2

}
.

First we claim that if for w ∈ W and u ∈ V the affine map ϕ : v 7→ w(v − u) + u
is an automorphism of H which maps P to P , then it is an automorphism of Γ (by
an automorphism of the hyperplane arrangement, we mean an invertible affine map ϕ
such that ϕ permutes the hyperplanes in H). Indeed, observe that there is an edge
in Γ between λ and µ if and only if there is some α ∈ Φ+ such that µ = λ + α and
max({|〈µ, α∨〉− c

2 |, |〈λ, α
∨〉− c

2 |}) ≤ k(α)+1− c
2 . So suppose there is an edge between λ

and µ in the α direction. Any ϕ of this form will satisfy ϕ(µ) − ϕ(λ) = w(α) and
ϕ(Hα∨, c

2
) = H±w(α)∨, c

2
(where the sign ± is chosen so that ±w(α) ∈ Φ+). Moreover,

since all Weyl group elements are orthogonal, and, in particular, preserve distances,
the distance from µ to Hα∨, c

2
will be the same as the distance from ϕ(µ) to H±w(α)∨, c

2
,

and ditto for λ. But |〈µ, α∨〉 − c
2 | is precisely the distance from µ to Hα∨, c

2
, and ditto

for λ. Hence indeed we will get that ϕ(µ) = ϕ(λ) + w(α) and that

max
({∣∣∣〈ϕ(µ), (±w(α))∨〉 − c

2

∣∣∣ , ∣∣∣〈ϕ(λ), (±w(α))∨〉 − c

2

∣∣∣})
≤ k(α) + 1− c

2
= k(±w(α)) + 1− c

2
,

which means there is an edge in Γ between ϕ(λ) and ϕ(µ) in the ±w(α) direction.
To see that conversely if there is an edge between ϕ(λ) and ϕ(µ) in Γ, there is one
between λ and µ, use that ϕ is invertible and ϕ−1 is of the same form.

In the case c = 0, the hyperplane arrangement H is just the Coxeter arrangement
of Φ and it is easy to see that every w ∈W is an automorphism of H.

Now consider the case c = 1, in which case H is (a scaled version of) the Φ∨-Linial
arrangement ; see for instance [PS00] and [Ath00]. We claim that ϕ : v 7→ w(v− c

hρ)+ c
hρ

is an automorphism of H for all w ∈ C. So suppose x ∈ Hα∨, c
2
; we want to show that

ϕ(x) ∈ H±w(α)∨, c
2

where the sign ± is chosen so that ±w(α) is positive. (The reverse

implication will then follow from consideration of ϕ−1 = w−1(v − c
hρ) + c

hρ.) We have

(5.1) 〈ϕ(x), w(α)∨〉 =
c

2
−
〈 c
h
ρ, α∨

〉
+
〈 c
h
ρ, w(α)∨

〉
.

Write α∨ =
∑n

i=1 aiα
∨
i , with the convention a0 := 0. By a result of Lam-Postnikov

mentioned above, there is a permutation π : {0, 1, . . . , n} → {0, 1, . . . , n} such that

w(α∨i ) = α∨π(i) (with the aforementioned convention α∨0 := −θ̂∨ where θ̂∨ is the highest

root of Φ∨). Thus, w(α)∨ =
∑n

i=1 aiα
∨
π(i).

We will consider two cases. First suppose that aπ−1(0) = 0. Then w(α)∨ is clearly a

positive root, so ± = +; moreover, we have 〈 chρ, α
∨〉 = 〈 chρ, w(α)∨〉 = c

h ·
∑n

i=1 ai. So
from (5.1) we get that 〈ϕ(x), w(α)∨〉 = c

2 , that is, ϕ(x) ∈ H±w(α)∨, c
2
, as desired.

Now suppose that aπ−1(0) 6= 0. We claim that this forces aπ−1(0) = 1: indeed,

otherwise the height of w(α)∨ would be strictly less than −(h− 1), which is impossible
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because −θ̂∨ has height −(h − 1) and is the root in Φ∨ of smallest height. So indeed
we have aπ−1(0) = 1. Note also that in this case the height of w(α)∨ is a negative root

and hence w(α)∨ is negative, so ± = −. Then we compute

−
〈 c
h
ρ, α∨

〉
+
〈 c
h
ρ, w(α)∨

〉
= −

〈 c
h
ρ, α∨π−1(0)

〉
+
〈 c
h
ρ, α∨0

〉
= − c

h
−
( c
h

(h− 1)
)

= −c.

Thus from (5.1) we get that 〈ϕ(x),−w(α)∨〉 = − c
2 + c = c

2 , that is, ϕ(x) ∈ H±w(α)∨, c
2
,

as desired.
Finally, the description of C given above says that ϕ(0) = w(0− c

hρ) + c
hρ = cω for

some ω ∈ Ω0
m. Hence indeed ϕ maps P to P . �

6. Sinks of symmetric interval-firing and the map η

Recall that our overall strategy for proving confluence of the interval-firing processes
is to show that they get “trapped” inside certain permutohedra, and then to analyze
where these processes must terminate. In order to carry out this strategy, we need to
understand what are the possible final points we terminate at, i.e., what are the stable
points of these processes.

In this section we describe the −−−→
sym,k

-stable points, i.e., the sinks of Γsym,k. We will

show in particular that there is a way to consistently label the sinks of Γsym,k across
all values of k.

In order to define this labeling we need to review some basic facts about parabolic
subgroups and parabolic cosets. Recall that the Weyl group W is generated by the
simple reflections si := sαi for i = 1, . . . , n. For any w ∈ W we use `(w) to denote
the length of w, which is the length of the shortest representation of w as a product
of simple reflections. An inversion of w is a positive root α ∈ Φ+ for which w(α) is
negative. The length `(w) is equal to the number of inversions of w. The identity is
the only Weyl group element of length zero. The simple reflections are the only Weyl
group elements of length one: si sends αi to −αi and permutes Φ+ \ {αi}. A (right)
descent of w ∈W is a simple reflection si such that `(wsi) < `(w). The reflection si is
a descent of w if and only if αi is an inversion of w.

Recall that for I ⊆ [n] we use WI to denote the corresponding parabolic subgroup
of W , that is, the subgroup of GL(V ) generated by simple reflections si for i ∈ I.
Note that WI is (isomorphic to) the Weyl group of ΦI . For λ ∈ P we define the

parabolic permutohedron ΠI(λ) := ConvexHullWI(λ) and ΠQ
I (λ) := ΠI(λ) ∩ (Q + λ).

An important property of parabolic subgroups is the existence of distinguished coset
representatives: each (left) coset wWI in W contains a unique element of minimal
length. We use W I for the set of minimal length coset representatives of WI . There
is even an explicit description: W I := {w ∈ W : si is not a descent of w for all i ∈ I}
(see for instance [BB05, §2.4]).

Recall that for any λ ∈ P we use λdom to denote the dominant element of W (λ).
And for a dominant weight λ =

∑n
i=1 ciωi ∈ P≥0, we define I0

λ := {i ∈ [n] : ci = 0}.

Proposition 6.1. For λ ∈ P≥0, the stabilizer of λ in W is WI0λ
.

Proof. This (straightforward proposition) is [Hum72, Lemma 10.2B]. �
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C0

−→
ηk

C0

ρk = ηk(0)

Figure 8. A graphical depiction of the piecewise-linear map ηk.

Corollary 6.2. For any λ ∈ P , {w ∈W : w−1(λ) ∈ P≥0} is a coset of WI0λdom
.

Proof. First let us show that if w−1(λ) is dominant then (ww′)−1(λ) is dominant for
any w′ ∈ WI0λdom

. This is clear: (ww′)−1(λ) = (w′)−1(w−1(λ)) = (w′)−1(λdom) = λdom

since w′ is in the stabilizer of λdom by Proposition 6.1. Next let us show that if w−1(λ)
is dominant and (w′)−1(λ) is dominant then w′ = ww′′ for some w′′ ∈ WI0λdom

. This is

also clear: w−1(w′(λdom)) = w−1(λ) = λdom, so w−1w′ is in the stabilizer of λdom, that
is, w−1w′ = w′′ for some w′′ ∈WI0λdom

thanks to Proposition 6.1, as claimed. �

In light of Corollary 6.2, for λ ∈ P we define wλ to be the minimal length element
of {w ∈ W : w−1(λ) ∈ P≥0}. Hence, for λ ∈ P≥0 we have (by the Orbit-Stabilizer

Theorem) that W I0λ = {wµ : µ ∈ W (λ)} and wµ 6= wµ′ for µ 6= µ′ ∈ W (λ). Another
way to think about wλ: λ may belong to the closure of many chambers, but there will
be a unique chamber wC0 with w of minimal length such that λ belongs to the closure
of wC0 and this is when w = wλ. Then for k ∈ N[Φ]W , we define the map ηk : P → P by
setting ηk(λ) := λ+wλ(ρk) for all λ ∈ P (where, as above, we have ρk :=

∑n
i=1 k(αi)ωi).

This map ηk will be of crucial importance for us in our investigation of both the
symmetric and truncated interval-firing processes and the relationship between these
two processes. Figure 8 gives a graphical depiction of ηk: as we can see, this map
“dilates” space by translating the chambers radially outwards; a point not inside any
chamber travels in the same direction as the chamber closest to the fundamental cham-
ber among those chambers whose closure the point lies in. The following proposition
lists some very basic properties of ηk.

Proposition 6.3.

• For any k,m ∈ N[Φ]W , we have ηk+m = ηm(ηk).
• For any k ∈ N[Φ]W , the map ηk : P → P is injective.
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Proof. For the first bullet point: let λ ∈ P . Set λ′ := ηk(λ) = λ + wλ(ρk). Observe
that λ′dom = w−1

λ (ηk(λ)) = λdom + ρk. Hence, I0
λ′dom

⊆ I0
λdom

. This means the cosets

of WI0λdom
are unions of cosets of WI0

λ′
dom

. But we just saw that wλ ∈ wλ′WI0
λ′
dom

,

because w−1
λ (λ′) is dominant. So wλ must be the minimal length element of wλ′WI0

λ′
dom

(since it is the minimal length element of a superset of wλ′WI0
λ′
dom

). Hence wλ′ = wλ.

This means that ηm(ηk(λ)) = λ + wλ(ρk) + wλ(ρm) = λ + wλ(ρk+m) = ηk+m(λ) and
thus the claim is proved.

For the second bullet point: suppose λ, µ ∈ P with ηk(λ) = ηk(µ). First of all,
since ηk(λ)dom = λdom+ρk and similarly for µ, we have λdom = µdom. Letm� 0 ∈ Z be
some very large constant. From the first bullet point we know ηk+m(λ) = ηk+m(µ) and
hence λ+wλ(ρk+m) = µ+wµ(ρk+m). But ρk+m is inside the fundamental chamber C0,
and hence w(ρk+m) = w′(ρk+m) if and only if w = w′. Moreover, by taking m large
enough we can guarantee that w(ρk+m) and w′(ρk+m) are very far away from one
another for w 6= w′. Hence λ + wλ(ρk+m) = µ + wµ(ρk+m) in fact forces wλ = wµ.
But wλ = wµ together with λdom = µdom means λ = µ and thus the claim is proved. �

In light of Proposition 6.3 it makes sense to set η := η1 so that ηk = ηk. Now we
proceed to explain how ηk labels the sinks of Γsym,k.

For a dominant weight λ =
∑n

i=1 ciωi ∈ P≥0, define I0,1
λ := {i ∈ [n] : ci ∈ {0, 1}}.

Proposition 6.4. Let λ ∈ P with 〈λ, α∨〉 6= −1 for all α ∈ Φ+. Then wλ(Φ+

I0,1λdom

) is a

subset of positive roots.

Proof. It suffices to show that wλ(αi) is positive for all i ∈ I0,1
λdom

. Suppose that wλ(αi)

is negative for some i ∈ I0,1
λdom

, i.e., that si is a descent of wλ. Note 〈λdom, α
∨
i 〉 ∈ {0, 1}.

If 〈λdom, α
∨
i 〉 = 1, then 〈λdom,−α∨i 〉 = −1 so 〈λ,−wλ(αi)

∨〉 = −1, which contradicts
that 〈λ, α∨〉 6= −1 for all α ∈ Φ+. But since wλ is the minimal length representative
of wλWI0λdom

, it cannot have any descents sj with j ∈ I0
λdom

. Hence we cannot have

that 〈λdom, α
∨
i 〉 = 0 either. Thus it must be that wλ(αi) is positive for all i ∈ I0,1

λdom
. �

Proposition 6.5. For a dominant weight µ ∈ P≥0, we have that

W I0,1µ = {wλ : λ ∈ P, λdom = µ, 〈λ, α∨〉 6= −1 for all α ∈ Φ+}.

Proof. Let λ ∈ P with λdom = µ and first suppose that 〈λ, α∨〉 = −1 for some α ∈ Φ+.
Then we have 〈w−1

λ (λ), w−1
λ (α)∨〉 = −1. But since w−1

λ (λ) = λdom is dominant, this

means w−1
λ (α) is a negative root; moreover, the only way 〈λdom, w

−1
λ (α)∨〉 = −1 is

possible is if all the simple coroots α∨i appearing in the expansion of −w−1
λ (α)∨ have

i ∈ I0,1
λdom

. This implies that wλ(αi) is negative for some i ∈ I0,1
λdom

. But then si would
be a descent of wλ, and hence wλ cannot be the minimal length element of wλWI0,1λdom

.

If λ ∈ P with λdom = µ satisfies 〈λ, α∨〉 6= −1 for all α ∈ Φ+, then we have seen in

Proposition 6.4 that wλ has no descents si with i ∈ I0,1
µ and hence indeed wλ ∈W I0,1µ .

On the other hand, since WI0µ
⊆ W

I0,1µ
, the cosets of W

I0,1µ
are unions of cosets of WI0µ
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and hence the minimal length element of any coset of W
I0,1µ

must be of the form wλ for

some λ ∈ P with λdom = µ. �

Lemma 6.6. For any k ∈ N[Φ]W , the sinks of Γsym,k are

{ηk(λ) : λ ∈ P, 〈λ, α∨〉 6= −1 for all α ∈ Φ+}

Proof. First suppose that λ ∈ P satisfies 〈λ, α∨〉 6= −1 for all α ∈ Φ+. Let α ∈ Φ+.
If α ∈ wλ(Φ

I0,1λdom
), then 〈ηk(λ), α∨〉 = 〈λdom +ρk, w

−1
λ (α)∨〉 ≥ k(α) since w−1

λ (α) ∈ Φ+

by Proposition 6.4. So now consider α /∈ wλ(Φ
I0,1λdom

). Then w−1
λ (α) may be positive or

negative, but |〈λdom, wλ(α)∨〉| ≥ 2 (because λdom has an ωi coefficient of at least 2 for

some i /∈ I0,1
λdom

such that α∨i appears in the expansion of ±wλ(α)∨). Hence

|〈ηk(λ), α∨〉| = |〈λdom + ρk, w
−1
λ (α)∨〉| ≥ k(α) + 2,

which means that 〈ηk(λ), α∨〉 /∈ [−k(α)− 1,k(α)− 1]. Thus ηk(λ) is a sink of Γsym,k.
Now suppose µ is a sink of Γsym,k. Since 〈µ, α∨〉 /∈ [−k(α)− 1,k(α)− 1] for α ∈ Φ+,

in particular |〈µ, α∨〉| ≥ k(α) for all α ∈ Φ+. This means 〈µdom, α
∨〉 ≥ k(α) for

all α ∈ Φ+. Hence µdom = µ′ + ρk for some dominant µ′ ∈ P≥0. Suppose to the
contrary that wµ is not the minimal length element of wµWI0,1

µ′
. Then there exists a

descent si of wµ with i ∈ I0,1
µ′ . But then

〈µ,−wµ(αi)
∨〉 = 〈µdom,−α∨i 〉 = −〈µ′, α∨i 〉 − 〈ρk, α∨i 〉 ≥ −k(αi)− 1,

and also 〈µ,−wµ(αi)
∨〉 = −〈µdom, α

∨
i 〉 ≤ 0. This would imply that µ is not a sink

of Γsym,k, since −wµ(αi) ∈ Φ+. So wµ must be the minimal length element of wµWI0,1
µ′

.

Thanks to Proposition 6.5, this means wµ = wλ for some λ ∈ P with λdom = µ′

and 〈λ, α∨〉 6= −1 for all α ∈ Φ+. Moreover, µ = wµ(µdom) = λ + wλ(ρk) = ηk(λ), as
claimed. �

7. Traverse lengths of permutohedra

Our goal will now be to describe the connected components of Γsym,k, with the even-
tual aim of establishing confluence of −−−→

sym,k
. (By connected component of a directed

graph, we mean a connected component of its underlying undirected graph.) We will
show over the course of the next several sections that the connected components are
contained in certain permutohedra; from this confluence will follow easily. First we
need to discuss traverse lengths.

Definition 7.1. For a root α ∈ Φ, an α-string of length ` is a subset of P of the form
{µ, µ−α, µ−2α, . . . , µ−`α} for some weight µ ∈ P . For a dominant weight λ ∈ P≥0, an
α-traverse in the discrete permutohedron ΠQ(λ) is a maximal (as a set) α-string that
belongs to ΠQ(λ). Concretely, it is an α-string {µ, µ− α, µ− 2α, . . . , µ− `α} ⊆ ΠQ(λ)
such that µ + α, µ − (` + 1)α 6∈ ΠQ(λ). Finally, for a dominant weight λ ∈ P≥0, the
traverse length lλ ∈ Z[Φ]W is given by

lλ(α) := the minimal length ` of an α-traverse in ΠQ(λ).



ROOT SYSTEM CHIP-FIRING I: INTERVAL-FIRING 25

Clearly, by the W -symmetry of permutohedra, the traverse length is W -invariant and
hence really does belong to Z[Φ]W .

Lemma 7.2. For λ ∈ P and α ∈ Φ, any α-traverse {µ, µ − α, . . . , µ − `α} ⊆ ΠQ(λ)
is symmetric with respect to the reflection sα, i.e., sα(µ − iα) = µ − (` − i)α for
all i = 0, . . . , l. Its length is ` = 〈µ, α∨〉. In particular, 〈µ, α∨〉 ≥ 0.

Proof. By the W -symmetry of discrete permutohedra, we have sα(ΠQ(λ)) = ΠQ(λ),
which implies the first sentence. The second sentence then follows from

µ− `α = sα(µ) = µ− 〈µ, α∨〉α.
The last sentence is clear because the length ` must be nonnegative. �

Lemma 7.2 implies the following reformulation of the definition of lλ.

Corollary 7.3. For λ ∈ P , the traverse length lλ is given by

lλ(α) = min({〈µ, α∨〉 : µ ∈ ΠQ(λ), µ+ α 6∈ ΠQ(λ)}).
Corollary 7.3 explains the connection of traverse length to interval-firing: we are

going to prove that interval-firing processes get “trapped” inside of permutohedra be-
cause the traverse lengths of these permutohedra are large (and hence if µ is inside
such a permutohedron but µ+ α is not, 〈µ, α∨〉 must be so large that it is outside the
fierability interval of our process). To do this we need a formula for traverse length. In
most cases, the traverse length of a permutohedron in a given direction α is realized
on some edge of the permutohedron in direction α. However, there are some strange
exceptions to this general rule, for which we need the concept of “funny” weights.

Definition 7.4. If Φ is simply laced, then there are no funny weights. So suppose Φ is
not simply laced. Then there is a unique long simple root αl and short simple root αs
with 〈αl, α∨s 〉 6= 0. We say the dominant weight λ =

∑n
i=1 ciωi ∈ P≥0 is funny if cs = 0

and cl ≥ 1 and ci ≥ cl for all i such that αi is long.

Example 7.5. With the numbering of simple roots as in Figure 2, if Φ = Bn then
λ =

∑n
i=1 ciωi ∈ P≥0 is funny if c1, . . . , cn−2 ≥ cn−1 ≥ 1 and cn = 0. If Φ = Cn, then λ

is funny if cn−1 = 0 and cn ≥ 1.

For a dominant weight λ =
∑n

i=1 ciωi ∈ P≥0, define mλ ∈ Z[Φ]W by setting

mλ(α) := min({ci : α ∈W (αi)}).
Theorem 7.6. For a dominant weight λ ∈ P≥0, we have

lλ(α) =

{
mλ(α)− 1 if α is long and λ is funny,

mλ(α) otherwise.

Proof. Let λ =
∑n

i=1 ciωi ∈ P≥0. The αi-traverse {λ, λ − α, . . . , λ − `α = si(λ)},
which is contained in the edge [λ, si(λ)] of the permutohedron Π(λ), has length equal
to ` = 〈λ, α∨i 〉 = ci. By the W -symmetry of the traverse length (and because any root
is W -conjugate to some simple root), it follows that lλ ≤mλ.

We will show that in most of the cases (except the case with long roots and funny
weights) we actually have lλ = mλ. We need to show that the length of any α-traverse
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in ΠQ(λ) is greater than or equal to mλ(α), i.e., for µ ∈ ΠQ(λ) such that µ+α /∈ ΠQ(λ),
we have 〈µ, α∨〉 ≥mλ(α).

If mλ(α) = 0, then we automatically get lλ(α) = mλ(α) = 0, because lλ(α). So let
us assume that mλ(α) ≥ 1.

Let µ ∈ ΠQ(λ) be such that µ + α /∈ ΠQ(λ). Since µ + α ∈ Q + λ, we deduce
that µ + α /∈ Π(λ). This means that the line segment [µ, µ + α] must “exit” the
permutohedron Π(λ) at some point v ∈ V , i.e., there exists a unique point v = µ+ tα,
where t ∈ R, with v ∈ Π(λ) but µ+ qα /∈ Π(λ) for any q > t. We have 0 ≤ t < 1.

Let F be the minimal (by inclusion) face of Π(λ) that contains the point v. For any
vertex ν of the face F , we have ν ∈ Π(λ) and ν + α /∈ Π(λ).

The minimal value of the linear form 〈·, α∨〉 on the face F should be reached at a
vertex ν of F . By the W -symmetry of Π(λ), we assume without loss of generality that
this minimum is achieved at ν = λ. So we have 〈λ, α∨〉 ≤ 〈v, α∨〉.

Let α =
∑n

i=1 aiαi, where the ai are either all nonnegative or all nonpositive. Then

we have α∨ =
∑n

i=1 ãiαi where ãi = 〈αi,αi〉
〈α,α〉 ai.

Any root α is W -conjugate to at least one simple root that appears with nonzero
coefficient in its expansion in terms of the simple roots. So there exists an index j such
that αj ∈W (α) and aj = ãj 6= 0. We have cj ≥mλ(α) ≥ 1.

We have λ ∈ Π(λ) and λ + α /∈ Π(λ). So 〈λ, α∨〉 ≥ 0, because 〈λ, α∨〉 is the
length of the α-traverse that starts at λ, which is always nonnegative. Therefore we
have 〈λ, α∨〉 =

∑n
i=1 ãici ≥ 0; moreover, all nonzero terms in this expression have the

same sign and at least one term ãjcj is nonzero. It follows that a1, . . . , an ≥ 0, i.e., α
is a positive root.

If λ is strictly in the fundamental chamber, then all edges of Π(λ) coming out of λ
must be in the direction of a negative simple root. This is not true for general λ ∈ P≥0,
but the edges of Π(λ) coming out of λ that are not in the direction of a negative simple
root must immediately leave the dominant chamber. Hence if we let x ∈ V be some
generic point in the interior of the face F very close to λ, by acting by WI0λ

we can

transport x to the dominant chamber while fixing λ. Thus, we may assume that the
affine span of F is spanned by simple roots. So let I ⊆ [n] be the minimal set of indices
such that the face F belongs to the affine subspace λ+ SpanR({αi : i ∈ I}).

We have µ = v − tα = (λ −
∑

i∈I biαi) − tα for real numbers 0 ≤ t < 1 and bi ≥ 0,
i ∈ I. Thus 〈µ, α∨〉 = 〈v, α∨〉 − t〈α, α∨〉 = 〈v, α∨〉 − 2t ≥ 〈λ, α∨〉 − 2t > 〈λ, α∨〉 − 2.
Moreover, since both 〈µ, α∨〉 and 〈λ, α∨〉−2 are integers, and the first is strictly greater
than the second, we get

〈µ, α∨〉 ≥ 〈λ, α∨〉 − 1 =

(
n∑
i=1

ãici

)
− 1.

We already noted that the last expression involves at least one nonzero term ãjcj such
that αj ∈W (α). So ãjcj ≥ cj ≥mλ(α) and thus 〈µ, α∨〉 ≥mλ(α)− 1.

We need to prove just a slightly stronger inequality 〈µ, α∨〉 ≥mλ(α).
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If
∑

αi∈W (α) ãi ≥ 2, we get

〈µ, α∨〉 ≥
n∑
i=1

ãici − 1 ≥
∑

αi∈W (α)

ãici ≥ 2mλ(α)− 1 ≥mλ(α),

as needed. So we now assume that
∑

αi∈W (α) ãi = 1.

Since α does not belong to the subspace spanned by the αi for i ∈ I, there is r /∈ I
such that ar ≥ 1.

If ar = 1, then, from the fact that λ − µ = (
∑

i∈I biαi) + tα belongs to the root
lattice Q and thus is an integer linear combination of the simple roots, we deduce that
in fact t ∈ Z and thus t = 0. In this case get 〈µ, α∨〉 ≥ 〈λ, α∨〉 ≥ ajcj ≥ mλ(α), as
needed. So we now assume that cr ≥ 2.

Then note that αr /∈W (α), because we assumed
∑

αi∈W (α) ãi =
∑

αi∈W (α) ai = 1.

If there is an index q such that aq /∈W (α), ãq ≥ 1 and cq ≥ 1, we have

〈µ, α∨〉 =

(
n∑
i=1

ãici

)
− 1 ≥ ãjcj + ãqcq − 1 ≥ ãjcj ≥mλ(α),

as needed.
The only possibility which is not covered by the above discussion is when:

(1) There is exactly one nonzero term ajαj in the expansion α =
∑n

i=1 aiαi such that
αj ∈W (α). For this term, aj = 1 and cj = mλ(α) ≥ 1.

(2) There is at least one more more nonzero term aiαi in that expansion. For all such
terms, αi /∈W (α), ai ≥ 2, and ci = 0.

We claim that these conditions imply that α is a long root. This is easy to check by
hand for Φ = Bn, Cn, or G2. One does not need to check Type F4 separately, because in
this case there are two long simple roots and two short simple roots, but the expansion
of α involves either only one short simple root or only one long simple root. We leave
it as an exercise for the reader to find a uniform root theoretic argument of the fact
that conditions (1) and (2) above imply that α is long.

Also, we claim that conditions (1) and (2) above imply that λ is a funny weight.
Indeed, it is a well-known and simple fact that for any root α =

∑n
i=1 aiαi, the set

of i ∈ [n] for which ai 6= 0 must be a connected subset of the Dynkin diagram. Hence
indeed the αj in condition (1) must be the long simple root αl, and one of the αi in
condition (2) must be the short simple root αs (with notation as in Definition 7.4).
Note also that mλ(α) = cl forces ci ≥ cl for all i such that αi is long.

In this “long and funny” case we can only get the (slightly) weaker inequality:

〈µ, α∨〉 ≥mλ(α)− 1.

It remains to show that this last inequality is tight in this “long and funny” case.
Let us concentrate on the 2-dimensional face of the permutohedron Π(λ) contained in
the affine subspace λ+ SpanR({αl, αs}) (with notation as in Definition 7.4).

This face is equivalent to the 2-dimensional W ′-permutohedron ΠW ′(λ
′) correspond-

ing to the sub-root system Φ′ of rank 2 with simple roots αl and αs, and fundamental
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Π(ρk)0

α1 α1 + 2α2

ω1

Figure 9. The graph Γsym,k in Example 8.3. The permutohedron
Π(ρk) is shown in red.

weights ω′1 (corresponding to αl) and ω′2 (corresponding to αs), where W ′ is the Weyl
group of Φ′, and λ′ = mλ(α)ω′1 + 0ω′2.

The 2-dimensional root system Φ′ which must be equal to either B2 or G2. In this

situation there in fact is a µ ∈ ΠQ
W ′(λ

′) with µ + α /∈ ΠQ
W ′(λ

′) for some long α ∈ Φ′

such that 〈µ, α∨〉 = mλ(α) − 1: indeed, we can take α := αl and µ := (mλ(α) − 1)ω′1
for B2 or α := αl and µ := (mλ(α)− 1)ω′1 + ω′2 for G2.

This finishes the proof of the theorem. �

8. The permutohedron non-escaping lemma

We need to place some restrictions on our parameter k so that funny weights do not
occur in our analysis of the relevant permutohedra traverse lengths. For this we have
the notion of “goodness.”

Definition 8.1. If Φ is simply laced, then every k ∈ N[Φ]W is good. So suppose Φ is
not simply laced and let k ∈ N[Φ]W . Then there exist ks, kl ∈ Z with k(α) = ks if α
is short and k(α) = kl if α is long. We say k is good if ks = 0 ⇒ kl = 0. Note in
particular that if k = k ≥ 0 is constant, then it is good.

Now we can prove the following permutohedron non-escaping lemma, which says
that certain discrete permutohedra “trap” the symmetric interval-firing process inside
of them.

Lemma 8.2. Let k ∈ N[Φ]W be good and let Γ := Γun
sym,k. Let λ ∈ P≥0. Then there is

no directed edge (µ, µ′) in Γ with µ ∈ ΠQ(ηk(λ)) and µ′ /∈ ΠQ(ηk(λ)).

Proof. First suppose Φ is not simply laced and ks = 0. Then also kl = 0, i.e., k = 0,
since k is good. Hence ρk = 0, so ηk(λ) = λ. If µ ∈ ΠQ(λ) but µ + α /∈ ΠQ(λ), then
by Corollary 7.3 we have 〈µ, α∨〉 ≥ lλ(α). Note that by definition lλ(α) ≥ 0. But this
means 〈µ, α∨〉 ≥ k(α), so indeed (µ, µ+ α) cannot be a directed edge of Γ.

Now suppose either Φ is simply laced or Φ is not simply laced but ks ≥ 1. Then
note that ρk is not funny. Hence by Theorem 7.6 we conclude that lηk(λ)(α) ≥ k(α).

If µ ∈ ΠQ(ηk(λ)) but µ + α /∈ ΠQ(ηk(λ)), then 〈µ, α∨〉 ≥ lηk(λ)(α) by Corollary 7.3.
This means 〈µ, α∨〉 ≥ k(α), so indeed (µ, µ+ α) cannot be a directed edge of Γ. �
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Example 8.3. Lemma 8.2 is false in general without the goodness assumption. Indeed,
suppose Φ = B2 and k ∈ N[Φ]W is given by ks := 0 and kl := 1. Then Figure 9 depicts
(a portion of) the graph Γsym,k. In this picture we only show elements of the root
lattice Q. The permutohedron Π(ρk) = Π(ω1) is shown in red. Observe that although
0 ∈ ΠQ(ρk)and α1 /∈ ΠQ(ρk), we have an edge (0, α1) in Γsym,k.

We also need a “lower-dimensional” version of the permutohedron non-escaping
lemma that says that these interval-firing processes get trapped inside of permuto-
hedra of parabolic subgroups of W . This is established in the following lemma and
corollary.

Lemma 8.4. Let k ∈ N[Φ]W and Γ := Γun
sym,k. Let λ ∈ P≥0. Then if (µ, µ + α) is a

directed edge in Γ with µ ∈ ΠQ

I0,1λ
(ηk(λ)), we have α ∈ Φ

I0,1λ
.

Proof. Write ηk(λ) =
∑n

i=1 ciωi. Assume to the contrary that there exists an edge

(µ, µ+α) in Γ such that µ ∈ ΠQ

I0,1λ
(ηk(λ)) but α does not belong to SpanR({αi : i ∈ I}).

Note that α is a root (positive or negative) with −k(α) − 1 ≤ 〈µ, α∨〉 ≤ k(α) + 1.
Let β = ±α ∈ Φ+ be the positive root. Then 〈µ, β∨〉 ≤ k(α) + 1 ≤ k(β) + 1.

Since the point µ belongs to Π
I0,1λ

(ηk(λ)), we deduce that the same inequality

〈ν, β∨〉 ≤ k(β) + 1 holds for some vertex ν of Π
I0,1λ

(ηk(λ)). We have ν = w(ηk(λ))

where w ∈ W
I0,1λ

. Hence we have that 〈w(λ), β∨〉 = 〈λ,w−1(β)∨〉 ≤ k(β) + 1 for

some w ∈W
I0,1λ

.

The action of the parabolic subgroup W
I0,1λ

on β∨ does not change the coefficients bj

of the expansion β∨ =
∑n

i=1 biα
∨
i for all j /∈ I, and at least one of these coeffi-

cients bj should be strictly positive (because β∨ is a positive coroot that does not
belong to SpanR({αi : i ∈ I})). So the expansion w−1(β)∨ =

∑n
i=1 b

′
iα
∨
i contains some

strictly positive coefficient, which means that w−1(β)∨ is a positive coroot and thus we
have b′i ≥ 0 for all i.

Moreover, any coroot is W -conjugate to some simple coroot that appears in its
expansion with nonzero coefficient. These observations mean that we can find j /∈ I
such that b′j = bj ≥ 1, and also (possibly the same) i such that b′i ≥ 1 and αi ∈W (α).

Note that for this i we have k(αi) = k(w−1(β)) = k(β) = k(α).
If i = j, we get 〈λ,w−1(β)∨〉 ≥ 〈λ, b′jα∨j 〉 ≥ 〈λ, α∨j 〉 = cj ≥ k(αj) + 2 = k(α) + 2

(because for j /∈ I, cj ≥ k(αj) + 2). But this contradicts 〈λ,w−1(β)∨〉 ≤ k(α) + 1.
On the other hand, if i 6= j, we get

〈λ,w−1(β)∨〉 ≥ 〈λ, b′iα∨i + b′jα
∨
j 〉 ≥ 〈λ, α∨i 〉+ 〈λ, α∨j 〉 = ci + cj

≥ k(αi) + (k(αj) + 2) ≥ k(αi) + 2 = k(α) + 2.

Again, we get a contradiction. �

Corollary 8.5. Let k ∈ N[Φ]W be good and Γ := Γun
sym,k. Let λ ∈ P≥0. Then there is

no directed edge (µ, µ′) in Γ with µ ∈ ΠQ

I0,1λ
(ηk(λ)) and µ′ /∈ ΠQ

I0,1λ
(ηk(λ)).
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Proof. This follows by combining Lemmas 8.2 and 8.4: if we have a directed edge

(µ, µ+ α) with µ ∈ ΠQ

I0,1λ
(ηk(λ)), then α ∈ Φ

I0,1λ
by Lemma 8.4; hence this firing move

is equivalent (via projection) to the same move for the sub-root system Φ
I0,1λ

; so by

Lemma 8.2 applied to that sub-root system, we have µ+ α ∈ ΠQ

I0,1λ
(ηk(λ)). �

9. Confluence of symmetric interval-firing

Now, as promised, we are ready to show that connected components of Γsym,k are
contained inside permutohedra.

Theorem 9.1. Let k ∈ N[Φ]W be good. Let λ ∈ P with 〈λ, α∨〉 6= −1 for all α ∈ Φ+.

Let Yλ := {µ ∈ P : µ
∗←−−→

sym,k
ηk(λ)} be the connected component of Γsym,k containing the

sink ηk(λ). Then Yλ is contained in wλΠQ

I0,1λdom

(ηk(λdom)).

Proof. First suppose that λ is dominant. By Corollary 8.5 there is no edge (µ, µ′)

in Γsym,k where one of µ, µ′ is in ΠQ

I0,1λ
(ηk(λ)) and the other is not, which implies

that Yλ is contained in ΠQ

I0,1λ
(ηk(λ)). Now suppose λ is not dominant. By the preceding

argument, the result is true for λdom. But then we have Yλ = wλYλdom by the W -
symmetry of Γun

sym,k, i.e., by Theorem 5.1. �

And now we can prove half of Theorem 1.1.

Corollary 9.2. Let k ∈ N[Φ]W be good. Then −−−→
sym,k

is confluent (and terminating).

Proof. We already saw in Proposition 4.3 that −−−→
sym,k

is terminating. Thus, every

connected component of Γsym,k contains at least one sink, and −−−→
sym,k

is confluent as

long as every connected component contains a unique sink.
So suppose that two sinks belong to the same connected component of Γsym,k. By

Lemma 6.6, we know that these sinks must be of the form ηk(λ) and ηk(λ′) for λ, λ′ ∈ P
with 〈λ, α∨〉 6= −1 and 〈λ′, α∨〉 6= −1 for all α ∈ Φ+.

By Theorem 9.1, ηk(λ) ∈ wλ′Π
Q

I0,1
λ′
dom

(ηk(λ′dom)) and vice-versa. In particular we

have that ηk(λdom) ∈ ΠQ(ηk(λ′dom)) and ηk(λ′dom) ∈ ΠQ(ηk(λdom)). Proposition 2.2
then says that ηk(λdom)−ηk(λ′dom) and ηk(λ′dom)−ηk(λdom) are both in Q≥0, which is
possible only if ηk(λdom) = ηk(λ′dom). That is, thanks to the injectivity of ηk established
in Proposition 6.3, we must have λdom = λ′dom.

But then the fact that ηk(λ) ∈ wλ′ΠQ

I0,1λdom

(ηk(λdom)) means that ηk(λ) is a vertex

of wλ′ΠI0,1λdom
(ηk(λdom)), i.e., ηk(λ) = wλ′w(ηk(λdom)) for some w ∈ W

I0,1λdom
. Note

that (wλ′w)−1(ηk(λ)) is dominant. We have seen in the the proof of Proposition 6.3 that
this means (wλ′w)−1(λ) is dominant as well, or in other words, that wλ′w = wλw

′ for
some w′ ∈ WI0λdom

. This shows that wλ ∈ wλ′WI0,1λdom
. By Proposition 6.5, wλ and wλ′
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must both be the minimal length elements of the cosets of W
I0,1λdom

they belong to.

So wλ = wλ′ . That λdom = λ′dom and wλ = wλ′ implies that λ = λ′, and consequently
that ηk(λ) = ηk(λ′), as required. �

Remark 9.3. As far as we know, Theorem 9.1 and Corollary 9.2 may be true even
in the case where k is not good. Indeed, it appears that −−−→

sym,k
is confluent for

all k ∈ N[Φ]W and to prove this it would be sufficient, thanks to the diamond lemma
(Lemma 3.1), to prove it for root systems of rank 2, of which there are only four:
A1×A1, A2, B2, G2. All k are good for simply laced root systems, so in fact one would
need only check B2 and G2.

10. Full-dimensional components, saturated components, and Cartan
matrix chip-firing as a limit

Let k ∈ N[Φ]W be good. For λ ∈ P , recall the notation Yλ := {µ ∈ P : µ
∗←−−→

sym,k
ηk(λ)}

for the connected component of Γsym,k containing the sink ηk(λ) from the last section.
By the results of the last section, all these components are distinct. In this section, we
take a moment to highlight certain special components Yλ, namely:

• those which are full-dimensional in the sense that their affine hulls are the
whole vector space: AffineHullYλ = V ;
• those which are full-dimensional and saturated in the sense that they contain

all lattice points in their convex hulls: Yλ = (ConvexHullYλ) ∩ (Q+ ηk(λ)).

For the full-dimensional components: by a result we will prove later (Corollary 14.2),

we have that Yλ always contains W (ηk(λdom)) for λ ∈ P≥0 with I0,1
λ = [n]. Hence

by Theorem 9.1 we see that the full-dimensional connected components of Γsym,k are

exactly Yλ for λ ∈ P≥0 with I0,1
λ = [n], i.e., those λ =

∑n
i=1 ciωi ∈ P with ci ∈ {0, 1}

for all i ∈ [n]. Clearly there are 2n such full-dimensional components.
For the full-dimensional and saturated components: by that same Corollary 14.2, we

see that Yλ being full-dimensional and saturated is equivalent to having this component
satisfy Yλ = ΠQ(ηk(λdom)). And then we have the following:

Proposition 10.1. Let k ∈ N[Φ]W be good. Let λ ∈ P be a weight with 〈λ, α∨〉 6= −1

for all α ∈ Φ+. Let Yλ := {µ ∈ P : µ
∗←−−→

sym,k
ηk(λ)} be the connected component of Γsym,k

containing the sink ηk(λ). Then Yλ is equal to ΠQ(ηk(λ)) if and only if λ ∈ Ω0
m.

Proof. First note that if λ is a sink of Γsym,k then so is λdom and by the confluence
of −−−→

sym,k
there cannot be two sinks in a single connected component of Γsym,k, so it

suffices to prove this proposition for dominant λ ∈ P≥0 with I0,1
λ = [n]. (Observe that

if λ ∈ Ω0
m then certainly it is of this form.)

By the polytopal characterization of minuscule weights, there exists a dominant
weight µ ∈ P≥0 with µ ∈ ΠQ(λ) but µ 6= λ if and only if λ /∈ Ω0

m. Hence by
Proposition 2.2 there exists µ ∈ P≥0 with ηk(µ) ∈ ΠQ(ηk(λ)) but ηk(µ) 6= ηk(λ) if
and only if λ /∈ Ω0

m. By applying W , we see that there is a sink ηk(µ) of Γsym,k
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with ηk(µ) ∈ ΠQ(ηk(λ)) but ηk(µ) /∈ W (ηk(λ)) if and only if λ /∈ Ω0
m. Finally, by the

permutohedron non-escaping lemma, Lemma 8.2, this means precisely that ΠQ(ηk(λ))
is its own connected component if and only if λ ∈ Ω0

m. �

Remark 10.2. Proposition 10.1 fails when k is not good, as can be seen in Example 8.3
above: in this example, 0 ∈ ΠQ(ρk) but 0 does not belong to the connected component
of Γsym,k containing ρk = ηk(0) = ω1.

So we see that the full-dimensional and saturated components of Γsym,k are exactly
the Yω for ω ∈ Ω0

m. There are f of these, where we recall that f := #P/Q is the index
of connection of Φ. In some sense P/Q is the “sandpile group” in our setting, and in
fact we have that P/Q ' coker(Ct), where C is the Cartan matrix of Φ. Hence, these
full-dimensional and saturated components suggest that interval-firing may possibly be
connected to Cartan matrix chip-firing. The next remark explains that indeed there is
some connection.

Remark 10.3. Let us explain how Cartan matrix chip-firing (which, as mentioned,
has been investigated by Benkart-Klivans-Reiner [BKR18]) can be realized as a certain
“limit” of symmetric interval-firing. Note that a Cartan matrix is always an M-matrix
(see [BKR18, Proposition 4.1]). By associating to each vector c = (c1, . . . , cn) ∈ Zn the
weight λ =

∑n
i=1 ciωi ∈ P , we can view Cartan matrix chip-firing as the relation −→

C
on P defined by

λ−→
C
λ− αi for λ ∈ P and simple root αi, i ∈ [n] with 〈λ, α∨i 〉 ≥ 2.

For λ =
∑n

i=1 ciωi ∈ P and k ∈ Z≥0 set Bk(λ) := {
∑n

i=1 c
′
iωi ∈ P :

∑n
i=1 |ci − c′i| ≤ k}.

In other words, Bk(λ) consists of those µ which are within distance k of λ in the “taxicab
distance” on P . Note that for all λ ∈ Bk(ρk), we have that 〈λ, α∨〉 ≥ k if α ∈ Φ+ is
not a simple root. In other words, for λ ∈ Bk(ρk), if λ−−−→

sym,k
λ+α, then α = αi is some

simple root. Moreover, for λ ∈ Bk(ρk) we have 〈λ, α∨i 〉 ≥ 0 for any simple root αi.
Hence, for λ ∈ Bk(ρk) the symmetric interval-firing relation reduces to

λ−−−→
sym,k

λ+ αi for a simple root αi, i ∈ [n] with 〈λ, α∨i 〉 ≤ k − 1.

Define Ψk : P → P by Ψk(λ) := −λ+ρk+1 (so Ψk is just a “reflection plus translation”).
Then for λ ∈ Ψ−1

k (Bk(ρk)) = Bk(ρ) we have

Ψk(λ)−−−→
sym,k

Ψk(λ− αi) for a simple root αi, i ∈ [n] with 〈Ψk(λ), α∨i 〉 ≥ 2.

Thus the restriction of Ψ−1
k (Γsym,k) to Bk(ρ) is exactly the same as the restriction of

Γ−→
C

to Bk(ρ). But every λ ∈ P belongs to Bk(ρ) as k → ∞. In this way, we can

recover Cartan matrix chip-firing as a certain k →∞ limit of symmetric interval-firing.
Benkart-Klivans-Reiner [BKR18, Theorem 1.1] showed that the recurrent configura-

tions for Cartan matrix chip-firing are ρ− ω for ω ∈ Ω0
m. Observe Ψk(ρ− ω) = ηk(ω),

so these recurrent configurations correspond exactly to the sinks of our full-dimensional
and saturated components. In the same way, the 2n stable configurations in Zn≥0 for
Cartan matrix chip-firing correspond to the sinks of our full-dimensional components.
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We should stress, however, that confluence is much easier to establish for Cartan
matrix chip-firing than for our interval-firing processes: for Cartan matrix chip-firing,
confluence holds locally, which ultimately has to do with the fact that simple roots are
pairwise non-acute. On the other hand, when firing arbitrary positive roots, confluence
need not hold locally because two positive roots may form an acute angle. Hence while
Cartan matrix chip-firing describes the limiting behavior of our interval-firing process,
it does not explain why the system is confluent from every initial point. Indeed, we
could have also obtained Cartan matrix chip-firing by taking the same k →∞ limit of
the process which has λ → λ + α for λ ∈ P , α ∈ Φ+ when 〈λ, α∨〉 + 1 ∈ [−k + 2, k],
but that process is not confluent.

11. Confluence of truncated interval-firing

So far in this paper we have mostly focused on symmetric interval-firing. We now
finally turn to truncated interval-firing. In this section we prove the confluence of −−→

tr,k
.

Let us start by describing the sinks of Γtr,k.

Lemma 11.1. For any k ∈ N[Φ]W , the sinks of Γtr,k are {ηk(λ) : λ ∈ P}.

Proof. Let λ ∈ P . Let α ∈ Φ+. Note that since wλ ∈ W
I0λdom , wλ does not have a

descent si with I0
λdom

and thus wλ has no inversions in ΦI0λdom
. Thus if α ∈ wλ(ΦI0λdom

),

then 〈ηk(λ), α∨〉 = 〈λdom + ρk, w
−1
λ (α)∨〉 ≥ k(α), since w−1

λ (α) ∈ Φ+. So now consider

α /∈ wλ(ΦI0λdom
). Then w−1

λ (α) may be positive or negative, but |〈λdom, wλ(α)∨〉| ≥ 1

(because λdom has an ωi coefficient of at least 1 for some i /∈ I0
λdom

such that α∨i appears

in the expansion of ±wλ(α)∨). Hence

|〈ηk(λ), α∨〉| = |〈λdom + ρk, w
−1
λ (α)∨〉| ≥ k(α) + 1,

which means that 〈ηk(λ), α∨〉 /∈ [−k(α),k(α)− 1]. So indeed ηk(λ) is a sink of Γtr,k.
Now suppose µ is a sink of Γtr,k. Since 〈µ, α∨〉 /∈ [−k(α),k(α) − 1] for all α ∈ Φ+,

in particular |〈µ, α∨〉| ≥ k(α) for all α ∈ Φ+. This means that 〈µdom, α
∨〉 ≥ k(α)

for all α ∈ Φ+. Hence µdom = µ′ + ρk for some dominant µ′ ∈ P≥0. Suppose to the
contrary that wµ is not the minimal length element of wµWI0

µ′
. Then there exists a

descent si of wµ with i ∈ I0
µ′ . But then

〈µ,−wµ(αi)
∨〉 = 〈µdom,−α∨i 〉 = −〈µ′, α∨i 〉 − 〈ρk, α∨i 〉 ≥ −k(αi),

and also 〈µ,−wµ(αi)
∨〉 = −〈µdom, α

∨
i 〉 ≤ 0. This would mean µ is not a sink of Γtr,k,

since −wµ(αi) ∈ Φ+. So wµ must be the minimal length element of wµWI0
µ′

. This means

wµ = wλ for some λ ∈ P with λdom = µ′. And µ = wµ(µdom) = λ + wλ(ρk) = ηk(λ),
as claimed. �

We now proceed to prove the confluence of truncated interval-firing. In some sense
our proof of confluence here is less satisfactory than the one for symmetric interval-firing
because we heavily rely on the diamond lemma, and reduction to rank 2, which is a
kind of “trick” that obscures the underlying polytopal geometry (and requires us at one
point to use the classification of rank 2 root systems). But we also do crucially use the
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permutohedron non-escaping lemma in the following lemma, which says that “small”
permutohedra close to the origin are connected components of truncated interval-firing.

Lemma 11.2. Let k ∈ N[Φ]W be good. Then for all ω ∈ Ωm
0 , the (translated) discrete

permutohedron ΠQ(ρk) + ω is a connected component of Γtr,k and the unique sink of
this connected component is ρk + ω.

Proof. First let us prove a preliminary result: for any λ ∈ P and ω ∈ Ωm
0 , we have

that (λ−ω)dom = λdom−w(w−1
λ (ω)) for some w ∈WI0λdom

. Indeed, since ω is minuscule

or zero, we have that 〈−w′(ω), α∨〉 ∈ {−1, 0, 1} for any α ∈ Φ and any w′ ∈ W .
Therefore w−1

λ (λ−ω) = λdom−w−1
λ (ω) may not be dominant, but the only αi for which

we have 〈λdom −w−1
λ (ω), α∨i 〉 < 0 must have i ∈ I0

λdom
. Hence, if we let w ∈WI0λdom

be

such that 〈w(w−1
λ (ω)), α∨i 〉 ≥ 0 for all i ∈ I0

λdom
, then (λ− ω)dom = λdom − w(w−1

λ (ω))
as claimed.

Now let us show that for any ω ∈ Ω0
m, the only sink of Γtr,k in ΠQ(ρk) +ω is ρk +ω.

Suppose ηk(λ) ∈ ΠQ(ρk) + ω for some λ ∈ P . This means ηk(λ)− ω ∈ ΠQ(ρk), which
means that (ηk(λ)−ω)dom = λdom +ρk−w(wλ(ω)) ∈ ΠQ(ρk) for some w ∈WI0λdom

(we

are using that wηk(λ) = wλ, which we have seen before, and that WI0λdom
⊆WI0λdom+ρk

).

Hence Proposition 2.2 tells us that

ρk − (λdom + ρk − w(wλ(ω))) = −(λdom − ω) + (w(wλ(ω))− ω) ∈ Q≥0.

Now, since λdom ∈ (Q+ω)∩P≥0, we know that λdom−ω ∈ Q≥0 (by one characterization
of minuscule weights mentioned in §2). Also, ω −w(wλ(ω)) ∈ Q≥0 by Proposition 2.2.
Hence we conclude that λdom = ω and w(wλ(ω)) = ω. But since we have w ∈ WI0λdom

,

we conclude that w(wλ(ω)) = wλ(ω), and thus wλ(ω) = ω, which forces wλ to be the
identity, i.e., we have λ = ω. So indeed the only sink of Γtr,k in ΠQ(ρk) + ω is ρk + ω.

Let us prove the lemma first for ω = 0. Since −−→
tr,k

is terminating by Proposition 4.3,

any −−→
tr,k

-firing sequence starting at some µ ∈ ΠQ(ρk) has to terminate somewhere. By

the permutohedron non-escaping lemma, Lemma 8.2, such a sequence must terminate
somewhere inside ΠQ(ρk); and since ρk is the only sink in ΠQ(ρk), it must terminate
at ρk. So indeed ΠQ(ρk) is a connected component of Γtr,k.

Finally, let ω ∈ Ωm be arbitrary, and let w ∈ C be the element corresponding to ω
under the isomorphism C ' P/Q. Then by the description of this isomorphism in §5
we get w(0 − ρ/h) + ρ/h = ω, and hence w(ΠQ(ρk) − ρ/h) + ρ/h = ΠQ(ρk) + ω. So
from the symmetry of Γun

tr,k described in Theorem 5.1, we get that ΠQ(ρk) + ω is also
a connected component of Γtr,k. �

Now we consider truncated interval-firing for rank 2 root systems.

Proposition 11.3. Suppose Φ is of rank 2. Let k ∈ N[Φ]W . Let λ ∈ P be such that
〈λ, α∨〉 ∈ [−k(α),k(α)] and 〈λ, β∨〉 ∈ [−k(β),k(β)] for two linearly independent roots
α, β ∈ Φ. Suppose that either Φ is simply laced or one of α and β is short and the
other is long. Let ω ∈ Ω0

m be such that ρk − λ ∈ Q+ ω. Then λ ∈ ΠQ(ρk) + ω.
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Proof. First let us show λdom = c1ω1 + c2ω2 with c1 ∈ [0,k(α1)] and c2 ∈ [0,k(α2)].
Observe that 〈λdom, wλ(α)∨〉 ∈ [−k(α),k(α)] and similarly for β. By replacing α
with −α and β with −β if necessary, we can assume 〈λdom, wλ(α)∨〉 ∈ [0,k(α)] and
similarly for β, and since λdom is dominant, we are free to assume that wλ(α)∨ is
positive and similarly for β. Note that wλ(α)∨ and wλ(β)∨ are both nonnegative
integer combinations of the simple coroots α∨1 and α∨2 . Then, since α and β are linearly
independent, and since either Φ is simply laced, in which case k(α) = k(β) = k, or one
of α, β is short (say e.g. k(α) = ks) and the other is long (say e.g. k(β) = kl), we can
conclude in fact that 〈λdom, α

∨
1 〉 ∈ [0,k(α1)] and 〈λdom, α

∨
2 〉 ∈ [0,k(α2)].

So indeed, λdom = c1ω1 + c2ω2 with c1 ∈ [0,k(α1)] and c2 ∈ [0,k(α2)]. If c1 = k(α1)
and c2 = k(α2), then λ = ρk and the proposition is obvious in this case (note that we
will have ω = 0). So assume without loss of generality that c2 ≤ k(α2)− 1.

Let λ′ := λ − ω. We want to show λ′ ∈ ΠQ(ρk). As we have seen in the proof of
Lemma 11.2, we have λ′dom = λdom−w(ω) for some w ∈W . So let w ∈W be such that
λ′dom = λdom−w(ω) and write λ′dom = c′1ω1 + c′2ω2. Since 〈−w(ω), α∨〉 ∈ {−1, 0, 1} for
any α ∈ Φ, we have c′1 ≤ k(α1)+1 and c′2 ≤ k(α2). First suppose c′1 ≤ k(α1). Together
with c′2 ≤ k(α2), this implies that ρk− λ′dom ∈ P≥0, and hence ρk− λ′dom ∈ Q≥0. Thus

we conclude λ′ ∈ ΠQ(ρk) by Proposition 2.2.
So suppose that c′1 = k(α1) + 1. This means 〈−w(ω), α∨1 〉 = 1. Since ω is the

only dominant element of W (ω), we must actually have that 〈−w(ω), α∨2 〉 ≤ 0 and
hence c′2 ≤ k(α2) − 1. Write ρk − λ′dom = a1α1 + a2α2 for some integers a1, a2 ∈ Z.
Then c′1 = k(α1) + 1 and c′2 ≤ k(α2)− 1 translate to

2a1 + 〈a2, a
∨
1 〉a2 = −1;

〈a1, a
∨
2 〉a1 + 2a2 ≥ 1.

By the classification of rank 2 root systems we have 〈a2, a
∨
1 〉, 〈a1, a

∨
2 〉 ∈ {−1,−2,−3}

with at least one of them equal to −1. It is then not hard to check that all integer
solutions a1, a2 ∈ Z to the above system of inequalities must have a1, a2 ≥ 0. Hence
we conclude ρk − λ′dom ∈ Q≥0, and thus λ′ ∈ ΠQ(ρk) by Proposition 2.2. �

Corollary 11.4. Suppose Φ is of rank 2. Let k ∈ N[Φ]W is good. Then −−→
tr,k

is

confluent (and terminating).

Proof. We know −−→
tr,k

is terminating thanks to Proposition 4.3. Hence by the diamond

lemma, Lemma 3.1, it is enough to prove that −−→
tr,k

is locally confluent.

First let us prove this when Φ is simply laced. Suppose λ−−→
tr,k

λ+ α and λ−−→
tr,k

λ+ β

for α, β ∈ Φ+. Then by Proposition 11.3 we have that λ ∈ ΠQ(ρk)+ω where ω ∈ Ω0
m is

such that ρk − λ ∈ Q+ ω. But by Lemma 11.1, ΠQ(ρk) + ω is a connected component
of Γtr,k with unique sink ρk + ω; since −−→

tr,k
is terminating this means that any −−→

tr,k
-

firing sequence starting at λ eventually terminates at ρk +ω. Hence we can bring λ+α
and λ+ β back together again via −−→

tr,k
-firings.
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Note that confluence for Φ = A1 × A1 (for any k ∈ N[Φ]W ) reduces to confluence
for Φ = A1, which is trivial. Thus in fact we have proved confluence for all simply
laced root systems of rank 2, including those which are not irreducible.

So assume Φ is not simply laced. Suppose λ−−→
tr,k

λ+α and λ−−→
tr,k

λ+β for α, β ∈ Φ+.

If one of α and β is short and the other is long, then we can apply Proposition 11.3
and Lemma 11.1 as above to conclude that we can bring λ+α and λ+β back together

again via −−→
tr,k

-firings. So suppose α and β have the same length. Then let Φ̃ be the set

of all roots in Φ with the same length as α and β. This Φ̃ will again be a rank 2 root
system, and by construction a simply laced one. Hence by the result for simply laced

root systems, we know that truncated interval-firing is confluent for Φ̃; so in particular
we can bring λ+ α and λ+ β back together again via −−→

tr,k
-firings. �

The confluence of truncated interval-firing for all root systems follows easily from
confluence for rank 2 root systems. The following finishes the proof of Theorem 1.1.

Corollary 11.5. Let k ∈ N[Φ]W be good. Then −−→
tr,k

is confluent (and terminating).

Proof. We know −−→
tr,k

is terminating thanks to Proposition 4.3. Hence by the diamond

lemma, Lemma 3.1, it is enough to prove that −−→
tr,k

is locally confluent. Suppose

that λ−−→
tr,k

λ+ α and λ−−→
tr,k

λ+ β for α, β ∈ Φ+. Restricting Φ to the span of α and β

gives a rank 2 sub-root system, for which we have proved confluence in Corollary 11.4
(as remarked in the proof of that corollary, we in fact proved confluence for all rank 2
root systems, including those which are not irreducible). Hence we can bring λ + α
and λ + β back together just with truncated interval-firing moves inside that rank 2
sub-root system. �

Remark 11.6. Our method of proof of confluence for −−→
tr,k

fails when k is not good;

for instance, Lemma 11.2 is not true for general k, as can be seen in Example 8.3:
here 0 ∈ ΠQ(ρk) but 0 does not belong to the connected component of Γtr,k contain-

ing ρk. However, we can actually deduce that −−→
tr,k

is confluent for all k ∈ N[Φ]W from

Corollary 11.5. Indeed, if k ∈ N[Φ]W is not good, then ks = 0. But if ks = 0 then
we will never be able to fire any short root. In other words, if ks = 0 then truncated
interval-firing reduces to truncated interval-firing with respect to the long roots only;
and the long roots form a simply laced root system, for which −−→

tr,k
is known to be

confluent from Corollary 11.5.

Remark 11.7. It appears that when Φ = A2 there are no intervals [a, b] for which the
relation λ → λ + α for λ ∈ P , α ∈ Φ+ with 〈λ, α∨〉 + 1 ∈ [a, b] is confluent besides
the symmetric and truncated intervals (and this probably would not be too hard to
prove). If so, then the same would be true for all irreducible simply laced root systems
(except for A1) because any irreducible root system of rank 3 or greater contains an A2

sub-root system. This observation also severely restricts possible intervals defining
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confluent processes for all root systems, including the non-simply laced ones (although
note that central-firing is confluent for Φ = B2).

Remark 11.8. To any root-firing process −→ on P let us associate the hyperplane ar-
rangement which contains the hyperplane H = {v ∈ V : 〈v, α∨〉 = c} whenever we have
a firing move λ→ λ+α with 〈λ+ α

2 , α
∨〉 = c; i.e., we include a hyperplane orthogonal

to α at the midpoint between λ and λ + α. As mentioned in the introduction, under
this correspondence the symmetric and truncated interval-firing processes correspond
to the (extended) Catalan and Shi hyperplane arrangements [PS00, Ath00]. The con-
fluence of symmetric and truncated interval-firing seems like it might have something
to do with the freeness of the Catalan and Shi arrangements. Freeness is a certain deep
algebraic property of hyperplane arrangements introduced by Terao [Ter80]. Freeness
of the (extended) Catalan and Shi hyperplane arrangements of a root system was con-
jectured by Edelman and Reiner [ER96] and proven by Yoshinaga [Yos04] building on
work of Terao [Ter02]. Vic Reiner suggested that we look at other free deformations of
Coxeter arrangements as a possible source of other confluent root-firing processes. We
found one such process which, experimentally, appears confluent: for k ∈ N[Φ] consider
the relation λ−→λ + α for λ ∈ P , α ∈ Φ+ with 〈λ, α∨〉 + 1 ∈ [−k(α) + 1,k(α)] if α
is long and 〈λ, α∨〉 + 1 ∈ [−k(α),k(α)] if α is short. In other words, we use either
the truncated or symmetric intervals depending on which Weyl group orbit our root
lies in. This process corresponds to a Shi-Catalan hyperplane arrangement, as stud-
ied by Abe and Terao [AT11]. Other free variants of Coxeter arrangements include the
ideal subarrangements of Coxeter arrangements [ABC+16, AT16], but we have not been
able to obtain confluent root-firing processes from these. Note that the freeness of the
corresponding hyperplane arrangement certainly does not imply confluence of the root-
firing process: for instance, reversing the direction of all the arrows for the truncated
interval-firing process yields a process which is not confluent but which corresponds to
the same Shi hyperplane arrangement. Nevertheless, it would be very interesting to
understand the connection between freeness and confluence further.

Remark 11.9. Under the correspondence between root-firing processes and hyper-
plane arrangements discussed in Remark 11.8, the central-firing process corresponds
not to the central Coxeter arrangement, but rather to the affine Linial arrangement.
The Linial arrangement has many interesting combinatorial properties (see e.g. [PS00]
and [Ath00]), but is not free.

Part 2. Ehrhart-like polynomials

12. Ehrhart-like polynomials: introduction

Continue to fix a root system Φ in vector space V as in the previous part (and retain
all the notation from that part). In this part, we investigate the set of weights with
given symmetric or truncated interval-firing stabilization. Thus, for good k ∈ N[Φ]W ,
we define the stabilization maps ssym

k : P → P and str
k : P → P by

ssym
k (µ) = λ⇔ the −−−→

sym,k
-stabilization of µ is ηk(λ);
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str
k (µ) = λ⇔ the −−−→

sym,k
-stabilization of µ is ηk(λ).

These functions are well-defined since the symmetric and truncated interval-firing pro-
cesses are confluent and terminating (Corollaries 9.2 and 11.5), the stable points of
these processes must have the form ηk(λ) for some λ ∈ P (Lemmas 6.6 and 11.1), and
the map ηk is injective (Proposition 6.3).

Looking at Example 4.1, one can see that the set (ssym
k )−1(λ) (or (str

k )−1(λ)) of
weights with interval-firing stabilization ηk(λ) looks “the same” across all values of k
except that it gets “dilated” as k is scaled. In analogy with the Ehrhart polyno-
mial [Ehr77] of a convex lattice polytope, which counts the number of lattice points
in dilations of the polytope, let us define for all λ ∈ P and all good k ∈ N[Φ]W the
quantities:

Lsym
λ (k) := #(ssym

k )−1(λ);

Ltr
λ (k) := #(str

k )−1(λ).

Our aim is to show that Lsym
λ (k) and Ltr

λ (k) are polynomials in k. By “polynomial in k”
we mean that, if Φ is simply laced, then these Lsym

λ (k) and Ltr
λ (k) are single-variable

polynomials in k, where k(α) = k for all α ∈ Φ; and if Φ is non-simply laced, then they
are two-variable polynomials in ks and kl, where k(α) = ks if α is short and k(α) = kl
if α is long.

We are able to show that the Lsym
λ (k) are polynomials for all root systems Φ (Theo-

rem 13.3), and we are able to show that the Ltr
λ (k) are polynomials assuming that Φ is

simply laced (Theorem 16.1). In fact, we show that all these polynomials have integer
coefficients. Moreover, we conjecture that for all Φ that these Lsym

λ (k) and Ltr
λ (k) are

polynomials with nonnegative integer coefficients.
We refer to these Lsym

λ (k) and Ltr
λ (k) as the symmetric and truncated Ehrhart-like

polynomials because they count the size of some discrete subset of lattice points as
that set is somehow “dilated.” But it is important to note that the sets (ssym

k )−1(λ)
and (str

k )−1(λ) are in general not the set of lattice points of any convex polytope,
or indeed, any convex set. This can already be seen in rank 2 (see Example 4.1).
Nevertheless, for some special λ (namely, λ ∈ Ω0

m) the polynomials Lsym
λ (k) and Ltr

λ (k)
are (essentially) genuine Ehrhart polynomials; and so we do use Ehrhart theory to
prove the polynomiality of Lsym

λ (k) and Ltr
λ (k). Note that, because they apparently

have nonnegative integer coefficients, these polynomials are (as we explain below) most
similar to the Ehrhart polynomials of zonotopes.

13. Symmetric Ehrhart-like polynomials

The Ehrhart polynomial LP(k) of a convex lattice polytope P is a single-variable
polynomial in k which satisfies

LP(k) = the number of lattice points in kP (the kth dilate of P)

for all k ≥ 1. Such polynomials were first investigated by Ehrhart [Ehr77], who proved
that they exist for all lattice polytopes. A famous result of Stanley [Sta80, Example 3.1]
says that the Ehrhart polynomial of a lattice zonotope (i.e., a Minkowski sum of line
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P

+

[0, v1]

+

[0, v2]

=

Figure 10. Paving a polytope plus zonotope.

segments) has nonnegative integer coefficients. A standard way to prove this result is
to inductively pave the zonotope (see [BR15, §9.2]); this decomposition of a zonotope
goes back to Shephard [She74]. In the following theorem we apply this same paving
technique to a slightly more general setting: namely, we show that if P is any fixed
convex lattice polytope, and Z is a lattice zonotope, then for k ≥ 1 the number of
lattice points in P + kZ is a polynomial with nonnegative integer coefficients in k.
Stanley’s result corresponds to taking P to be a point. Although the proof is, as
mentioned, standard, we have not found this theorem in the Ehrhart theory literature;
and it turns out that this result is just what we need to prove that the symmetric
Ehrhart-like polynomials Lsym

λ (k) exist.

Theorem 13.1. Let Λ be a lattice in V . Let P be any convex lattice polytope in V .
Let v1, . . . , vm ∈ Λ be lattice elements. Then for any k = (k1, . . . , km) ∈ Zm≥0 the
quantity

#(P + k1[0, v1] + · · ·+ km[0, vm]) ∩ Λ

is given by a polynomial in the k1, . . . , km with nonnegative integer coefficients.

Proof. For X = {u1, . . . , u`} ⊆ V linearly independent, a half-open parallelepiped with
edge set X is a convex set Zh.o.X of the form

Zh.o.X =
∑̀
i=1

{
[0, ui) if ε = 1;

(0, ui] if ε = −1,

for some choice of sign vector (ε1, . . . , ε`) ∈ {−1, 1}`. For X ⊆ {v1, . . . , vm} let us
use kX := {kivi : vi ∈ X}.

The key idea for this theorem: P + k1[0, v1] + · · · + km[0, vm] can be inductively
decomposed (or “paved”) into disjoint pieces that are (up to translation) of the form

F + Zh.o.kX ,

where X ⊆ {v1, . . . , vm} is linearly independent and F is an open face of the polytope P
which is affinely independent from SpanR(X). Figure 10 shows how this is done. Here
by “open face” of P we mean a face minus its relative boundary. Note that vertices
have empty relative boundary and hence vertices are open faces. (But observe that Fig-
ure 10 is slightly misleading in that we should technically show the whole polytope P
decomposed into its open faces as well; instead the figure shows these pieces grouped
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into a single bigger piece.) The proof, by induction on m, that this is possible works
in exactly the same way as for paving a zonotope (see [BR15, Lemma 9.1]), so we do
not go into the details. Then note that

#
((
F + Zh.o.kX

)
∩ Λ
)

= #
((
F + Zh.o.X

)
∩ Λ
)
·
∏
vi∈X

ki

precisely because F is affinely independent from Zh.o.kX . Hence the desired polyno-
mial in k1, . . . , km indeed exists: it is a sum over the pieces of this decomposition
of #

((
F + Zh.o.X

)
∩ Λ

)
·
∏
vi∈X ki. (We are implicitly using the fact that this decom-

position can be realized in a uniform way across all values of k). �

Corollary 13.2. For any λ ∈ P≥0, for all k ∈ N[Φ]W the quantity #ΠQ(λ + ρk) is
given by a polynomial with nonnegative integer coefficients in k.

Proof. We are free to translate ΠQ(λ + ρk) so that it contains the origin; i.e., clearly
#ΠQ(λ+ ρk) is the number of Q-points in Π(λ+ ρk)− λ− ρk. One easy consequence
of Proposition 2.2 is that Π(λ + µ) = Π(λ) + Π(µ) for dominant weights λ, µ ∈ P≥0.
Hence, because λ is dominant, we have

Π(λ+ ρk)− λ− ρk = (Π(λ)− λ) + (Π(ρk)− ρk).

It is well known that the regular permutohedron Π(ρ) is a zonotope. In Type A, a
standard way to prove this fact is to compute the Newton polytope of the Vander-
monde determinant in two ways (see [BR15, Theorem 9.4]). The same argument, but
with Weyl’s denominator formula (see [Hum72, §24.3]) in place of the Vandermonde
determinant, establishes that Π(ρ) =

∑
α∈Φ+ [−α/2, α/2]. It is then a simple exercise

to show that Π(ρk) =
∑

α∈Φ+ k(α)[−α/2, α/2]. Hence,

Π(λ+ ρk)− λ− ρk = (Π(λ)− λ) +
∑
α∈Φ+

k(α)[0,−α],

and so the desired polynomial indeed exists thanks to Theorem 13.1. �

We are now ready to prove the first part of Theorem 1.2.

Theorem 13.3. For any λ ∈ P , for good k ∈ N[Φ]W the quantity Lsym
λ (k) is given by

a polynomial with integer coefficients in k.

Proof. First of all, if λ has 〈λ, α∨〉 = −1 for some α ∈ Φ+ then clearly we can take
Lsym
λ (k) := 0 because, thanks to Lemma 6.6, ηk(λ) cannot be a sink of Γsym,k in this

case. So now assume that λ satisfies 〈λ, α∨〉 6= −1 for all α ∈ Φ+. If I0,1
λdom

6= [n],

then, by Theorem 9.1, the connected component of Γsym,k containing the sink ηk(λ)

is contained in wλΠQ

I0,1λdom

(λdom), which is contained in an affine translate of the strict

subspace SpanR(wλΦ
I0,1λdom

). By induction on rank we know the theorem is true for

the sub-root system wλΦ
I0,1λdom

. Hence, the desired polynomial Lsym
λ (k) is just the

corresponding polynomial for the orthogonal projection of λ onto SpanR(wλΦ
I0,1λdom

).

(Here we use the fact that the map ηk respects this projection: but this is clear because
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the projection of λ and the projection of wλ(ρk) onto the weight lattice of wλΦ
I0,1λdom

are both dominant with respect to the choice of wλΦ+

I0,1λdom

as positive roots, which is a

subset of Φ+ by Proposition 6.4.)

So now assume I0,1
λdom

= [n]. This means that λ is dominant. Let k ∈ N[Φ]W be good.

Set S := {µ ∈ P : 〈µ, α∨〉 6= −1 for all α ∈ Φ+, ηk(µ) ∈ ΠQ(ηk(λ))}; i.e., S is the set of
all labels of sinks of Γsym,k that are inside of ΠQ(ηk(λ)).

We claim that in fact S = {µ ∈ P : 〈µ, α∨〉 6= −1 for all α ∈ Φ+, µ ∈ ΠQ(λ)}. In-
deed, for µ ∈ P with 〈µ, α∨〉 6= −1 for all α ∈ Φ+, we have ηk(µ) ∈ ΠQ(ηk(λ))
if and only if ηk(µ)dom = ηk(µdom) ∈ ΠQ(ηk(λ)). By Proposition 2.2, we have
that ηk(µdom) ∈ ΠQ(ηk(λ)) if and only if (λ + ρk) − (µdom + ρk) = λ − µdom ∈ Q≥0,
which, again by Proposition 2.2, is if and only if µdom ∈ ΠQ(λ), that is, if and only
if µ ∈ ΠQ(λ). Note that this second description of S is independent of k. Also note

that for all µ 6= λ ∈ S, either I0,1
µdom 6= [n] or µ = µdom, and in the latter case we

have that µ is strictly less than λ in root order. Now, the permutohedron non-escaping
lemma, Lemma 8.2, says that

ΠQ(ηk(λ)) =
⋃
µ∈S

(ssym
k )−1(µ).

Hence, rewriting, and taking cardinalities, we get

#(ssym
k )−1(λ) = #ΠQ(ηk(λ))−

∑
µ 6=λ∈S

#(ssym
k )−1(µ).

The quantity #ΠQ(ηk(λ)) is a polynomial in k with integer coefficients thanks to
Theorem 13.2. The quantity

∑
µ 6=λ∈S #(ssym

k )−1(µ) is a polynomial in k with integer
coefficients by induction on rank and on root order. Since the above equality holds for
all good k ∈ N[Φ]W , we conclude thatLsym

λ (k) = #(ssym
k )−1(λ) is indeed a polynomial

in k with integer coefficients. �

Table 1 records the polynomials Lsym
λ (k) for the irreducible rank 2 root systems,

for all λ ∈ P≥0 with I0,1
λ = [n]. Compare these polynomials to the graphs of the

corresponding symmetric interval-firing processes in Example 4.1.

Remark 13.4. The evaluation of the polynomial Lsym
λ (k) for k ∈ N[Φ]W not good may

not count the number of weights in the connected component of Γsym,k containing ηk(λ).
For example, take Φ = B2 and k defined by ks := 0 and kl := 1, as in Example 8.3.
Then, with λ := 0, looking at Table 1 we see

Lsym
λ (k) = 2k2

l + 4klks + k2
s + 2kl + 2ks + 1 = 5,

while there are only four weights in the connected component of Γsym,k containing the
sink ηk(λ). (Here the “missing” weight is of course the origin.)

Conjecture 13.5. The polynomials Lsym
λ (k) have nonnegative integer coefficients.

When λ ∈ Ω0
m, we know thanks to Proposition 10.1 that (ssym

k )−1(λ) = ΠQ(λ+ ρk),
so Corollary 13.2 implies that Conjecture 13.5 is true in this case. Very recently, the
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Φ λ Lsym
λ (k)

A2 0 3k2 + 3k + 1
A2 ω1 3k2 + 6k + 3
A2 ω2 3k2 + 6k + 3
A2 ω1 + ω2 6k + 6

B2 0 2k2
l + 4klks + k2

s + 2kl + 2ks + 1
B2 ω1 4kl + 4ks + 4
B2 ω2 2k2

l + 4klks + k2
s + 6kl + 4ks + 4

B2 ω1 + ω2 4kl + 4ks + 8

G2 0 9k2
l + 12klks + 3k2

s + 3kl + 3ks + 1
G2 ω1 12kl + 6ks + 6
G2 ω2 6kl + 6ks + 6
G2 ω1 + ω2 6kl + 6ks + 12

Table 1. The polynomials Lsym
λ (k) for the irreducible rank 2 root systems.

second and fourth authors have proved Conjecture 13.5 in general [HP18]. The first
step in their proof of positivity is to give a more refined version of Theorem 13.1 that
gives an explicit formula for the number of lattice points in a polytope plus dilating
zonotope.

14. Cubical subcomplexes

In order to proceed further in our investigation of the stabilization maps ssym
k and str

k ,
and the relation between them, we need to understand a bit more about the connected
components of Γsym,k. We know that the connected component of Γsym,k containing the

sink ηk(λ) is contained in the discrete permutohedron wλΠQ

I0,1λdom

(λdom) (Theorem 9.1);

but it can sometimes contain all of this permutohedron (see Proposition 10.1) and can
sometimes contain relatively little of it. In this section we will show that there is a

small amount of wλΠQ

I0,1λdom

(λdom) that this connected component must always contain.

The permutohedron ΠI(λ) has the structure of a polyhedral complex. The cubical
subcomplex of ΠI(λ) is the union of all faces of ΠI(λ) that are cubes; here a cube
means a product of pairwise orthogonal intervals. We denote the cubical subcomplex
by �ΠI(λ). Note that every edge is a cube, and hence �ΠI(λ) contains at least the

1-skeleton of ΠI(λ), but it may contain more. We use �ΠQ
I (λ) := �ΠI(λ) ∩ (Q+ λ).

Proposition 14.1. Let λ ∈ P with 〈λ, α∨〉 6= −1 for all α ∈ Φ+ and let k ∈ N[Φ]W .

Let Yλ := {µ ∈ P : µ
∗←−−→

sym,k
ηk(λ)} be the connected component of Γsym,k containing the

sink ηk(λ). Then Yλ contains the discrete cubical subcomplex wλ
�ΠQ

I0,1λdom

(ηk(λdom)).
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Proof. By the usual projection argument that we have by now carried out many times,
we can assume that I0,1

λdom
= [n] and consequently that λ is dominant.

For any simple root αi we have that 〈ηk(λ), α∨i 〉 ∈ {k(α),k(α)+1}. This means that
we can “unfire” αi from ηk(λ); that is, 〈ηk(λ)− αi, α∨i 〉 ≤ k(α)− 1, so that there will
be an edge ηk(λ)− αi−−−→

sym,k
ηk(λ) of Γsym,k. In fact, we can keep “unfiring” the simple

root αi until we reach sαi(ηk(λ)); i.e., in Γsym,k there are sequence of edges

sαi(ηk(λ))−−−→
sym,k

sαi(ηk(λ)) + αi−−−→
sym,k

· · · −−−→
sym,k

ηk(λ)− αi−−−→
sym,k

ηk(λ).

(Note that is is possible that sαi(ηk(λ)) = ηk(λ), in which case we would not actually
be able to unfire αi at all). This means that all the (Q + ηk(λ))-points of the entire
edge of Π(ηk(λ)) between ηk(λ) and sαi(ηk(λ)) are reachable via unfirings from ηk(λ).
Moreover, if αi and αj are orthogonal, then unfiring one of these does not affect our
ability to unfire the other, and hence in this way we can reach any (Q+ηk(λ))-point on a
face of Π(ηk(λ)) that is the orthogonal product of edges coming out of the vertex ηk(λ)
in the direction of a negative simple root. Since in particular si(ηk(λ)) is reachable via
firings and unfirings from ηk(λ), by applying the W -symmetry of Γun

sym,k (Theorem 5.1)

we see that all vertices of Π(ηk(λ)) are so reachable. But note that any face of Π(ηk(λ))
can be transported via W to a face containing ηk(λ), such that the edges of this face
which contain ηk(λ) are in the direction of a negative simple root (see the proof of
Theorem 7.6). We thus conclude that we can reach any (Q + ηk(λ))-point on any
cubical face of Π(ηk(λ)) via firings and unfirings from ηk(λ). �

Corollary 14.2. Let λ ∈ P with 〈λ, α∨〉 6= −1 for all α ∈ Φ+ and let k ∈ N[Φ]W .

Let Yλ := {µ ∈ P : µ
∗←−−→

sym,k
ηk(λ)} be the connected component of Γsym,k containing the

sink ηk(λ). Then Yλ contains wλWI0,1λdom
(ηk(λdom)). In the special case k = 0, Yλ is in

fact equal to wλWI0,1λdom
(λdom).

Proof. Note that �ΠI(µ) contains at least the 1-skeleton of ΠI(µ). Thus Yλ contains
wλWI0,1λdom

(ηk(λdom)) by Proposition 14.1. Now suppose k = 0. If µ−−−→
sym,0

µ′ then

µ′ = µ + α for some α ∈ Φ+ with 〈µ, α∨〉 = −1, which means that µ′ = sα(µ). Hence
any two elements in a connected component of Γsym,0 must be related by a Weyl group
element. By Corollary 9.2, each connected component of Γsym,0 contains only a single
sink, and thus the component Yλ must be exactly wλWI0,1λdom

(λdom). �

15. How interval-firing components decompose

In this section, we study how symmetric and truncated interval-firing components
“decompose” into smaller components. Let us explain what we mean by “decompose”
more precisely. For any k ∈ N[Φ]W , Γtr,k is a subgraph of Γsym,k, so the connected
components of Γsym,k are unions of connected components of Γtr,k. Similarly, Γsym,k

is a subgraph of Γtr,k+1 and so the connected components of Γtr,k+1 are unions of
connected components of Γsym,k. What we want to show, in both cases, is that the
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way these components decompose into smaller components is consistent with the way
we label the components by their sinks ηk(λ).

That the connected components of Γsym,k break into connected components of Γtr,k

in a way consistent with the map ηk turns out to be a simple consequence of the fact
that these connected components contain parabolic coset orbits (i.e., a consequence of
Corollary 14.2 from the previous section). This is established in the next lemma and
corollary.

Lemma 15.1. For λ, µ ∈ P , if λ and µ belong to the same connected component
of Γsym,0, then ηk(λ) and ηk(µ) belong to the same connected component of Γsym,k for

all k ∈ N[Φ]W .

Proof. Let λ, µ ∈ P belong to the same connected component of Γsym,0. From Corol-
lary 14.2, we get that µdom = λdom and also that there is some w ∈ wµWI0,1λdom

such

that w−1(λ) is dominant. But by Corollary 6.2 this means w ∈ wλWI0λdom
, and since

the cosets of W
I0,1λdom

are unions of cosets of WI0λdom
, this means wµWI0,1λdom

= wλWI0λdom
.

Thus, Corollary 14.2 tells us that indeed ηk(λ) and ηk(µ) belong to the same connected
component of Γsym,k for all k ∈ N[Φ]W . �

Corollary 15.2. For all µ ∈ P and all good k ∈ N[Φ]W , we have

ssym
k (µ) = ssym

0 (str
k (µ)).

Proof. Since Γtr,k is a subgraph of Γsym,k, the −−−→
sym,k

-stabilization of µ is the same as

the −−−→
sym,k

-stabilization of the −−→
tr,k

-stabilization of µ. But the −−→
tr,k

-stabilization of µ is

by definition ηk(λ) where λ := str
k (µ). Let λ′ be the sink of the connected component

of Γsym,0 containing λ; hence, λ′ = ssym
0 (λ). Then Lemma 15.1 says that ηk(λ′) is

the sink of the connected component of Γsym,k containing ηk(λ). In other words, the
−−−→
sym,k

-stabilization of λ is ηk(λ′), i.e., ssym
k (µ) = λ′ = ssym

0 (str
k (µ)). �

We want an analog of Lemma 15.1 and Corollary 15.2 for truncated interval-firing.
But to show that the connected components of Γtr,k+1 break into connected components
of Γsym,k in a way consistent with the map ηk turns out to be much more involved. In
fact, for technical reasons, we are able to achieve this only assuming that Φ is simply
laced. Nevertheless, the first few steps towards giving truncated analogs of Lemma 15.1
and Corollary 15.2 do not require the assumption that Φ be simply laced, so we state
them for general Φ.

Proposition 15.3. Let λ ∈ P be such that 〈λ, α∨〉 6= −1 for all α ∈ Φ+. Suppose that
λ−−→

tr,1
λ+β for some β ∈ Φ+. Then λ−−→

tr,1
λ+wλ(αi) for some simple root αi. Moreover,

in this case we have ηk(λ)−−−−→
tr,k+1

ηk(λ) + wλ(αi) for all k ∈ N[Φ]W .

Proof. If 〈λ, α∨〉 6= −1 for all α ∈ Φ+, but λ−−→
tr,1

λ+β for some β ∈ Φ+, this must mean

that 〈λ, β∨〉 = 0. Applying w−1
λ , we get 〈w−1

λ (λ), w−1
λ (β)∨〉 = 0. Since w−1

λ (β)∨ is

either a positive sum or a negative sum of simple coroots, and because w−1
λ (λ) = λdom
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is dominant, this means there is some simple root αi such that 〈w−1
λ (λ), α∨i 〉 = 0. But

then 〈λ,wλ(αi)
∨〉 = 0. And note by Proposition 6.4 that indeed wλ(α) is positive.

To prove the last sentence of the proposition: note that

〈ηk(λ), wλ(αi)
∨〉 = 〈λ+wλ(ρk), wλ(αi)

∨〉 = 〈w−1
λ (λ), α∨i 〉+〈ρk, α∨i 〉 = 0+k(α) = k(α);

so indeed, ηk(λ)−−−−→
tr,k+1

ηk(λ) + wλ(αi). �

Proposition 15.4. Let λ ∈ P be a weight such that 〈λ, α∨〉 6= −1 for all α ∈ Φ+.

Let k ∈ N[Φ]W be good, with k ≥ 1. Let µ ∈ wλΠQ

I0,1λdom

(ηk(λdom)). Then µ and ηk(λ)

belong to the same connected component of Γtr,k+1.

Proof. First let us prove this proposition when λ is dominant and I0
λ = [n]. In this

case, ηk(λ) ∈ Π(ρk+1). Let ω ∈ Ω0
m be such that λ ∈ Q+ρ+ω. Note that, since k ≥ 1,

ηk(λ)−ω is still dominant; hence, because PR
≥0 ⊆ QR

≥0, we get that ηk(λ)−ω ∈ Π(ρk+1)

by Proposition 2.2. But then by definition of ω we have that ηk(λ) ∈ ΠQ(ρk+1) + ω.
Thus by Lemma 11.2 the connected component of Γtr,k+1 that ηk(λ) belongs to is

ΠQ(ρk+1) + ω. By Corollary 14.2, the connected component of Γsym,k that ηk(λ)
belongs to contains the Weyl orbit W (ηk(λ)). Hence also the the connected component
of Γtr,k+1 that ηk(λ) belongs to contains W (ηk(λ)). But this connected component is,

as mentioned, ΠQ(ρk+1)+ω; in particular, it is a convex set intersected with Q+ηk(λ).
Since µ belongs to the convex hull of W (ηk(λ)) and belongs to the coset Q+ηk(λ), this
means that µ ∈ ΠQ(ρk+1) + ω. So indeed µ and ηk(λ) belong to the same connected
component of Γtr,k+1 in this case.

Now let us address general λ. Note that wλΦ+

I0,1λdom

is a choice of positive roots for

the sub-root system wλΦ
I0,1λdom

. Moreover, by Proposition 6.4, wλΦ+

I0,1λdom

is a subset

of positive roots. Hence any truncated interval-firing move (with parameter k + 1)
we can carry out in wλΦ

I0,1λdom
with choice of positive roots wλΦ+

I0,1λdom

, we can actually

carry out in the original root system Φ. But then note that 〈λ,wλ(αi)
∨〉 ∈ {0, 1} for

all i ∈ I0,1
λdom

; hence the result follows from the previous paragraph by orthogonally

projecting λ and µ onto SpanR(wλΦ
I0,1λdom

). �

The strategy will be to use Proposition 15.3 to say that whenever we have a−−→
tr,1

-move

from a sink of Γsym,0, we have a corresponding −−−−→
tr,k+1

-move from the corresponding

sink of Γsym,k; then we will apply Proposition 15.4 to say that that move actually gets
us “trapped” in the correct connected component of Γtr,k+1. But we have reached the
point where to carry out this strategy we must assume that Φ is simply laced.

Proposition 15.5. Suppose that Φ is simply laced. Let µ ∈ P≥0 be dominant. Sup-
pose µ−−→

tr,1
λ where λ = µ+ αi for a simple root αi. Then λ ∈W

I0,1λdom
(λdom).

Proof. If µ is dominant but µ−−→
tr,1

λ, this must mean that 〈µ, α∨i 〉 = 0. Let Φ′ be the

irreducible sub-root system of ΦI0µ
that contains αi. Let θ′ be the highest root of Φ′.
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We claim that λdom = µ + θ′. First of all, because Φ′ is also simply laced, the Weyl
group W ′ of Φ′ acts transitively on Φ′ so that there is some w ∈ W ′ with w(θ′) = αi.
But W ′ ⊆WI0µ

, the stabilizer of µ, so we indeed have w(µ+θ′) = µ+αi = λ. Now, why

is µ + θ′ dominant? Let D be the Dynkin diagram of Φ (which is just an undirected
graph since Φ is simply laced). For I ⊆ [n] use D[I] to denote the restriction of the
Dynkin diagram to the vertices in I. Note that Φ′ = ΦI where I is (the set of vertices
of) the connected component of D[I0

µ] containing αi. Hence θ′ =
∑

j∈I cjαj for some

coefficients cj . First of all, θ′ is dominant in Φ′, so if j ∈ I then 〈θ′, α∨j 〉 ≥ 0 and hence

certainly 〈µ+ θ′, α∨j 〉 ≥ 0. Now suppose j /∈ I and j is not adjacent in D to any vertex

in I; then clearly 〈θ′, α∨j 〉 = 0 and so again 〈µ + θ′, α∨j 〉 ≥ 0. Finally, suppose j /∈ I
but j is adjacent in D to some vertex in I; then, since Φ is simply laced and θ′ is a
positive root of Φ, we certainly have 〈θ′, α∨j 〉 ≥ −1; but 〈λ, α∨j 〉 ≥ 1 since j /∈ I0

µ, and

thus 〈λ+ θ′, α∨j 〉 ≥ 0. So indeed µ+ θ′ is dominant and so λdom = µ+ θ′, as claimed.

Now, suppose for a moment that Φ′ 6= A1. Then, writing θ′ =
∑n

j=1 cjωj , we will

have that cj ∈ {0, 1} for all j ∈ I; this can be seen for instance by noting that these
coefficients cj are precisely the number of edges between j and the “affine node” in
the affine Dynkin diagram extending D[I] (see [Bou02, VI,§3]). This means that we
have W ′ ⊆ W

I0,1λdom
, and so w(λdom) = λ for some w ∈ W

I0,1λdom
; or in other words, we

have λ ∈ W
I0,1λdom

(λdom). On the other hand, if Φ′ = A1, then actually θ′ = αi and

so λ = λdom and the claim is clear. �

Remark 15.6. Note that Proposition 15.5 is in general false when Φ is not simply
laced. For example, take Φ = B2. Then, with µ := 0 and λ := α1 (the long simple
root, with numbering as in Figure 2), we have µ−−→

tr,1
λ but λ /∈W

I0,1λdom
(λdom).

Proposition 15.7. Suppose that Φ is simply laced. Let µ ∈ P≥0 be dominant. Suppose

that µ−−→
tr,1

λ where λ = µ+αi for a simple root αi. Then ηk(µ) +α ∈ ΠQ

I0,1λdom

(ηk(λdom))

for all k ≥ 0.

Proof. The statement in the case k = 0 follows immediately from Proposition 15.5; so
assume k ≥ 1. By Proposition 15.5 we have that λ ∈ W

I0,1λdom
(λdom), which means, by

Proposition 2.2, that λdom − λ is a nonnegative sum of simple roots in I0,1
λdom

. Since µ

is dominant we have ηk(µ) = µ+ kρ. Then note that ηk(µ) +α = λ+ kρ = µ+ kρ+α
is actually dominant as well, because µ is dominant, and kρ + α is dominant since Φ
is simply laced. Further, observe that ηk(λdom) − (ηk(µ) + α) = λdom − λ. But then

the fact that ηk(λdom) − (ηk(µ) + α) is a nonnegative sum of simple roots in I0,1
λdom

,

together with the fact that ηk(µ) + α is dominant, implies, via Proposition 2.2, that

we have ηk(µ) + α ∈ ΠQ

I0,1λdom

(ηk(λdom)). �

Proposition 15.8. Suppose that Φ is simply laced. Let µ ∈ P satisfy 〈µ, α∨〉 6= −1 for
all α ∈ Φ+. Suppose that µ−−→

tr,1
λ where λ = µ+wµ(αi) for some simple root αi. Then

for all k ≥ 0, ηk(µ) and ηk(λ) belong to the same connected component of Γtr,k+1.
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Proof. If k = 0 the claim is obvious. So assume k ≥ 1.
Let λ′ be the sink of the connected component of Γsym,0 containing λ; hence by

Corollary 14.2, we have that λ′ ∈ wλWI0,1λdom
(λdom), so in particular λ′dom = λdom. Now,

if 〈µ, α∨〉 6= −1 for all α ∈ Φ+ and µ−−→
tr,1

λ this means that 〈µ,wµ(αi)
∨〉 = 0. Hence we

also have µdom−−→
tr,1

µdom +αi. Then µdom +αi ∈WI0,1λdom
(λdom) by Proposition 15.5; and

so by applying wµ we get λ ∈ wµWI0,1λdom
(λdom). This implies λ′ ∈ wµWI0,1λdom

(λdom), so

that (wµw)−1(λ′) is dominant for some w ∈W
I0,1λdom

. But because of Corollary 6.2 that

means that wµw = wλ′w
′ for some w′ ∈WI0λdom

.

By Proposition 15.7 we get that ηk(µdom) +αi ∈ ΠQ

I0,1λdom

(ηk(λdom)). By applying wµ

we get ηk(µ) + wµ(αi) ∈ wµΠQ

I0,1λdom

(ηk(λdom)). Note that since w ∈ W
I0,1λdom

, we have

that wµΠQ

I0,1λdom

(ηk(λdom)) = wµwΠQ

I0,1λdom

(ηk(λdom)). Similarly, w′ ∈ W I0λdom ⊆ W
I0,1λdom

implies that wλ′w
′ΠQ

I0,1λdom

(ηk(λdom)) = wλ′Π
Q

I0,1λdom

(ηk(λdom)). Hence, we can conclude

that ηk(µ) + wµ(αi) ∈ wλ′Π
Q

I0,1λdom

(ηk(λdom)). Since λ′ is a sink of Γsym,0 (and thus,

by Lemma 6.6, satisfies 〈λ′, α∨〉 6= −1 for all α ∈ Φ+), we can apply Proposition 15.4
to conclude that ηk(λ

′) and ηk(µ) + wµ(αi) belong to the same connected component
of Γtr,k+1.

But since λ and λ′ belong to the same connected component of Γsym,0, Lemma 15.1
tells us that ηk(λ) and ηk(λ

′) belong to the same connected component of Γsym,k,
and hence also belong to the same connected component of Γtr,k+1. Then note by
Proposition 15.3 that we have ηk(µ)−−−−→

tr,k+1
ηk(µ) +wµ(αi), so ηk(µ) and ηk(µ) +wµ(αi)

belong to the same connected component of Γtr,k+1. Putting it all together, ηk(µ)
and ηk(λ) belong to the same connected component of Γtr,k+1, as claimed. �

Finally, we are able to prove the desired analogs of Lemma 15.1 and Corollary 15.2
in the simply laced case.

Lemma 15.9. Suppose that Φ is simply laced. For λ, µ ∈ P , if λ and µ belong to the
same connected component of Γtr,1, then ηk(λ) and ηk(µ) belong to the same connected
component of Γtr,k+1 for all k ≥ 0.

Proof. Clearly it suffices to prove this when λ is a sink of Γtr,1. So let us describe one
way to compute the −−−−→

tr,k+1
-stabilization of ηk(µ). If µ is not a sink of Γsym,0, then

by Lemma 15.1 we know that ηk(µ) is in the same connected component of Γsym,k

as ηk(µ
′), where µ′ is the sink of the component of Γsym,0 containing µ; so then to

compute the −−−−→
tr,k+1

-stabilization of ηk(µ) we instead compute the −−−−→
tr,k+1

-stabilization

of ηk(µ
′). So now assume that µ is a sink of Γsym,0. Then, if µ is not a sink of Γtr,1,

by Proposition 15.3 there is a simple root αi with µ−−→
tr,1

µ′ where µ′ = µ+ wµ(αi). By

Proposition 15.8 we get that ηk(µ) and ηk(µ
′) are in the same connected component
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of Γtr,k+1; so again to compute the −−−−→
tr,k+1

-stabilization of ηk(µ) we instead compute

the −−−−→
tr,k+1

-stabilization of ηk(µ
′). Because −−→

tr,1
is terminating, this procedure will

eventually terminate; in fact, it must terminate at computing the −−−−→
tr,k+1

-stabilization

of ηk(µ) where µ is a sink of Γtr,1. But there is only one sink of the connected component
of Γtr,1 containing µ, namely, λ; so the lemma is proved. �

Corollary 15.10. Suppose that Φ is simply laced. Then for all µ ∈ P and all k ≥ 0,
we have

str
k+1(µ) = str

1 (ssym
k (µ)).

Proof. This follows from Lemma 15.9 in the same way that Corollary 15.2 follows from
Lemma 15.1. Since Γsym,k is a subgraph of Γsym,k+1, the −−−−→

tr,k+1
-stabilization of µ is

the same as the −−−−→
tr,k+1

-stabilization of the −−−→
sym,k

-stabilization of µ. But the −−−→
sym,k

-

stabilization of µ is by definition ηk(λ) where λ := ssym
k (µ). Let η1(λ′) be the sink of

the connected component of Γtr,1 containing λ; hence, λ′ = str
1 (λ). Then Lemma 15.1

says that ηk(η1(λ′)) = ηk+1(λ′) (this equality follows from Proposition 6.3) is the sink
of the connected component of Γtr,k+1 containing ηk(λ). In other words, the −−−−→

tr,k+1
-

stabilization of λ is ηk+1(λ′), i.e., str
k+1(µ) = λ′ = str

1 (ssym
k (µ)). �

We expect that (with the appropriate care regarding the goodness of k ∈ N[Φ]W )
Lemma 15.1 and Corollary 15.2 should hold in the non-simply laced case as well, but,
as we mentioned in Remark 15.6, our method of proof does not work there.

16. Truncated Ehrhart-like polynomials

The existence of the truncated Ehrhart-like polynomials, in the simply laced case,
follows easily from the fact that truncated components decompose into symmetric ones
in a consistent way (together with the existence of the symmetric Ehrhart-like polyno-
mials).

Theorem 16.1. Suppose that Φ is simply laced. Then, for any λ ∈ P , for all k ≥ 1
the quantity Ltr

λ (k) is given by a polynomial in k with integer coefficients.

Proof. By Corollary 15.10, for any k ≥ 1 and any λ ∈ P we have

#(str
k )−1(λ) = #(ssym

k−1)−1((str
1 )−1(λ))

=
∑

µ∈(str1 )−1(λ)

Lsym
µ (k − 1).

The right-hand side of this expression is an evaluation of a polynomial (with integer
coefficients) because of Theorem 13.3. Since this identity holds for all k ≥ 1, we
conclude that the desired polynomial Ltr

λ (k) does exist. �

This finishes the proof of Theorem 1.2.

Conjecture 16.2. For any Φ and λ ∈ P , for all good k ∈ N[Φ]W the quantity Ltr
λ (k)

is given by a polynomial with nonnegative integer coefficients in k.
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λ Ltr
λ (k)

0 3k2 + 3k + 1
ω1 3k2 + 3k + 1

−ω1 + ω2 2k + 1
−ω2 k + 1
ω2 3k2 + 3k + 1

ω1 − ω2 2k + 1
−ω1 k + 1

ω1 + ω2 2k + 1
−ω1 + 2ω2 k + 1
2ω1 − ω2 k + 1
−2ω1 + ω2 k + 1
ω1 − 2ω2 k + 1
−ω1 − ω2 1

Table 2. The polynomials Ltr
λ (k) for Φ = A2.

Note that the fact we can take k = 0 in Conjecture 16.2 means that the constant term
of the Ltr

λ (k) polynomials should be 1 (which, compared to the symmetric polynomials,
makes them even more like Ehrhart polynomials of zonotopes). Strictly speaking, our
Theorem 16.1 does not establish that these polynomials have constant term 1 even in
the simply laced case.

Remark 16.3. Table 2 records the polynomials Ltr
λ (k) for Φ = A2, for all λ ∈ P

with I0,1
λdom

= [n]. Compare these polynomials to the graphs of the A2 truncated
interval-firing processes in Example 4.1. In agreement with Conjecture 16.2, all these
polynomials have constant coefficient 1. Note that, for λ ∈ P with Lsym

λ (k) 6= 0,
the constant term of Lsym

λ (k) is by definition equal to the number of vertices in the
connected component of Γsym,0 containing λ, which by Lemma 15.1 is also equal to
the number of connected components of Γtr,k contained in the connected component
of Γsym,k with sink ηk(λ) for all k ≥ 0.

We know that Conjecture 16.2 holds for λ ∈ Ω0
m. That is because, for λ ∈ Ω0

m,
Lemma 11.2 tells us that (str

k )−1(λ) = Π(ρk) +λ, and hence #(str
k )−1(λ) is literally the

Ehrhart polynomial of a zonotope.
Polynomials with nonnegative integer coefficients occupy a special place in algebraic

combinatorics. Of course it would be great, in the course of positively resolving Con-
jectures 13.5 and 16.2, to also give a combinatorial interpretation of the coefficients of
the coefficients of these polynomials. (In fact, this is precisely what is done in [HP18].)
It would also be extremely interesting to relate these polynomials to the representation
theory or algebraic geometry attached to the root system Φ, and establish positivity
in that way. These polynomials arose for us in the course of a purely combinatorial
investigation, but it is hard to imagine that they do not have some deeper significance
if they indeed have nonnegative integer coefficients.
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Remark 16.4. It is also worth considering how the stabilization maps ssym
k and str

k
interact with the symmetries of Γun

sym,k and Γun
tr,k coming from Theorem 5.1. For the

symmetric stabilization maps: if λ ∈ P and w ∈W I0,1λdom , then it is not hard to deduce
from Lemma 15.1 that

(ssym
k )−1(w(λ)) = w((ssym

k )−1(λ))

for all good k ∈ N[Φ]W . Of course this implies that

Lsym
w(λ)(k) = Lsym

λ (k),

in this case. Meanwhile, it appears that if w ∈ C ⊆ W and ϕ : P → P is the affine
map ϕ : v 7→ w(v − ρ/h) + ρ/h, then

(str
k )−1(ϕ(λ)) = ϕ((str

k )−1(λ))

for all λ ∈ P and all good k ∈ N[Φ]W . But even in the simply laced case, where we
have Lemma 15.9 at our disposal, in order to conclude that str

k indeed respects the
symmetry ϕ in this way, we would need to know that this is the case for k = 1; and, as
we mention in the next section, we do not currently have a great understanding of Γtr,1.
So to show that the truncated stabilization maps and polynomials have the expected
symmetries coming from the subgroup C would require some more work.

17. Iterative descriptions of the stabilization

Finally, let us focus a little more on what our decomposition results tell us about the
relationship between the polynomials Lsym

λ (k) and Ltr
λ (k), and between the stabilization

map ssym
k and str

k . So, let us assume that Φ is simply laced for the remainder of this
section. It is clear that Corollaries 15.2 and 15.10 imply the following identities relating
these polynomials for all λ ∈ P and all k ≥ 1:

Lsym
λ (k) =

∑
µ∈(ssym0 )−1(λ)

Ltr
µ (k);

Ltr
λ (k) =

∑
µ∈(str1 )−1(λ)

Lsym
µ (k − 1).

What is more, these corollaries also immediately imply some striking, iterative descrip-
tions of the stabilization functions:

Corollary 17.1. Suppose that Φ is simply laced. Then for all µ ∈ P and all k ≥ 1:

• ssym
1 (µ) = ssym

0 (str
1 (µ));

• ssym
k (µ) = (ssym

1 )k(µ);

• str
k (µ) = str

1 ((ssym
1 )k−1(µ)).

Corollary 17.1 says that the information of all of the stabilization maps is contained
just in ssym

0 and str
1 . Now, ssym

0 is pretty simple to understand: for example, its fibers are
just parabolic Weyl coset orbits (see Corollary 14.2). So somehow all of the complexity
of all truncated and symmetric interval-firing processes (or, at least all the complexity
related to stabilization for these interval-firing processes) is contained just in Γtr,1.
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= 2ω1

Figure 11. The map ssym
1 : P → P for Φ = A1. We write Lsym

λ (k)
above each weight λ ∈ P .

Admittedly, we do not understand Γtr,1 very well. It would be very interesting, for
example, to try to find an explicit description of the connected components of Γtr,1.

Finally, we end the paper by discussing another surprising consequence of Corol-
lary 17.1: for all λ ∈ P and all k ≥ 1,

#((ssym
1 )k)−1(λ) = Lsym

λ (k).

In other words, we have a map f : X → X from some discrete set to itself, such that
the sizes #(fk)−1(x) of fibers of iterates of this map are given by polynomials (in k)
for every point x ∈ X. In fact, we have many such maps, one for each simply laced
root system. This is a very special property for a self-map of a discrete set to have. In
the next two examples we show what this looks like in the simplest cases.

Example 17.2. Although we have so far been eschewing one-dimensional examples,
in fact ssym

1 is interesting even for A1. Figure 11 depicts ssym
1 for Φ = A1. Of course

in this picture we draw an arrow from µ to λ to mean that ssym
1 (µ) = λ. The colors

of the vertices correspond to classes of weights modulo the root lattice. We write the
polynomials Lsym

λ (k) above the weights in this figure. One can verify by hand that in

this case #((ssym
1 )k)−1(λ) = Lsym

λ (k) for all λ ∈ P and all k ≥ 0.

Example 17.3. Note that when Φ = A2, we have ρ ∈ Q and hence ssym
1 preserves the

root lattice and so descends to a map ssym
1 : Q → Q. Figure 12 depicts ssym

1 : Q → Q
for Φ = A2. (As with our previous drawings for rank 2 interval-firing processes, we
of course only depict the “interesting,” finite portion of this function near the ori-
gin.) Compare this figure to the symmetric interval-firing graphs for A2 in Exam-
ple 4.1 and the polynomials Lsym

λ (k) for A2 recorded in Table 1. Observe that indeed

((ssym
1 )k)−1(0) = ΠQ(kρ) for all k ≥ 1. Also observe that ((ssym

1 )k)−1(α1 + α2) is the
set of Q-lattice points on the boundary of Π((k + 1)ρ).
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Verlag, Basel-Stuttgart, 1977. International Series of Numerical Mathematics, Vol. 35.
[Eng75] Arthur Engel. The probabilistic abacus. Educational Studies in Mathematics, 6(1):1–22,

Mar 1975.
[Eng76] Arthur Engel. Why does the probabilistic abacus work? Educational Studies in Mathemat-

ics, 7(1):59–69, Jul 1976.
[ER96] P. H. Edelman and V. Reiner. Free arrangements and rhombic tilings. Discrete Comput.

Geom., 15(3):307–340, 1996.
[ES03] Pavel Etingof and Elisabetta Strickland. Lectures on quasi-invariants of Coxeter groups

and the Cherednik algebra. Enseign. Math. (2), 49(1-2):35–65, 2003.
[FL16] Matthew Farrell and Lionel Levine. CoEulerian graphs. Proc. Amer. Math. Soc.,

144(7):2847–2860, 2016.
[Gab93] Andrei Gabrielov. Asymmetric abelian avalanches and sandpile. Preprint, Mathematical

Sciences Institute, Cornell University; available online at https://www.math.purdue.edu/

~agabriel/asym.pdf, 1993.
[GHMP17] Pavel Galashin, Sam Hopkins, Thomas McConville, and Alexander Postnikov. Root system

chip-firing II: central-firing. Eprint published online at arXiv:1708.04849, 2017.
[GK08] Andreas Gathmann and Michael Kerber. A Riemann-Roch theorem in tropical geometry.

Math. Z., 259(1):217–230, 2008.
[GK15] Johnny Guzmán and Caroline Klivans. Chip-firing and energy minimization on M-matrices.

J. Combin. Theory Ser. A, 132:14–31, 2015.
[HMP17] Sam Hopkins, Thomas McConville, and James Propp. Sorting via chip-firing. Electron. J.

Comb., 24(3):P3.13, 2017.
[HP18] Sam Hopkins and Alexander Postnikov. A positive formula for the Ehrhart-like polynomials

from root system chip-firing. Eprint published online at arXiv:1803.08472, 2018.
[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting

systems. J. ACM, 27(4):797–821, October 1980.
[Hum72] James E. Humphreys. Introduction to Lie algebras and representation theory. Springer-

Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9.
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