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Abstract. Zamolodchikov periodicity is a property of T - and Y -
systems, arising in the thermodynamic Bethe ansatz. Zamolod-
chikov integrability was recently considered as its affine analog in
our joint work with P. Pylyavskyy. Here we prove periodicity and
integrability for similar discrete dynamical systems based on the
cube recurrence, also known as the discrete BKP equation. The
periodicity part was conjectured by Henriques in 2007.
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1. Introduction

The cube recurrence is a discrete dynamical system that has been
studied under two different guises. It was shown by Miwa [18] in 1982
that the τ -function of the BKP hierarchy satisfies a certain recurrence
relation (equation (2.1) below) which has been extensively studied af-
terwards, see e.g. [2–4, 23]. The same recurrence relation was intro-
duced by Propp [20] under the name cube recurrence and was studied
from the point of view of algebraic combinatorics [1, 7, 13].
In our recent work with Pavlo Pylyavskyy [8, 9, 11], we investigated

the behavior of T - and Y -systems. These are discrete dynamical sys-
tems associated to a directed graph (a quiver) Q. The celebrated
Zamolodchikov periodicity conjecture [6,16,17,22,27] states that when
Q is a tensor product of two finite ADE Dynkin diagrams then both of
the systems associated with Q are periodic. This conjecture has been
proved by Keller [14] in 2013. In [8] we gave a complete classification
of quivers for which the T -system is periodic (which is equivalent to
the Y -system being periodic), we called these quivers finite ⊠ finite

quivers. For the case when Q is a specific orientation of a square grid
graph, the T -system associated with Q becomes just the octahedron

recurrence introduced by Speyer [25]. Thus Zamolodchikov periodicity
conjecture applied to this case states that the octahedron recurrence
in a rectangle is periodic. This fact was shown by Volkov [26] and later
by Di Francesco-Kedem [5].
If instead of a rectangle one takes the octahedron recurrence in a

cylinder, the values at every vertex satisfy a linear recurrence as it was
shown by Pylyavskyy in [21]. In our joined work [9] later we gave a
combinatorial formula for the recurrence coefficients in terms of domino
tilings of the cylinder, conjectured that the same holds for all affine ⊠

finite quivers, and showed that it does not hold for any other quiver.
Finally, in [11] we showed that if the T -system has zero algebraic

entropy then the quiver is an affine ⊠ affine quiver, and we deduced
the converse for the case of the octahedron recurrence in a torus as a
simple consequence of Speyer’s matching formula [25]. Moreover, we
conjectured that for each of the affine ⊠ affine quivers, the degrees of
the Laurent polynomials appearing in the T -system grow quadratically.
In this text, we investigate the cube recurrence from a similar point

of view. We show that the cube recurrence in a triangle is periodic
which has been conjectured by A. Henriques [12]. Next, for the cube
recurrence in a cylinder, we show that the values at every vertex sat-
isfy a linear recurrence. We also give a combinatorial formula for the
recurrence coefficients in terms of groves introduced by Carroll and
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Speyer [1]. Finally, we show that the cube recurrence in a torus has
zero algebraic entropy and its degrees grow quadratically. Both of these
facts follow immediately from the results of [1].

2. Main results

2.1. The unbounded cube recurrence. Let us recall the original
definition of the cube recurrence from [20]. Since we will consider sev-
eral bounded variations, we call it the unbounded cube recurrence. For
any m ∈ Z, let Pm = {(i, j, k) ∈ Z3 | i + j + k = m} be a triangular
lattice in the plane. For the unbounded case, we will concentrate on P0.
Let e12 = (1,−1, 0), e23 = (0, 1,−1), and e31 = (−1, 0, 1) be three vec-
tors in P0. For every vertex v ∈ P0, we introduce a variable xv and we
let x be the set of all these variables. For every vertex v = (i, j, k) ∈ P0,
we define its color ǫv ∈ {0, 1, 2} by ǫv ≡ j−k (mod 3) ∈ {0, 1, 2}. The
following definition is an analog of the octahedron recurrence of [25].

Definition 2.1. The unbounded cube recurrence is a family fv(t) of
rational functions in x defined whenever t ≡ ǫv (mod 3). For every
vertex v = (i, j, k) ∈ P0 we set fv(ǫv) = xv. For every such v and every
t ≡ ǫv (mod 3), fv satisfies

fv(t+ 3)fv(t) = fv+e12(t+ 2)fv−e12(t + 1)+

fv+e23(t+ 2)fv−e23(t + 1) + fv+e31(t+ 2)fv−e31(t+ 1).
(2.1)

One can easily observe that Definition 2.1 determines fv(t) uniquely
for any t ≡ ǫv (mod 3). Propp [20] conjectured that the values of fv(t)
are Laurent polynomials in x. This was proved by Fomin-Zelevinsky [7],
and Carroll and Speyer [1] later gave an explicit formula for them in
terms of groves, see Section 4.
We are going to consider three versions of the unbounded cube re-

currence: the cube recurrence in a triangle, in a cylinder, and in a

torus.

2.2. Cube recurrence in a triangle. Given an integer m ≥ 3, we
define them-th triangle ∆m ⊂ Z3 by ∆m = {(i, j, k) ∈ Pm | i, j, k ≥ 0}.
For example, ∆5 is shown in Figure 1. We refer to v ∈ ∆m as a boundary
vertex if either one of i, j, k is zero. For every non-boundary vertex v we
introduce a variable xv and we let x∆ be the set of all these variables.

Definition 2.2. The cube recurrence in a triangle is a family f∆
v (t) of

rational functions in x∆ defined whenever t ≡ ǫv (mod 3) and v ∈ ∆m.
For boundary vertices v ∈ ∆m we set f∆

v (t) = 1 and for every non-
boundary vertex v = (i, j, k) ∈ ∆m we set f∆

v (ǫv) = xv. For every such
v and every t ≡ ǫv (mod 3), f∆

v satisfies (2.1).
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Figure 1. The triangle ∆5.

As we have already mentioned, the bounded version of the octahe-
dron recurrence in a rectangle is periodic, see [5,14,26]. Our first main
result is the following analogous assertion for the cube recurrence in a
triangle, which was conjectured by Henriques in [12, Section 6]:

Theorem 2.3. The values of the cube recurrence in a triangle ∆m

are Laurent polynomials in x∆. Moreover, let σ : ∆m → ∆m be the

counterclockwise rotation of ∆m: σ(i, j, k) = (j, k, i). Then for every

v ∈ ∆m and every t ≡ ǫv (mod 3), we have

f∆
v (t+ 2m) = f∆

σv(t).

Thus the cube recurrence in a triangle satisfies f∆
v (t+ 6m) = f∆

v (t).

Our proof of Theorem 2.3 in Section 3 is based on Henriques and
Speyer’s multidimensional cube recurrence [13].

2.3. Cube recurrence in a cylinder. We define the cube recurrence

in a cylinder as follows. Let m ≥ 2, n ≥ 1 be two integers and define
the strip

Sm = {(i, j, k) ∈ P0 | 0 ≤ i ≤ m}.

We let g be the vector ne23 = (0, n,−n) and consider the cylinder
O = Sm/3Zg. Informally speaking, the cube recurrence in a cylinder

is just the cube recurrence in a strip Sm with initial conditions being
invariant with respect to the shift by 3g. Let us explain this more
precisely. For every v = (i, j, k) ∈ Sm with 0 < i < m, we introduce a
variable xv. For any k ∈ Z, we set xv+3kg = xv. Let x

O be the (finite)
family of these indeterminates. We say that v = (i, j, k) ∈ Sm is a
boundary vertex if i = 0 or i = m.

Definition 2.4. The cube recurrence in a cylinder is a family fO
v (t)

of rational functions in xO for v ∈ Sm that satisfies (2.1) for every
non-boundary vertex v ∈ Sm. The boundary conditions are fO

v (t) = 1
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Figure 2. The strip S2 with initial values shown for
n = 1 (left). The graph G (right). The red, green, and
blue colors correspond to ǫv = 0, 1, 2 respectively.

for all t ∈ Z and v a boundary vertex, and also fO
v (ǫv) = xv for all

non-boundary v ∈ Sm.

As we have explained in the introduction, the values of the octahe-
dron recurrence in a cylinder satisfy a linear recurrence whose coeffi-
cients admit a nice formula in terms of domino tilings [9, 21]. Theo-
rems 2.5, 2.7, and 2.8 below give analogous statements for the cube
recurrence in a cylinder.

Theorem 2.5. Fix any n ≥ 1 and m ≥ 2 and let v ∈ Sm be a vertex.

Then the sequence
(

fO
v (ǫv + 3t)

)

t∈N

satisfies a linear recurrence: there exist Laurent polynomialsH0, H1, . . . , HM

in xO such that H0, HM 6= 0 and

H0f
O
v (ǫv + 3t) +H1f

O
v (ǫv +3(t+1)) + · · ·+HMfO

v (ǫv + 3(t+M)) = 0

holds for any t ∈ N that is sufficiently large.

Let us now describe a formula for the recurrence coefficientsH0, . . . , HM

when v = (m − 1, j, k) for some j and k. We recall the definition of
groves from [1]. Consider the following infinite undirected graphG with
vertex set P0 and edge set consisting of edges (v, v + e12), (v, v + e23),
and (v, v + e31) for every vertex v ∈ P0 with ǫv 6= 0, that is, for every
blue and green vertex v, see Figure 2 (right).
We let Gm be the restriction of G to Sm, thus Gm is a graph in a

strip with vertex set Sm whose faces are all either lozenges or boundary
triangles, see Figure 3 (a).

Definition 2.6. A (3n,m)-grove is a forest F with vertex set Sm sat-
isfying the following conditions:

(1) F is invariant under the shift by 3g: if (u, v) is an edge of F
then so is (u+ 3g, v + 3g);
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(2) F contains all edges (v, v + e23) where v is a red (i.e. ǫv = 0)
boundary vertex;

(3) for every lozenge face of Gm, F contains exactly one of its two
diagonals, and there are no other edges in F ;

(4) every connected component of F contains a vertex (0, j, k) and
a vertex (m, j′, k′) for some j, j′, k, k′ ∈ Z.

For v ∈ Sm and a (3n,m)-grove F , define degF (v) to be the number
of edges of F incident to v. Define the weight of F to be

wt(F ) =
∏

xdegF (v)−2
v ,

where the product is taken over all non-boundary vertices v = (i, j, k)
of Sm satisfying 0 ≤ j < 3n, or equivalently, over all non-boundary
vertices of the cylinder O = Sm/3Zg. Condition (1) together with
the construction of Gm implies that every connected component of
F is either green (i.e. involves either only vertices v with ǫv = 1)
or red-blue (i.e. involves only vertices v with ǫv 6= 1), see Figure 4.
Consider any green connected component C of F . Given such C, the
unique green lower boundary vertex of C is u(C) = (0, j,−j) for some
j ≡ 2 (mod 3), and there is a unique green upper boundary vertex
w(C) = (m, j′, k′). Such vertices exist by (4) and are unique by (4) as
well since the green and blue connected components do not intersect
each other. The possible values of j′ are

j − 2m, j − 2m+ 3, . . . , j +m.

We define

(2.2) h(C) := (j′ − j + 2m)/3 ∈ {0, 1, . . . , m},

and it is clear that this number is the same for any green connected
component of F . We define h(F ) to be equal to h(C) where C is any
green connected component of F . Finally, for s = 0, 1, . . . , m, we define

(2.3) Js :=
∑

F :h(F )=s

wt(F ),

where the sum is taken over all (3n,m)-groves F with h(F ) = s. As it
is clear from Figure 3 ((b) and (c)), for s = 0 or s = m there is only one
grove F with h(F ) = s and it satisfies wt(F ) = 1, thus J0 = Jm = 1.
We are ready to state a formula for the recurrence coefficients when

v is adjacent to the boundary of Sm.
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Theorem 2.7. Fix any n ≥ 1 and m ≥ 2 and let v = (m−1, j, k) ∈ Sm.
Then for any sufficiently large ℓ ≡ ǫv (mod 3) we have

(2.4)
m
∑

s=0

(−1)sJsf
O
v+(s+ℓ)g(ǫv + 2(s+ ℓ)n) = 0.

Note that we assumed v = (m− 1, j, k) ∈ Sm in Theorem 2.7 while
Theorem 2.5 holds for any v ∈ Sm. We give an analogous explicit
formula for the recurrence coefficients for arbitrary v ∈ Sm. As we
show in Section 4.5, both theorems can be deduced from our general
results on cylindrical networks [10] which we recall in Section 4.2.
To state a formula for general v ∈ Sm, we need to define a certain

operation on polynomials as we did in [10, Section 4.1]. Let K be a
field and consider a monic polynomial Q(t) ∈ K[t] of degree m:

Q(t) = tm − α1t
m−1 + · · ·+ (−1)mαm.

For each 1 ≤ r ≤ m, we would like to define a polynomial Q[er ](t) of
degree

(

m

r

)

. To do so, let us factor Q(t) as a product of linear terms

over the algebraic closure K̄ of K:

Q(t) =

m
∏

i=1

(t− γi), γ1, . . . , γm ∈ K̄.

Then we define

(2.5) Q[er](t) :=
∏

1≤i1<i2<···<ir≤m

(t− γi1γi2 . . . γir).

As we have shown in [10, Section 4.1], the polynomial Q[er ](t) belongs
to K[t] rather than K̄[t] since its coefficients are manifestly symmetric
functions in γ1, . . . , γm.
Let us consider a specific polynomial Q(t) defined by

(2.6) Q(t) = Jmt
m − Jm−1t

m−1 + · · ·+ (−1)mJ0.

In this case, K is the field of rational functions in the variables xO. The
polynomial Q(t) is monic and has constant term 1 since J0 = Jm = 1
as we have already mentioned. We see that Q(t) is the characteristic
polynomial of the linear recurrence (2.4) for the vertex v adjacent to
the boundary of Sm.

Theorem 2.8. Fix any n ≥ 1 and m ≥ 2 and let v = (i, j, k) ∈ Sm.
Let r = m− i. Then the sequence (fO

v+ℓg(ǫv + 2ℓn)))ℓ∈N satisfies a lin-

ear recurrence with characteristic polynomial Q[er ](t) for all sufficiently

large values of ℓ.
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Remark 2.9. Note that Theorem 2.5 considers the sequence of values
of fO at a fixed vertex v whereas in Theorems 2.7 and 2.8, the vertex
v + ℓg depends on ℓ. However, it is a standard fact that if a sequence
f(ℓ) satisfies a linear recurrence then for any integer c ≥ 1, the se-
quence f(cℓ) satisfies a linear recurrence as well (and the characteristic
polynomial of the latter is obtained from the characteristic polynomial
of the former by raising all of its roots to the c-th power, see [9, Corol-
lary 3.4.2]). We can choose c = 3 so that the vertex v + 3ℓg would
always be equal to v modulo 3Zg which gives a direct formula for the
recurrence coefficients mentioned in Theorem 2.5.

2.4. Cube recurrence in a torus.

Definition 2.10. Fix two linearly independent vectors A,B ∈ P0 such
that ǫA = ǫB = 0. The cube recurrence fT (A,B) in a torus T (A,B) is a
special case of the unbounded cube recurrence where the initial values
are required to be invariant with respect to the shifts by A and B:

xu = xu+A = xu+B, ∀ u ∈ P0.

The following is a stronger version of the zero algebraic entropy prop-
erty which is used in the discrete dynamical systems literature as a
standard test for integrability, see e.g. [19]:

Definition 2.11. We say that a sequence f(0), f(1), . . . of Laurent
polynomials in some variables x has zero algebraic entropy if the degrees
of f(ℓ)’s grow at most polynomially.

Theorem 2.12. For any vertex v ∈ T (A,B), the sequence (f
T (A,B)
v (ǫv+

ℓ))ℓ≥0 has zero algebraic entropy. In fact, the degrees of these polyno-

mials grow quadratically in ℓ.

We explain how this result is a consequence of the groves formula [1]
in Section 4.1.

2.5. Examples. In this section, we illustrate our main results by two
examples.

Example 2.13. Consider Theorem 2.3 for m = 5. Suppose that we
set f∆

c (ǫc) = 3 and f∆
v (ǫv) = 1 for v = a, b, d, e, f . Then the values of

f∆
v (t) for t = 0, 1, . . . , 12 are shown in Table 1. For example, f∆

e (7) =
f∆
f
(6)f∆

c (5)+f∆
b
(6)+f∆

d
(5)

f∆
e (4)

= 19×7+21+41
15

= 13. Just as Theorem 2.3 suggests,

increasing t by 10 corresponds to rotating the triangle counterclockwise.
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t 0, 1, 2 3 4 5
f∆
f
(t)

f∆
d
(t) f∆

e (t)

f∆
a (t) f∆

b
(t) f∆

c (t)

1
1 1

1 1 3

3
∗ ∗

∗ 5 ∗

∗
∗ 15

7 ∗ ∗

∗
41 ∗

∗ ∗ 7

t 6 7 8 9 10, 11, 12
f∆
f
(t)

f∆
d
(t) f∆

e (t)

f∆
a (t) f∆

b
(t) f∆

c (t)

19
∗ ∗

∗ 21 ∗

∗
∗ 13

9 ∗ ∗

∗
5 ∗

∗ ∗ 5

1
∗ ∗

∗ 3 ∗

3
1 1

1 1 1

Table 1. The evolution of the cube recurrence in ∆5.
When fv(t) is undefined (i.e. when t 6≡ ǫv (mod 3)), it is
denoted by ∗.

b a c b a c b

(a)

(b)

(c)

Figure 3. The graph G2 (a). The unique (3, 2)-groves
with h = 0 (b) and h = 2 (c).

wt = xc

xa
wt = 1

xbxc

wt = 1
xaxb

wt = xa

xc

wt = 1
xbxc

wt = 1
xaxb

Figure 4. The six (3, 2)-groves F satisfying h(F ) = 1
given together with their weights.

Example 2.14. Consider Theorem 2.7 for n = 1, m = 2. In this case
there are only three non-boundary vertices a, b, c in O = Sm/3Zg and
the sequence

(yℓ)ℓ∈N = (fO
a (0), fO

b (1), fO
c (2), fO

a (3), . . . )

is defined by

y0 = xa, y1 = xb, y2 = xc, yℓ+3 =
yℓ+2yℓ+1 + 2

yℓ



10 PAVEL GALASHIN

for all ℓ ∈ N.
For n = 1, m = 2, we have J0 = J2 = 1, and all the six groves with

h(F ) = 1 are shown in Figure 4 which implies that

J1 =
xc

xa

+
xa

xc

+
2

xbxc

+
2

xaxb

.

Thus (2.4) applied to this case states that the sequence (yℓ)ℓ∈Z satisfies
a linear recurrence

(2.7) yℓ+4 −

(

xc

xa

+
xa

xc

+
2

xbxc

+
2

xaxb

)

yℓ+2 + yℓ = 0

for any sufficiently large ℓ ∈ N.
Let us plug in xa = xb = xc = 1. Then the first few values

of (y0, y1, . . . ) are (1, 1, 1, 3, 5, 17, 29, 99, 169 . . .), this is the sequence
A079496 in the OEIS [24]. According to (2.7), we should get

yℓ+4 − 6yℓ+2 + yℓ = 0,

which is indeed true, for example, 99− 6× 17 + 3 = 0.

3. Periodicity

3.1. Background on the multidimensional cube recurrence. We
recall some results and definitions of Henriques and Speyer [13]. They
work in the context of zonotopal tilings, but we will translate their
results into the dual language of pseudoline arrangements.
Fix a disc D in R2 and an integer n. Let q1, q2, . . . , qn, q

′
1, q

′
2, . . . , q

′
n

be 2n marked points on the boundary of D in clockwise order. A
pseudoline labeled by k is a piecewise-smooth embedding p : [0, 1] →
D such that the intersection of the image of p with the boundary of
D consists of two points p(0) = qk and p(1) = q′k for some k. In
other words, one may view a pseudoline as a simple closed curve in
RP 2. A pseudoline arrangement A = (p1, p2, . . . , pn) is a collection of n
pseudolines where pk is labeled by k and such that any two pseudolines
intersect exactly once. An example of a pseudoline arrangement is
given in Figure 5. We view (labeled) pseudoline arrangements up to
orientation-preserving diffeomorphisms of D.
Every pseudoline arrangement subdivides D into a collection of re-

gions. We call a region unbounded if it is adjacent to the boundary
of D, and bounded otherwise. We say that a bounded region R is
triangular, or simplicial if it is adjacent to exactly three pseudolines.
Consider a pseudoline arrangement A and a triangular region R ⊂ D

of A. The mutation of A at R is another pseudoline arrangement A′

that is obtained from A by replacing the small neighborhood of R as
shown in Figure 6. More precisely, the small neighborhood of R is

http://oeis.org/A079496
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q6

q5

q4

q3
q2

q1

q′6

q′5

q′4
q′3

q′2

q′1

Figure 5. An arrangement of six pseudolines.

R1

R2

R3

R4

R5

R6

Ri ←→

R1

R2

R3

R4

R5

R6

R′
i

Figure 6. A mutation of a pseudoline arrangement at
a simplicial region Ri.

diffeomorphic to a disc D0 and the three pseudolines adjacent to R
form a pseudoline arrangement A0 inside D0. There are exactly two
distinct pseudoline arrangements with three pseudolines in D0, denote
them A0 and A

′
0. The mutation operation replaces A0 by A

′
0 and does

not change the rest of A.
The multidimensional cube recurrence is a certain way of assigning

rational functions to all regions of all pseudoline arrangements with n
pseudolines. Start with some pseudoline arrangement A with n pseu-
dolines and let R1, . . . , RN be its bounded regions. For 1 ≤ i ≤ N ,
assign a variable xi to the region Ri. Assign 1 to every unbounded
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region R of A. Now, let A′ be obtained from A by a mutation of a
region Ri into R′

i, and let R1, R2, R3, R4, R5, R6 be the regions adjacent
to Ri in counterclockwise order, see Figure 6. Then we assign a rational
function x′

i to R′
i according to the following rule:

x′
i =

x1x4 + x2x5 + x3x6

xi

.

Thus, for any sequence

A = A(0),A(1), . . . ,A(m) = A′

of pseudoline arrangements such that A(i) and A(i−1) are connected by
a mutation for any i = 1, . . . , m, this procedure defines an assignment
of rational functions in x1, . . . , xN to the regions of A′.

Theorem 3.1 ( [13]). For each A′ and each of its bounded regions R,

the rational function in x1, . . . , xN assigned to R via the above proce-

dure is actually a Laurent polynomial, and it does not depend on the

mutation sequence that connects A with A′.

3.2. The proof of Theorem 2.3. Theorem 3.1 provides a clear strat-
egy to prove Theorem 2.3: we will assign a pseudoline arrangement A(t)

to every t ∈ Z so that the arrangements A(t) and A(t+1) will be related
by a sequence of mutations, and so that the non-boundary vertices of
∆m will correspond to the bounded regions of A(t).
Let

w1 = (−1, 1/2, 1/2), w2 = (1/2,−1, 1/2), w3 = (1/2, 1/2,−1),

and ǫ ∈ {0, 1, 2} be a color. We are going to introduce a pseudoline
arrangement A(ǫ). For each integer 0 ≤ b ≤ m− 1, put a = m− 1 − b
and add the following pseudolines to A(ǫ):

• if b ≡ 2 + ǫ (mod 3), let p = (a + 1/2, b + 1/2, 0) and the
pseudoline is the union of two rays1: p + tw2 and p + tw1 for
t ∈ R≥0;
• if b ≡ 1 − ǫ (mod 3), let p = (a + 1/2, 0, b + 1/2) and the
pseudoline is the union of two rays: p + tw1 and p + tw3 for
t ∈ R≥0;
• if b ≡ 2 −m + ǫ (mod 3), let p = (0, a + 1/2, b+ 1/2) and the
pseudoline is the union of two rays: p + tw2 and p + tw3 for
t ∈ R≥0.

1more precisely, we fix some big disc D and intersect this union of two rays with
D.
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Figure 7. The arrangements A(t) for m = 5 and 0 ≤ t ≤ 5.

It is clear that for each ǫ, the above rules indeed define a family of
pseudolines, i.e. every two of them intersect exactly once. Note that
it is not true that each b contributes exactly one pseudoline from the
above list. However, regardless of the residue of m modulo 3, we get
exactly m pseudolines in A(ǫ). This is true for the following reason.
Let S be the set of all points on the boundary of ∆m that have a zero
and two half-integers as coordinates. We get that S contains precisely
3m points, and if we label them as s0, s2, . . . , s3m−1 in the clockwise
order then each si appears in the definition of A(ǫ) whenever i ≡ ǫ
(mod 3). This proves that we get m pseudolines in each of A(ǫ), and
also gives a natural way to label the pseudolines of A(ǫ) by the elements
of [m] := {1, 2, . . . , m} by just saying that the i-th pseudoline in A(ǫ)

is the one that comes from the point s3(i−1)+ǫ.

We now extend this family A(0),A(1),A(2) of pseudoline arrange-
ments to a bigger family A(t) for t ∈ Z as follows. For each t ∈ Z,
the pseudoline arrangement A(t) coincides with A(ǫ) for t ≡ ǫ (mod 3),
except that the labels of the pseudolines are different. Namely, the i-th
pseudoline in A(t) is the one that comes from the point s3(i−1)+t where
we take the index 3(i− 1) + t modulo 3m.
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It is easy to see that for every t, each non-boundary vertex of ∆m

is contained in a unique bounded region of A(t), and conversely, every
bounded region of A(t) contains precisely one vertex of ∆m. For t ≡ ǫ
(mod 3), mutating all vertices of color ǫ transforms A(t) into A(t+1),
and the formulas clearly match each other. Finally, we can see that
the pseudoline arrangements A(t) and A(t+m) differ by a 180◦ rotation,
that is, by a transformation that switches qk with q′k for all k ∈ [m]. For
example, in Figure 7, we see that A(0) and A(5) are the same modulo
switching qk with q′k for k = 1, 2, 3, 4, 5. Thus the arrangements A(t)

and A(t+2m) coincide. However, for every non-boundary vertex v ∈ ∆m

inside some bounded region of A(t), the vertex inside the corresponding
bounded region of A(t+2m) is not v but σv. This finishes the proof of
Theorem 2.3. �

4. Groves and networks

In this section, we prove Theorems 2.5, 2.7, 2.8, and 2.12.

4.1. Groves in a triangle. Recall that P0 denotes the set of lattice
points in the plane i + j + k = 0 and G is an undirected graph with
vertex set P0 and edge set consisting of edges (v, v + e12), (v, v + e23),
(v, v + e31) for every blue and green vertex v ∈ P0. Let us fix a vertex
v = (i, j, k) ∈ P0 and an integer t ≥ 2 such that t + 1 ≡ ǫv (mod 3).
We would like to explain Carroll-Speyer’s formula for the value of the
unbounded cube recurrence fv(t + 1) in terms of its initial values x.
Let ∆(v, t) be the convex hull of

v + te12, v + te23, v + te31.

Define the graph G(v, t) consisting of all the lozenges of G that lie
inside ∆(v, t). Let Vert(v, t) be the vertex set of G(v, t). We say that
u ∈ Vert(v, t) is a boundary vertex of G(v, t) if it belongs to the outer
face of G(v, t). We denote by ∂G(v, t) the set of all boundary vertices
of G(v, t). Let us list the elements of ∂G(v, t) and label them

(a1, a2, . . . , a2t−1 = b1, b2, . . . , b2t−1 = c1, c2, . . . , c2t−1 = a1)

in counterclockwise order. Explicitly, for i = 1, 2, . . . , t− 1, we put

a2i = v+(i, t−2i, i−t); b2i = v+(t−2i, i−t, i); c2i = v+(i−t, i, t−2i).

Similarly, for i = 0, 1, . . . , t− 1, we put

a2i+1 = v + (i, t− 1− 2i, i− t+ 1);

b2i+1 = v + (t− 1− 2i, i− t+ 1, i);

c2i+1 = v + (i− t + 1, i, t− 1− 2i).
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Figure 8. The graph G(v, t) for t = 5.

For v = (0, 0, 0) and t = 5, the graph G(v, t) together with its
labeling of the boundary is shown in Figure 8.
We define ∂gG(v, t) (resp., ∂bG(v, t)) to be the subsets of ∂G(v, t)

that consist of green (resp., blue) vertices in ∂G(v, t). There are no red
vertices in ∂G(v, t).

Definition 4.1. A G(v, t)-forest is a forest F with the same vertex set
as G(v, t) such that for every lozenge face of G(v, t), F contains exactly
one of its two diagonals, and there are no other edges in F .

For each G(v, t)-forest F , we denote by ΠF = {B1, . . . , Bk} the non-
crossing partition that F induces on ∂G(v, t). More precisely, the sets
B1, . . . , Bk (called blocks of ΠF ) define a partition of ∂G(v, t) so that
two vertices u, w ∈ ∂G(v, t) belong to the same block of ΠF if and only
if they belong to the same connected component of F . In particular,
since every connected component of F consists either entirely of green
vertices or entirely of red and blue vertices, every block of ΠF is called
either green or red-blue. We denote by Πg

F and Πb
F the correspond-

ing non-crossing partitions of ∂gG(v, t) and ∂bG(v, t). Note that the
non-crossing partitions Πg

F and Πb
F are complementary in the sense of

Kreweras [15]. We define the non-crossing partition Π0 of ∂G(v, t) as
follows: for each 1 ≤ i ≤ t, draw an edge between

• ai and c2t−i;
• bi and a2t−i;
• ci and b2t−i.
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Figure 9. A G(v, t)-grove.

The union of these edges defines an undirected graph with vertex set
∂G(v, t), and we let Π0 be the partition of ∂G(v, t) into connected
components of this graph. Thus Π0 consists of pairs of vertices together
with one triple {at, bt, ct} which is green when t is even and blue when
t is odd.

Definition 4.2. A G(v, t)-forest F is called a G(v, t)-grove if ΠF = Π0.

An example of a G(v, t)-grove for v = (0, 0, 0) and t = 5 is given in
Figure 9.
Given a G(v, t)-grove F , we define its weight as follows:

(4.1) wt(F ) =
∏

u∈Vert(v,t)

xdegF (u)−2+s(u)
u ,

where s(u) ∈ {0, 1, 2} is equal to 0 for non-boundary vertices of G(v, t)
and for u ∈ ∂G(v, t), we let

s(a1) = s(b1) = s(c1) = 2, s(ai) = s(bi) = s(ci) = 1, 2 ≤ i ≤ 2t− 2.

It is convenient to draw s(u) external half-edges from each boundary
vertex u as we did in Figure 9.
We are ready to state the formula due to Carroll and Speyer:

Theorem 4.3 ( [1]). For v ∈ P0 and t ≥ 2 such that t + 1 ≡ ǫv
(mod 3), we have

(4.2) fv(t+ 1) =
∑

F

wt(F ),

where the sum is taken over all G(v, t)-groves F .
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Figure 10. All three G(v, 2)-groves.

Example 4.4. Let v = (0, 0, 0) be the origin and let a, b, c, d, e, f be
its neighbors in P0 in counterclockwise order. Then

fv(3) =
xaxd + xbxe + xcxf

xv

.

The graphG(v, 2) and the corresponding threeG(v, 2)-groves with their
weights can be found in Figure 10.

Proof of Theorem 2.12. Note that for each u, v ∈ T (A,B) and t+ 1 ≡

ǫv (mod 3), the degree of xu in f
T (A,B)
v (t + 1) grows as some constant

multiple of the number of vertices in G(v, t) that are equivalent to u
modulo ZA+ZB. The latter grows as a constant multiple of the total
number of vertices in G(v, t) which grows quadratically. �

4.2. Cylindrical networks. In this section, we recall some of our
definitions and results on cylindrical networks from [10].
Consider an acyclic directed graph Ñ embedded in some horizontal

strip S ⊂ R2 in the plane such that its vertices V and edges E are
invariant with respect to the shift by some horizontal vector g̃. Suppose
in addition that we are given a shift-invariant function wt : E → K
assigning weights from some field K to the edges of Ñ . We call such a
weighted directed graph a cylindrical network if the degrees of vertices
in Ñ are bounded and if for every directed path in Ñ connecting a
vertex v ∈ V to some vertex v+ ℓg̃ ∈ V , we have ℓ > 0. We also define
in an obvious way the projection N of Ñ to the cylinder O = S/Zg̃.
Thus N is a weighted directed graph drawn in the cylinder. We state
our results from [10] for the case when Ñ is a planar graph and N is
drawn in the cylinder O without self-intersections. In this case, we say
that Ñ is a planar cylindrical network.

Definition 4.5. An r-vertex v = (v1, . . . , vr) in Ñ is an r-tuple of
vertices of Ñ . An r-path P = (P1, . . . , Pr) is an r-tuple of directed

paths in Ñ that are pairwise vertex disjoint, and we set wt(P) =
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wt(P1) · · ·wt(Pr) where the weight of a path is the product of weights
of its edges. If for 1 ≤ i ≤ r, the path Pi starts at ui and ends at vi
then u = (u1, . . . , ur) and v = (v1, . . . , vr) are called the start and the
end of P. We denote by P(u,v) the collection of all r-paths in Ñ that
start at u and end at v, and we set

Ñ(u,v) :=
∑

P∈P(u,v)

wt(P ).

An r-cycle C = (C1, . . . , Cr) in N is an r-tuple of pairwise vertex
disjoint simple directed cycles inN . We set wt(C) = wt(C1) · · ·wt(Cr).
The set of all r-cycles in N is denoted by Cr(N).

Given an r-vertex v = (v1, . . . , vr) and a permutation σ ∈ Sr of [r],
we denote by σv = (vσ(1), . . . , vσ(r)) the action of σ on v. We say that

two r-vertices u and v of Ñ are non-permutable if P(u, σv) is empty
unless σ is the identity permutation.
For a given planar cylindrical network Ñ we define the polynomial

QN(t) as follows:

(4.3) QN (t) =
d

∑

r=0

(−t)d−r
∑

C∈Cr(N)

wt(C).

Here the degree d of QN(t) is the maximum integer r such that Cr(N)

is not empty. Recall that for each 1 ≤ r ≤ d, the polynomial Q
[er ]
N (t)

of degree
(

d

r

)

is given by (2.5). For example, Q
[e1]
N (t) = QN(t) and

Q
[ed]
N (t) = t− αd, where αd denotes the constant term of QN(t).

Theorem 4.6 ( [10, Theorem 2.3(2)]). Let Ñ be a planar cylindrical

network and let u = (u1, . . . , ur) and v = (v1, . . . , vr) be two non-

permutable r-vertices in Ñ . For ℓ ≥ 0, let vℓ = v + ℓg̃ = (v1 +
ℓg̃, . . . , vr + ℓg̃). Define the sequence f : N→ K by

f(ℓ) = Ñ(u,vℓ).

Then the sequence f satisfies a linear recurrence with characteristic

polynomial Q
[er ]
N (t) for all sufficiently large ℓ.

4.3. A bijection between forests and r-paths. We define a net-
work Ñ(v,t) to be a certain weighted directed graph. Its vertex set
will be Vert(v, t) together with all centers of lozenges of G(v, t). For
every lozenge L of G(v, t) with vertices aL, bL, cL, dL and center eL
as in Figure 11, we introduce four weighted directed edges of Ñ(v,t)
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Figure 11. The rules for constructing Ñ(v,t).

aL → eL, bL → eL, cL → eL, eL → dL with respective weights α, 1, γ,
and 1. We set

α = γ =
xaLxcL

xbLxdL

.

This defines the network Ñ(v,t). Note that Ñ(v,t) is acyclic.

Definition 4.7. A rooted G(v, t)-forest is a G(v, t)-forest F together
with a choice of a boundary vertex sC for each connected component
C of F called its root.

We view every rootedG(v, t)-forest F as an oriented graph: we orient
every edge of F towards the root sC of the corresponding connected
component C of F that this edge belongs to. An example of a rooted
G(v, t)-forest is given in Figure 12 (left). Its underlying undirected
graph is the G(v, t)-grove in Figure 9, and the edges of each connected
component C point towards an arbitrarily chosen boundary vertex sC .

Definition 4.8. A boundary r-vertex is an r-vertex u = (u1, u2, . . . , ur)
such that ui ∈ ∂G(v, t) for all 1 ≤ i ≤ r.

We restrict our attention to only those r-paths P in Ñ(v,t) that start
and end at boundary r-vertices. We call such an r-path P a boundary

r-path.
Our goal is to define a bijection φ from the set of all rooted G(v, t)-

forests to the set of all boundary r-paths in Ñ(v,t) for r ≥ 0. We view

each boundary r-path in Ñ(v,t) as a collection of edges of Ñ(v,t). It is
easy to define φ but it is non-trivial to prove that it is in fact a bijection.
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Figure 12. A G(v, t)-grove F from Figure 8 rooted
in an arbitrary way (left). The boundary 7-path φ(F )
corresponding to F (right). When φ(F ) contains edges

u → e → v in Ñ(v,t) and e is a center of some lozenge
then we draw a black edge with a rounded corner from
u to v instead.

Let F be a rooted G(v, t)-forest. We are going to describe the set of
edges of Ñ(v,t) that belong to the boundary r-path φ(F ). Let us orient
every edge of F towards the root sC of the corresponding connected
component C of F . Consider any lozenge L of G(v, t). By the definition
of a G(v, t)-forest, there is a unique (oriented) edge u→ w of F inside

L. Let aL, bL, cL, dL, eL be the vertices of Ñ(v,t) inside L as in Figure 11.

If u = dL then we do not choose any edges of Ñ(v,t) inside L to belong
to φ(F ). Otherwise, we choose the edges u → eL and eL → dL. This

defines φ(F ) as a collection of edges of Ñ(v,t). For the rooted G(v, t)-
forest F from Figure 12 (left), the corresponding 7-path φ(F ) is given
in Figure 12 (right). This construction is similar to the well-known
bijection between domino tilings and r-paths, see e.g. [10, Figure 8].

Theorem 4.9. The map φ is a bijection between rooted G(v, t)-forests
F and boundary r-paths in Ñ(v,t) for r ≥ 0. Moreover, this bijection is

weight-preserving:

wt(F ) = wt(φ(F )) ·W(v,t), where W(v,t) =
xa1xa3 · · ·xa2t−1

xa2xa4 · · ·xa2t−2

is the weight of the unique rooted G(v, t)-forest shown in Figure 13 that

corresponds to the boundary 0-path in Ñ(v,t).
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Figure 13. The rooted G(v, t)-forest that corresponds

to the boundary 0-path in Ñ(v,t).

Proof. We first show that φ(F ) is indeed a boundary r-path for some

r ≥ 0 and not merely a collection of edges of Ñ(v,t). Since there are

no edges in Ñ(v,t) connecting two boundary vertices to each other, it
suffices to show the following:

(i) every boundary vertex of Ñ(v,t) has at most one outgoing edge and
at most one incoming edge in φ(F );

(ii) every non-boundary vertex of Ñ(v,t) either is isolated or has pre-
cisely one incoming and one outgoing edge in φ(F ).

Consider any vertex u of Ñ(v,t). If u is the center of some lozenge
of G(v, t) then (ii) is obvious by construction of φ, so suppose u ∈
Vert(v, t). Note that there is at most one edge oriented towards u in

Ñ(v,t). Moreover, there is at most one oriented edge u → w in F , so
the outdegree of u in φ(F ) is also at most one. This proves (i) for
all boundary vertices u ∈ ∂G(v, t). Suppose now that u ∈ Vert(v, t) \
∂G(v, t). In this case, the edge u→ w in F exists and is unique.
There is exactly one lozenge L(u) of G(v, t) that contains the unique

incoming edge of u in Ñ(v,t). This is the lozenge L(u) in Figure 11 for
which u = dL(u). There is also exactly one lozenge L′ of G(v, t) that
contains the edge u→ w. If L′ 6= L(u) then φ(F ) clearly contains ex-
actly one edge directed towards u (namely, the edge inside L(u)) and
exactly one edge directed from u (namely, the one inside L′). Other-
wise, if L′ = L(u) then u has to be isolated. We are done with (ii) and
thus we have shown that φ(F ) is a boundary r-path for some r ≥ 0.
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Suppose now that P is a boundary r-path in Ñ(v,t). We are going
to define F = φ−1(P) as a collection of oriented edges with vertex set
Vert(v, t). Consider any lozenge L of G(v, t) and label the correspond-
ing vertices of Ñ(v,t) by aL, bL, cL, dL, eL as in Figure 11. Since eL is not
a boundary vertex, there are four options of how the edges of P inside
L can look like:

(1) there are no edges of P inside L;
(2) the only two edges are aL → eL → dL;
(3) the only two edges are bL → eL → dL;
(4) the only two edges are cL → eL → dL.

For each of the four options, we will choose the unique oriented edge
of F inside L:

(1) if there are no edges of P inside L, choose (dL → bL) ∈ F ;
(2) if the edges are aL → eL → dL, choose (aL → cL) ∈ F ;
(3) if the edges are bL → eL → dL, choose (bL → dL) ∈ F ;
(4) if the edges are cL → eL → dL, choose (cL → aL) ∈ F .

This defines F as a collection of oriented edges. It is clear that if F is a
rooted G(v, t)-forest then φ(F ) = P because we are basically inverting
the local rule for φ inside every lozenge. We will show that F is a rooted
G(v, t)-forest where the edges of every connected component C of F
are oriented towards some boundary vertex sC ∈ ∂G(v, t). It suffices
to show the following:

(i) every boundary vertex of G(v, t) has at most one outgoing edge
in F ;

(ii) every non-boundary vertex of G(v, t) has exactly one outgoing
edge in F ;

(iii) there are no cycles in F .

Consider any vertex u ∈ Vert(v, t). Since P is an r-path in Ñ(v,t), there
is at most one outgoing edge of u in P. If there is exactly one such
edge then from the definition of F = φ−1(P), it is clear that therefore
there is at most one outgoing edge of u in F . On the other hand, if
there is no such edge then u is either a source in F in which case we
are done or u is isolated in P and there is a lozenge L(u) of G(v, t)
such that u = dL(u) in L(u) and then the unique edge in F coming out
from u will be dL(u) → bL(u) inside L(u). If u is not on the boundary
then either u has an outgoing edge in P or u is isolated in P, because
every path in P starts and ends on the boundary. In both cases we
have shown that u has exactly one outgoing edge in F which proves (i)
and (ii) together.
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To prove (iii), suppose that there is a cycle C in F . By (i) and (ii),
C has to be a directed cycle. Note also that the vertices in C are
either all green or all red-blue. Suppose that they are all green. One
easily observes2 that then there must be a red or a blue vertex inside of
C. Every such vertex does not belong to ∂G(v, t) and thus necessarily
has an outgoing edge in F . This edge cannot intersect C so its end is
another red or blue vertex inside of C. Continuing in this fashion, we
get a red-blue cycle C1 inside C. But it is also easy to see that every
red-blue cycle has to contain a green point inside of it, and so by the
above argument we will get a green cycle C2 inside C1. This process
has to terminate at some point leading to a cycle in F that has no
vertices inside of it which is a contradiction since such a cycle cannot
exist in F . We are done with (iii).
We have thus defined two maps φ and φ−1, it is obvious that they are

inverse to each other, and by the above series of claims, φ maps each
rooted G(v, t)-forest to an r-path P in Ñ(v,t) for some r, and conversely,
for every such P the map φ−1 yields a rooted G(v, t)-forest. Therefore
we are done with the claim that φ is a bijection.
To see why we have wt(F ) = wt(φ(F )) ·W(v,t), note that the map φ

actually extends to arbitrary collections of directed edges inG(v, t) such
that for every lozenge of G we choose exactly one of its four possible
oriented diagonals. Every such collection F has weight given by (4.1),
and its image is some collection φ(F ) of edges in Ñ(v,t) whose weight
can be defined as the product of the edges contained in it. Clearly
when φ(F ) contains no edges then we have wt(F ) = 1 ·W(v,t) so the
formula is correct. It is easy to see that it remains correct when we
alter just one edge of F . Since we can obtain all rooted G(v, t)-forests
in this way, the result follows. We are done with Theorem 4.9. �

Let F now be a G(v, t)-grove. We choose a canonical root for each
connected component C of F as follows. If C contains a boundary
vertex ci for some i then we set ci as the root of C. Otherwise the
intersection of C with ∂G(v, t) consists of two vertices bi and a2t−i for
some 1 ≤ i < t, in which case we choose bi as the root of C. Thus
for each G(v, t)-grove F , we set φ(F ) to be the r-path in Ñ(v,t) that
corresponds to the rooted G(v, t)-forest obtained from F by orienting
its edges towards the roots that we have chosen above. For the G(v, t)-
grove from Figure 9, the corresponding canonically rootedG(v, t)-forest
and the r-path φ(F ) are shown in Figure 14.

2Indeed, take any (green) edge e of C and consider the lozenge L containing it.
It has a red and a blue vertex, and one of them therefore necessarily lies inside of
C because they lie on different sides of e.
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Figure 14. A G(v, t)-grove rooted in a canonical way
and the corresponding 4-path in Ñ(v,t).

Let u = (a2, a4, . . . , a2t−2) and w = (bt−1, bt−2, . . . , b1) be two bound-
ary (t−1)-vertices. We let P(u,w) denote the set of (t−1)-paths from
u to w in Ñ(v,t).
We will later show that if F is a canonically rooted G(v, t)-grove

then φ(F ) ∈ P(u,w). One may hope that the image of φ is the whole
P(u,w). However, Figure 15 demonstrates that this is not the case.
We now describe the preimage of P(u,w) under φ.
Given a rooted G(v, t)-forest F , we denote by R(F ) ⊂ ∂G(v, t) the

set of its roots. Thus for any G(v, t)-grove F rooted canonically as
above we have

R(F ) = R0 := {c1, c2, . . . , c2t−1, b1, b2, . . . , bt−1}.

Remark 4.10. Note that the G(v, t)-forest F in Figure 15 satisfies
R(F ) = R0 even though F is not a G(v, t)-grove.

Theorem 4.11. The map φ is a bijection between the set of rooted

G(v, t)-forests F with R(F ) = R0 and the set P(u,w).

Proof. To prove that the image of φ is contained in P(u,w), it suffices
to show that for every G(v, t)-forest F with R(F ) = R0, φ(F ) is a
(t−1)-path and that every path in φ(F ) starts at some vertex of u and
ends at some vertex of w. If we establish this then the ordering of the
vertices of u and the vertices of w will be unique because the vertices
of u appear earlier in the clockwise order than the vertices of w and
the paths in φ(F ) cannot cross each other. Recall that in this case the
(t− 1)-vertices u and w are called non-permutable.
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It follows from the proof of Theorem 4.9 that some path of φ(F )
starts at a vertex u ∈ Vert(v, t) if and only if both of the following
conditions are satisfied:

• the lozenge L(u) ofG from Figure 11 has to lie outside ofG(v, t);
• u has to have an outgoing edge in F .

Indeed, if the first condition is not satisfied then we have shown in the
proof of Theorem 4.9 that u is either isolated or has both an incoming
and an outgoing edge. If the second condition is not satisfied then u
does not have an outgoing edge in φ(F ) as well. Conversely, if both
conditions are satisfied then u has an outgoing edge but does not have
an incoming edge in φ(F ) which is exactly the case when some path in
φ(F ) starts at u.
Thus the set of vertices where some path of φ(F ) starts is exactly the

set {a2, a4, . . . , a2t−2}. A completely similar argument shows that the
set of vertices where some path of φ(F ) ends is exactly {b1, b2, . . . , bt−1}
because these are the vertices u such that the lozenge L(u) lies inside
G(v, t) and that do not have an outgoing edge in F . We have shown
that φ(F ) ∈ P(u,w).
Now consider any (t− 1)-path P ∈ P(u,w) and let F = φ−1(P) be

the corresponding G(v, t)-forest. We claim that R(F ) = R0. Recall
that R(F ) consists of all the vertices u ∈ Vert(v, t) that do not have
an outgoing edge in F . For each such vertex u, an argument analogous
to the above shows that we have exactly two possibilities:

• the lozenge L(u) of G from Figure 11 lies outside of G(v, t) and
no path in P starts at u;
• the lozenge L(u) lies inside of G(v, t) and some path in P ends
at u.

It is clear now that the set of roots of F is precisely R0. We are done
with the proof of Theorem 4.11. �

Given a G(v, t)-forest F with R(F ) = R0, we would like to give a
necessary condition for F to be a canonically oriented G(v, t)-grove.

Definition 4.12. Let F be any G(v, t)-forest. Define the map ∂F :
∂G(v, t) → R(F ) as follows: for any vertex u ∈ ∂G(v, t), we put
∂F (u) := sC where C is the connected component of F containing
u and sC is its root.

Several properties of the map ∂F are immediate. First, if u ∈
∂bG(v, t) then ∂F (u) is blue, otherwise it is green. In other words,
∂F preserves the colors of vertices, so we call an arrow u → ∂F (u)
green (resp., blue) if both u and ∂F (u) are green (resp., blue). Second,
the (combinatorial) arrows u → ∂F (u) are pairwise non-intersecting,
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Figure 15. A G(v, t)-forest F that is not a G(v, t)-
grove even though φ(F ) ∈ P(u,w).

Figure 16. The map ∂F0 (left). The map ∂F for the
G(v, t)-forest F in Figure 15 (right).

that is, given two vertices u 6= w ∈ ∂G(v, t) so that ∂F (u) 6= ∂F (w), it
is not the case that (u, w, ∂F (u), ∂F (w)) are cyclically oriented on the
boundary of G(v, t). Third, for any u ∈ R(F ) we have ∂F (u) = u.
For any G(v, t)-grove F , the collection of arrows u → ∂F (u) for all

u ∈ ∂G(v, t) is shown in Figure 16 (left). We denote this map by ∂F0.
On the other hand, for the G(v, t)-forest in Figure 15, the map ∂F
is shown in Figure 16 (right). It is clear that a G(v, t)-forest F is a
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G(v, t)-grove rooted in a canonical way if and only if ∂F (u) = ∂F0(u)
for all u ∈ ∂G(v, t).
We say that a vertex u ∈ ∂G(v, t) is a root vertex if u ∈ R0 and a

non-root vertex otherwise.

Proposition 4.13. Let F be a G(v, t)-forest with R(F ) = R0. Then

F is a G(v, t)-grove if and only if ∂F (at+1) = bt−1.

Proof. Since ∂F0(at+1) = bt−1, it is obvious that if ∂F (at+1) 6= bt−1

then F is not a G(v, t)-grove. Conversely, suppose for example that the
arrow at+1 → bt−1 of F is green (the case when it is blue is completely
analogous). Then we claim that for any other non-root green vertex
u ∈ ∂gG(v, t), we have ∂F (u) 6= bt−1. Indeed, one easily observes
that otherwise there would be a blue non-root vertex w such that the
blue arrow w → ∂F (w) necessarily intersects either at+1 → bt−1 or
u → bt−1 because there are no blue vertices from R0 in the region of
the complement of these two arrows that contains w.
We claim that

(4.4) ∂F (ai) = c2t−i for 1 ≤ i ≤ t; ∂F (bi) = c2t−i for t ≤ i < 2t.

This is true because the number of color changes in the sequence
a1, a2, . . . , at, bt, bt+1, . . . , b2t−1 is 2(t−1) which is the same as the num-
ber of color changes in the sequence c2t−1, c2t−2, . . . , c1. Therefore since
∂F preserves the colors and since the arrows do not intersect, (4.4)
follows. Here we use the fact that none of the arrows points to bi for
1 ≤ i ≤ t− 1.
By the same argument, it follows that ∂F (ai) = b2t−i for t < i < 2t

and therefore we get ∂F (u) = ∂F0(u) for all u ∈ ∂G(v, t). We are done
with the proposition. �

4.4. Cylindric groves. We now explain how to use Theorem 4.3 to
give a formula similar to (4.2) for the cube recurrence in a cylinder.
Recall that Sm is the strip which is a subset of P0 given by 0 ≤ i ≤ m.
Let v = (i, j, k) ∈ Sm be a vertex and consider an integer t ≥ 2 such
that t+1 ≡ ǫv (mod 3). Define the graph Gm(v, t) to be the restriction
of G(v, t) to Sm and denote Vertm(v, t) = Vert(v, t)∩Sm to be its vertex
set.
We now choose a special G(v, t)-grove F<(v, t). For every lozenge

face L of G(v, t), we say that it is above (resp., below) v if the first
coordinate of each of its vertices is greater than or equal (resp., less
than or equal) to i. To define F<(v, t), we need to specify for each
lozenge L whether we choose a green diagonal or a red-blue diagonal.
And the rule is, we choose a green diagonal if and only if one of the
following conditions is satisfied:
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Figure 17. The grove F<(v, t).

• L is above v and its green diagonal is parallel to (1, 1,−2), or
• L is below v and its green diagonal is parallel to (−1, 2,−1).

In particular, if L is neither below nor above v then we choose a red-
blue diagonal in it. An example of F<(v, t) together with φ(F<(v, t))
is given in Figure 17.
Finally, let Fm(v, t) be the restriction of F<(v, t) to Sm.

Definition 4.14. AGm(v, t)-grove is a forest F with vertex set Vertm(v, t)
satisfying the following conditions:

(1) F contains all edges (v, v+e23) where v is a red boundary vertex
of Sm;

(2) for every lozenge face of Gm(v, t), F contains exactly one of its
two diagonals, and there are no other edges in F ;

(3) two boundary vertices of Gm(v, t) belong to the same connected
component of F if and only if they belong to the same connected
component of Fm(v, t).

In other words, every Gm(v, t)-grove F can be viewed as a G(v, t)-
grove F̃ that coincides with F<(v, t) outside of the strip Sm and coin-
cides with F inside Sm.

Proposition 4.15. For a non-boundary vertex v ∈ Sm and t ≥ 2 such

that t+ 1 ≡ ǫv (mod 3), the cube recurrence in the cylinder satisfies

fO
v (t + 1) =

∑

F

wt(F ),

where the sum is taken over all Gm(v, t)-groves F and their weight is

defined by wt(F ) := wt(F̃ ).
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Proof. We use the same trick as in the proof of [9, Theorem 3.1.4]: for
every vertex u ∈ ∆(v, t) that does not belong to the interior of Sm, we
are going to substitute xu := qκ(u) for some integer κ(u) that depends
on the first coordinate of u and is a convex function. More precisely, if
u = (a, b, c) then we set

κ(u) = κ(a) =

{

0, if 0 ≤ a ≤ m

a(m− a)22
a(m−a)

, otherwise.

Note that when u is a non-boundary vertex of Sm then κ(u) = 0 but
we do not substitute xu = 1.
After such a substitution, the values fw(t) of the unbounded cube

recurrence become rational functions in q and xO. We would like to
show that for w ∈ Sm and t ≡ ǫw (mod 3), the value of the unbounded
cube recurrence fw(t) tends to the value fO

w (t) of the cube recurrence
in a cylinder as q tends to 0. We prove this by induction on t, where
the induction hypothesis is that for any vertex w of P0 and any t′ < t
such that t′ ≡ ǫw (mod 3), the value of the unbounded cube recurrence
satisfies

(4.5) fw(t
′) ≍ qκ(w)

as q → 0. Here by g(q) ≍ h(q) we mean that g(q)
h(q)

tends to a non-zero

rational function in xO. The base t = 0, 1, 2 of induction is clear and
the induction step is an easy direct computation. Indeed, take any
vertex u = (a, b, c). We have

fu(t+ 3)fu(t) ≍ qκ(a+1)+κ(a−1) + q2κ(a).

Using the convexity of κ, the induction step follows since qκ(a+1)+κ(a−1)+
q2κ(a) ≍ q2κ(a) and fu(t) ≍ qκ(a). Due to (4.5), when w belongs to the
boundary of Sm, the value of fw(t) tends to 1 as q → 0. Therefore for
any w ∈ Sm, the value fw(t) of the unbounded cube recurrence tends
to the value fO

w (t) of the cube recurrence in a cylinder as q → 0.
Theorem 4.3 gives a formula for the values of the unbounded cube

recurrence in terms of G(v, t)-groves. Each grove will have a weight
that is a rational function in xO and q. To finish the proof of the
theorem, it suffices to show that wt(F ) tends to zero as q → 0 unless
F coincides with F<(v, t) outside of the strip Sm. A more precise
formulation of this condition is that for any two vertices u and w that
are not in the interior of Sm, there is an edge connecting them in F
if and only if there is an edge connecting them in F<(v, t). We show
this claim by induction on a where u = (a, b, c). The base case is when
u = v + (t − 1)e12 so that a = i + t − 1 and the claim for this case
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follows trivially from the definition of a grove. For the induction step,
note that if for all the vertices with the first coordinate greater than
a, the groves F and F<(v, t) coincide then they have to coincide for all
the vertices with the first coordinate a because otherwise we will have
qκ(a) in the numerator and since κ(a) grows rapidly in a, the vertices
with smaller values of κ(a) together will not be able to compensate for
it. This finishes the proof of the proposition. �

One easily observes that if a path in φ(F<(v, t)) starts outside of Sm
then it stays outside of Sm, see Figure 17. Thus for a Gm(v, t)-grove
F , we can define φ(F ) := φ(F̃ ) ∩ Sm in the sense that we remove the

paths of φ(F̃ ) that stay outside of Sm. We are finally ready to describe
the planar cylindrical network Ñn,m to which we will apply the results
of Section 4.2.

Definition 4.16. The vertex set of Ñn,m is Sm together with the cen-
ters of all lozenges L of G such that all four vertices of L belong to Sm.
The part of Ñn,m inside of each such lozenge L is given in Figure 11.
Additionally, for every pair (u, u+ e23) of vertices on the boundary of

Sm, the network Ñn,m contains an edge u+ e23 → u of weight 1.

This definition together with Theorem 4.11 yields the following.

Corollary 4.17. Let v = (i, j, k) ∈ Sm be a vertex and define r :=
m−i. Then the map φ restricts to an injection from the set of Gm(v, t)-

groves to the set P(ur,wr) of r-paths P in Ñn,m that start at ur =
(a2, a4, . . . , a2r) and end at wr = (bt−1, bt−2, . . . , bt−r). Moreover, we

have

wt(F ) = wt(φ(F )).

Proof. We only need to prove the part about weights because the rest
of the statements are clear. The fact that wt(F ) = wt(φ(F )) = 1 can
be easily checked when F coincides with F< inside of Sm, and then the
equality of weights follows from the observation that when we flip one
edge of F inside some lozenge L, the weight of F is multiplied by the
same amount as the weight of φ(F ). Similarly to Theorem 4.9, this
again requires extending φ(F ) from Gm(v, t)-groves to arbitrary collec-
tions of edges so that in every lozenge of Gm(v, t) we choose precisely
one edge. �

An example of a Gm(v, t)-grove F together with φ(F ) is given in
Figure 18.
Recall that the vertex variables xv for v ∈ Sm satisfy xv = 1 if

v belongs to the boundary of Sm and otherwise we have xv = xv+3g

where g = ne23 = (0, n,−n) for some integer n ≥ 1. Thus even though
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v

v

Figure 18. A Gm(v, t)-grove F (top) and the corre-
sponding 2-path φ(F ) (bottom).

the edges and the vertices of Ñn,m are periodic with respect to the shift

by 3e23, the edge weights in Ñn,m are periodic with respect to the shift
by g̃ := 3g. Just as in Section 4.2, we define the projection Nn,m of

Ñn,m to the cylinder O.

4.5. Integrability. In this section, we prove Theorems 2.5, 2.7 as well
as Theorem 2.8 which implies both of them. The case v = (m− 1, j, k)
described in Theorem 2.7 is particularly simple as in this case the image
of the map φ is the whole set P(u1,w1):

Proposition 4.18. For any 1-path P ∈ P(u1,w1) in Ñn,m, the preim-

age F = φ−1(P) is a Gm(v, t)-grove.

Proof. We need to show that ∂F̃ (u) = ∂F0 for all u ∈ ∂G(v, t), where F̃
is the extension of F to a G(v, t)-forest. By Proposition 4.13, it suffices

to show that ∂F̃ (at+1) = bt−1. But this is clear since the part of the
G(v, t)-forest F< that lies outside of Sm already contains a path from
at+1 to bt−1 and since F̃ coincides with F< outside of Sm, we get that
indeed ∂F (at+1) = bt−1. This finishes the proof of the proposition. �
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Corollary 4.19. Let v = (m− 1, j, k) ∈ Sm and let t ≥ 2 be such that

t+ 1 ≡ ǫv (mod 3). Then

fO
v (t) =

∑

P

wt(P ),

where the sum is taken over all paths P in Ñn,m that start at a2 =
v + (1, t− 2, 1− t) and end at bt−1 given by

(4.6) bt−1 = v +

{

(1, −1−t
2

, t−1
2
), if t is odd;

(1, −t
2
, t−2

2
), if t is even.

Proof. Follows from Proposition 4.18 and Corollary 4.17. �

Since Ñn,m is a planar cylindrical network, we would like to describe
the polynomial QNn,m

(t) given by (4.3). Recall that the polynomial
Q(t) is given by (2.6).

Proposition 4.20. We have Q(t) = QNn,m
(t). In other words, for

every r = 0, 1, . . . , m, we have

Jr =
∑

C∈Cr(Nn,m)

wt(C).

Proof. Recall that by (2.3), Jr is defined as the sum of wt(F ) over
all (3n,m)-groves F from Definition 2.6 satisfying h(F ) = r. For each
connected component C of F , choose the root sC to be the unique green
or blue vertex of C that lies on the bottom boundary of Sm. Applying
φ to this rooted version of F (that is, applying it to every lozenge of

G inside Sm) yields a collection of edges in Ñn,m that is periodic with

respect to the shift by g̃ and it is easy to see that every vertex of Ñn,m

either is isolated or has indegree and outdegree 1 in φ(F ). Therefore
φ(F ) projects to a vertex-disjoint collection C of cycles in Nn,m.
Similarly, given an r-cycle C ∈ Cr(Nn,m), we can apply φ−1 to it

inside of every lozenge of G and a similar argument shows that we will
get a (3n,m)-grove F rooted as in the previous paragraph. Thus there
is a bijection φ between the set of (3n,m)-groves and the set of r-cycles
C for 0 ≤ r ≤ m. It is straightforward to check that wt(F ) = wt(φ(F ))
but there is one more thing we need to verify, namely, that h(F ) = r
where r is the number of cycles in φ(F ).
Let us show that for any r-cycle C ∈ Cr(Nn,m), its preimage F =

φ−1(C) satisfies h(F ) = r. First, it is easy to check that if every cycle
C ∈ C is horizontal (meaning that all vertices of C that are vertices of
G have the same first coordinate) then h(F ) = r. Now suppose that
not every cycle in C is horizontal and choose C ∈ C so that C is not
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Figure 19. The six local moves that one can apply to
a non-horizontal cycle.

horizontal but all cycles of C that are above C are horizontal. Let us
look at the set V (C) of vertices of G belonging to C. Let u ∈ V (C) be
a vertex such that its first coordinate is minimal, and among all such
vertices u choose the one such that the first coordinate of the vertex
v1 ∈ V (C) that precedes u in C would not be minimal. In other words,
u is the “earliest” among the “lowest” vertices of C. It follows that u
is red and v1 is green, see Figure 19. Let v1 = (i1, j1, k1) and define the
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green vertices v2 = (i2, j2, k2) and v3 = (i3, j3, k3) by

i1 = i2 + 1, j1 = j2 + 1, k1 = k2 − 2;

i3 = i2 + 1, j3 = j2 − 2, k3 = k2 + 1.

See Figure 19 for an illustration of how v1, v2, and v3 are positioned
relative to each other.
There are six possibilities of how C can evolve from v1 shown in

Figure 19. For each of them, we give a local move that modifies C
and prove that this local move does not affect h(F ). Each local move
decreases the number of vertices of C with minimal first coordinate
and thus applying these local moves to C eventually transforms C into
a horizontal cycle. Thus using these local moves one can make every
cycle of C horizontal without changing h(F ) which immediately yields
the result. The only thing left to show is why these local moves do not
affect h(F ).
Recall that h(F ) is defined as follows. Orient F in a canonical way

so that the root of every connected component would be on the lower
boundary of O. Take any green vertex v′ = (m, j′, k′) and look at
the root v = (0, j, k) of its connected component in F . Then h(F ) =
(j′ − j + 2m)/3 and it does not depend on the choice of v′. For any
green vertex v of F , we define [v] to be the root of the connected
component of F containing v. This vertex [v] can be obtained from
v by following the oriented edges of F (recall that every vertex of F
with nonzero first coordinate has exactly one outgoing edge). Thus it
suffices to show that we do not change [v] for at least one vertex v on
the upper boundary of O when we apply our local move.
As it is apparent from Figure 19, the only green vertices of F that

change their outgoing edge belong to the set {v1, v2, v3}. Moreover, it
is easy to see that each local move does not actually change [v1] and
[v3].

3 Thus the only case we need to consider is when for every green
vertex v on the upper boundary of O, the path from v to [v] in F passes
through v2. In particular, this implies that there is exactly one green
vertex v on the upper boundary of O, so we get n = 1 and v3 = v1.
The fact that in this case each of [v1], [v2], and [v3] is preserved under
each local move is verified in a straightforward way.

�

We are now ready to prove Theorem 2.7.

3Except for the move (M1) which may change [v1] if v2 belongs to some other
cycle in C. However, the move (M1) does not change [v2] and [v3] so an analogous
argument applies in this case.
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Proof of Theorem 2.7. Let v = (m − 1, j, k) as in the theorem. We
need to show (2.4), in other words, we need to show that the sequence
s : N → Q(x) defined by s(ℓ) = fO

v+ℓg(ǫv + 2ℓn) satisfies a linear
recurrence with characteristic polynomial Q(t). Let us carefully apply
Corollary 4.19 to this case. Let v′ = v + ℓg and t′ = ǫv + 2ℓn− 1, then
fO
v′ (t

′+1) counts directed paths in Ñn,m from a2 = v′+(1, t′−2, 1− t′)
to bt′−1 given by (4.6). Substituting the correct values for v′ and t′ we
get

a2 = v+(1, t−3, 2−t)+ℓg̃; bt′−1 = v+

{

(1,− ǫv
2
, ǫv−2

2
), if ǫv is even;

(1, 1−ǫv
2

, ǫv−3
2

), if ǫv is odd.

Thus bt′−1 is fixed while a2 increases by g̃ every time we increase ℓ.
Thus Theorem 4.6 applies, and by Proposition 4.20, the characteristic
polynomial Q(t) of the recurrence is precisely the one given in (2.4).
We are done with the proof of Theorem 2.7. �

Consider now an arbitrary vertex v = (i, j, k) ∈ Sm and define
r = m − i. If φ from Corollary 4.17 was a bijection between the
set of Gm(v, t)-groves and the set P(ur,wr) then Theorem 2.8 would
follow immediately from Theorem 4.6. Unfortunately, φ is just an injec-
tion: as we have mentioned in Remark 4.10, there can be r-paths P in
P(ur,wr) such that φ−1(P) has the wrong connectivity. Additionally,
there are some r-paths in P(ur,wr) that do not stay entirely inside
the graph Gm(v, t). Even worse, the vertices ur and wr are permutable

in Ñn,m, for example, there exists an r-path starting at ur and ending
at w′

r := (bt−2, bt−1, bt−3, bt−4, . . . , bt−r) (such a path would necessarily
have to exit the graph Gm(v, t)). Thus we need to do more work in
order to resolve all these issues and prove the linear recurrence relation.

Definition 4.21. For a vertex v = (i, j, k) of Ñn,m, define

h(v) := i+ k = −j.

Lemma 4.22. Suppose that P is a path in Ñn,m and let (v1, v2, . . . , vp)
be the vertices of P that are also vertices of G rather than centers of

lozenges of G. We have

h(v1) ≤ h(v2) ≤ · · · ≤ h(vp), and h(vℓ) < h(vℓ+2) ∀ 1 ≤ ℓ ≤ p− 2.

Proof. This follows immediately from the definition of Ñn,m, see Fig-
ure 11. In particular, if vℓ is either red or blue then h(vℓ) < h(vℓ+1)
which implies the second claim. �

Note that since g̃ = (0, 3n,−3n), we get that h(v + g̃) = h(v)− 3n.
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Definition 4.23. We say that an r-vertex v = (v1, v2, . . . , vr) in Ñn,m

is h-constant if we have

h(v1) = h(v2) = · · · = h(vr).

In this case, we define h(v) := h(vi) where 1 ≤ i ≤ r is arbitrary.

An immediate consequence of Lemma 4.22 is the following.

Corollary 4.24. Let u and v be two h-constant r-vertices in Ñn,m.

Then they are non-permutable.

Let now v = (i, j, k) ∈ Sm be a vertex and define r := m− i. As we
know from Corollary 4.17, φ maps each Gm(v, t)-grove F to some r-
path φ(F ) ∈ P(ur,wr) that starts at ur = (a2, a4, . . . , a2r) and ends at
wr = (bt−1, bt−2, . . . , bt−r). We give a necessary and sufficient condition
for an r-path P ∈ P(ur,wr) to belong to the image of φ.

Lemma 4.25. There exist two integers M1 and M2 depending only

on n, m, and r such that P belongs to the image of φ if and only

if there is another r-path P′ ∈ P(ur,wr) that belongs to the image

of φ and coincides with P for all vertices u of Ñn,m satisfying either

h(bt) +M2 ≤ h(u) or h(u) ≤ h(a2) +M1.

Proof. We only need to prove one direction since if P itself belongs to
the image of φ then we can set P′ = P.
We need to specify M1 and M2. Set M1 = h(a2r) − h(a2). It is a

bit harder to describe M2. Given a Gm(v, t)-grove F , we set M2(F ) to
be the minimum of h(bt) − h(u) where u ∈ Sm is connected to bt in
F . We set M2 to be the minimum of M2(F ) where F runs over the set
of all Gm(v, t)-groves. It is easy to observe that M2 does not depend
on t because there is a specific right-justified Gm(v, t)-grove F ′ such
that every connected component of F ′ is weakly to the right of every
connected component of F and for this F ′, M2(F

′) is the same for all
sufficiently large t.
Suppose now that P,P′ ∈ P(ur,wr) satisfy the requirements of the

lemma with the above choice of M1 and M2. We want to show that P
belongs to the image of φ. Because of the way we chose M1, P stays
inside of Gm(v, t) and thus the preimage φ−1(P) is a certain Gm(v, t)-
forest. On the other hand, our choice of M2 ensures that the connected
components of bt in φ−1(P) and in φ−1(P′) are the same. The result
follows by Proposition 4.13. �

We are ready to finish the proof of Theorem 2.8.

Proof of Theorem 2.8. We need to show that the sequence of values
(fO

v+ℓg(ǫv + 2ℓn))ℓ∈N of the cube recurrence in the cylinder satisfies a
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linear recurrence with characteristic polynomial Q[er](t) where Q(t) is
given by (2.6). By Proposition 4.15, fO

v+ℓg(ǫv+2ℓn) is a sum of weights
of all Gm(v, t)-groves. The map φ assigns to each such Gm(v, t)-grove
F an r-path Pℓ = φ(F ) ∈ P(uℓ,w) between two r-vertices uℓ and w

of Ñn,m, but not all r-paths in P(uℓ,w) belong to the image of φ. We
decompose each path P ∈ P(uℓ,w) as a concatenation of three paths
P(1),P(2), and P(3). The decomposition is similar to the one we used in
the proof of [10, Theorem 4.9]. Namely, the path P(i) is the restriction
of P to the set of all vertices u of Ñn,m satisfying:











h(u) ≤M1 − 3nℓ, if i = 1;

M1 − 3nℓ ≤ h(u) ≤ M2, if i = 2;

M2 ≤ h(u), if i = 3.

HereM1,M2 ∈ Z are the constants given by Lemma 4.25. By Lemma 4.25,
the fact that the r-path P belongs to the image of φ depends only on
P(1) and P(3) but not on P(2). Since there are finitely many choices for
P(1) and P(3), we get that fO

v+ℓg(ǫv +2ℓn) decomposes as a finite linear
combination of sequences that satisfy a linear recurrence with char-
acteristic polynomial Q[er](t). This implies that fO

v+ℓg(ǫv + 2ℓn) itself
satisfies a linear recurrence with the same characteristic polynomial,
which finishes the proof of the theorem. �
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[2] Etsurō Date, Michio Jimbo, and Tetsuji Miwa. Method for generating discrete
soliton equations. IV, V. J. Phys. Soc. Japan, 52(3):761–765, 766–771, 1983.
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[13] André Henriques and David E. Speyer. The multidimensional cube recurrence.
Adv. Math., 223(3):1107–1136, 2010.

[14] Bernhard Keller. The periodicity conjecture for pairs of Dynkin diagrams.Ann.
of Math. (2), 177(1):111–170, 2013.

[15] G. Kreweras. Sur les partitions non croisées d’un cycle. Discrete Math.,
1(4):333–350, 1972.

[16] A. Kuniba and T. Nakanishi. Spectra in conformal field theories from the
Rogers dilogarithm. Modern Phys. Lett. A, 7(37):3487–3494, 1992.

[17] Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki. Functional relations in
solvable lattice models. I. Functional relations and representation theory. In-
ternat. J. Modern Phys. A, 9(30):5215–5266, 1994.

[18] Tetsuji Miwa. On Hirota’s difference equations. Proc. Japan Acad. Ser. A
Math. Sci., 58(1):9–12, 1982.

[19] Y. Ohta, K. M. Tamizhmani, B. Grammaticos, and A. Ramani. Singularity
confinement and algebraic entropy: the case of the discrete Painlevé equations.
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