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Abstract. We study totally nonnegative parts of critical varieties in the Grassmannian.

We show that each totally nonnegative critical variety Crit>0
f is the image of an affine poset

cyclohedron under a continuous map and use this map to define a boundary stratification

of Crit>0
f . For the case of the top-dimensional positroid cell, we show that the totally

nonnegative critical variety Crit>0
k,n is homeomorphic to the second hypersimplex ∆2,n.

Introduction

The totally nonnegative Grassmannian Gr>0(k, n) is a certain subset of the real Grass-
mannian introduced in [Pos06, Lus94, Lus98]. Recent years have revealed a variety of
surprising connections between statistical mechanics and the structure of Gr>0(k, n); see
e.g. [CW11, Lam18, GP20]. In a recent paper [Gal21a], we introduced critical varieties
inside the Grassmannian, which may be considered “critical parts” of positroid varieties
introduced in [KLS13]. The construction of critical varieties is based on Kenyon’s critical
dimer model [Ken02] and simultaneously includes the embeddings of the critical Ising model
and critical electrical networks into Gr>0(k, n) discovered in [Lam18, GP20].

Our aim in [Gal21a] was to develop a theory of critical varieties which would parallel the
theory of positroid varieties. For example, we introduced complex-algebraic open critical
varieties Crit◦f as well as their totally positive parts Crit>0

f called critical cells. The goal of
the present paper is to continue this program and study totally nonnegative critical varieties
Crit>0

f , defined as closures of critical cells Crit>0
f inside Gr>0(k, n).

While investigating the structure of the spaces Crit>0
f , we were led to consider several new

families of polytopes generalizing order polytopes [Sta86], associahedra [Tam51, Sta63, Hai84,
Lee89], and cyclohedra [BT94, Sim03]. We introduced poset associahedra and affine poset
cyclohedra and explored their properties in [Gal21b]. An important result from the point of
view of applications to critical varieties is that these polytopes arise as compactifications of
certain configuration spaces of points on a line and on a circle, analogously to the cases of
associahedra and cyclohedra [AS94, Sin04, LTV10].

The goal of this paper is to prove two results on totally nonnegative critical varieties
Crit>0

f . First, we show that each space Crit>0
f is the image of an affine poset cyclohedron

under a surjective continuous map. This observation, which may be considered an analog of
the results of [PSW09], allows us to introduce a boundary stratification of Crit>0

f . (Unlike

in the case of positroid cells, the boundary stratification of Crit>0
f is not merely obtained

Date: October 19, 2021.
2020 Mathematics Subject Classification. Primary: 14M15. Secondary: 52B99, 15B48, 82B27, 05E99.
Key words and phrases. Critical varieties, totally nonnegative Grassmannian, cyclohedron, affine poset,

hypersimplex, compactification.
P.G. was supported by an Alfred P. Sloan Research Fellowship and by the National Science Foundation

under Grants No. DMS-1954121 and No. DMS-2046915.
1



2 PAVEL GALASHIN

by intersecting Crit>0
f with various positroid cells; see Example 1.2.) Next, we concentrate

on the special case of the totally nonnegative critical variety Crit>0
k,n corresponding to the

top-dimensional positroid cell inside Gr>0(k, n). We show that Crit>0
k,n is homeomorphic to

a polytope, namely, to the second hypersimplex ∆2,n, via a stratification-preserving homeo-
morphism.

As a surprising consequence, we see that Crit>0
k,n does not depend on k as a stratified

space. We view this result as a step towards constructing a family of conjectural shift maps
Gr(k, n) 99K Gr(k + 1, n), which should restrict to homeomorphisms Crit>0

k,n

∼−→ Crit>0
k+1,n.

Constructing such shift maps is of great importance in relation to physics and statistical
mechanics. For example, it would yield a connection between electrical networks and the
Ising model (see [GP20, Question 9.2]) as well as provide insight into the construction of
the BCFW triangulation [BCFW05] of the amplituhedron [AHT14]; see [AHBC+16, LPW20,
GL20] and [Gal21a, Section 8] for context and related results.

Recall that the totally nonnegative parts of positroid varieties, while not being isomor-
phic to polytopes as stratified spaces, have remarkably simple topological structure [Wil07,
PSW09, RW08, RW10, GKL17, GKL19]. It remains an open problem to determine whether
each totally nonnegative critical variety Crit>0

f is isomorphic to a polytope as a stratified
space.

1. Main results

We give a brief overview of some of our results. The full statements and proofs are given
in the main body of the paper.

Let G be a planar graph embedded in a disk. We assume that G has n black degree 1
boundary vertices labeled b1, b2, . . . , bn in clockwise order; see Figure 1(a). A strand in G
is a path that makes a sharp right (resp., left) turn at each black (resp., white) vertex; see
Figure 1(b). For each p ∈ [n] := {1, 2, . . . , n}, if a strand starts at the boundary vertex bp, it
must terminate at some boundary vertex bfG(p). The resulting permutation fG ∈ Sn is called
the strand permutation of G. We say that G is reduced [Pos06] if it has the minimal number
of faces among all graphs with strand permutation fG.

For 0 6 k 6 n, the totally nonnegative Grassmannian Gr>0(k, n) is the subset of the real
Grassmannian Gr(k, n) where all Plücker coordinates have the same sign; see Section 2.1
for further background. To a weight function wt : E(G) → R>0 defined on the edges of G,
Postnikov [Pos06] associates a point MeasG(wt) ∈ Gr>0(k, n), where 0 6 k 6 n depends only
on G.

In order to define a critical cell Crit>0
G , we restrict to a special family of weight functions

coming from the critical dimer model of [Ken02]. We will always assume that G is reduced,
in which case the critical cell Crit>0

G depends only on the strand permutation of G and is
denoted Crit>0

fG
.

For the purposes of this introduction, we consider the most important special case of the
top cell strand permutation fk,n. By definition, fk,n ∈ Sn sends p 7→ p + k modulo n, for
all p ∈ [n]. Let Θ>0

k,n be the space of n-tuples v := (v1, v2, . . . , vn) ∈ Cn of distinct points
ordered counterclockwise on the unit circle, considered modulo global rotations of the circle.
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Figure 1. (a) A (reduced) planar bipartite graph G; (b) strands in G; (c)
edge weights wtv, where the unmarked edges have weight 1 and we abbreviate
|pq| := |vp − vq|. Figure reproduced from [Gal21a, Figure 1].

Remark 1.1. The space Θ>0
k,n is naturally homeomorphic to the interior of an (n − 1)-

dimensional simplex

Θ>0
k,n
∼= {θ = (θ1, θ2, . . . , θn) ∈ Rn | 0 = θ1 < θ2 < · · · < θn < π},

by setting vr := exp(2iθr) for all r ∈ [n]. (In particular, Θ>0
k,n does not depend on k.)

Every edge e of G belongs to exactly two strands. Denoting the endpoints of these strands
by bp, bq for p, q ∈ [n], we say that e is labeled by {p, q}. In this case, we define its weight by

(1.1) wtv(e) :=

{
|vp − vq|, if e is not incident to a boundary vertex;

1, otherwise.

We obtain a weight function wtv : E(G) → R>0. See Figure 1(c) for an example. It turns
out that the resulting point MeasG(wtv) ∈ Gr>0(k, n) does not depend on the choice of G.
We denote Meask,n(v) := MeasG(wtv). The critical cell Crit>0

k,n is defined as

Crit>0
k,n := {Meask,n(v) | v ∈ Θ>0

k,n}.
Throughout, we assume that 2 6 k 6 n − 1. (For k = 1 or k = n, Crit>0

k,n is a single
point.) According to [Gal21a, Theorem 1.10], the map Meask,n restricts to a homeomorphism

Θ>0
k,n

∼−→ Crit>0
k,n, and thus Crit>0

k,n is homeomorphic to the interior of an (n− 1)-simplex. Our

goal is to study the closure Crit>0
k,n of Crit>0

k,n inside Gr>0(k, n), and more generally, the closure

Crit>0
f of an arbitrary critical cell Crit>0

f , f ∈ Sn.

Informally, since Crit>0
k,n is parameterized by configurations of n distinct points on a circle,

its closure Crit>0
k,n should be parameterized by n-point configurations where some points

are allowed to collide. The map MeasG is invariant under gauge transformations : given a
weighted graph (G,wt), for each interior vertex u of G, rescaling the weights of all edges
incident to u by the same nonzero scalar does not alter the image of wt under MeasG. Modulo
gauge transformations, Meask,n(v) depends only on the ratios of the distances between the
points v1, v2, . . . , vn. For instance, even if all points v1, v2, . . . , vn collide together, it could
happen that after we apply gauge transformations at the vertices of G, in the limit none of
the edge weights tend to zero, as the following example demonstrates.

Example 1.2. Consider the graph G in Figure 1, and suppose that v1, v2, v3, v4 collide in
such a way that

(|v2−v1| : |v3−v2| : |v3−v1| : |v4−v3| : |v4−v2| : |v4−v1|)→ (a : b : a+b : c : b+c : a+b+c),
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Figure 2. Taking a limit where all points in v collide. See Example 1.2.

for some constants a, b, c > 0; see Figure 2(left). After applying gauge transformations at the
two black interior vertices of G and taking a limit, we obtain a weighted graph (G′,wt′) shown
in Figure 2(right). The point MeasG′(wt′) belongs to the totally positive Grassmannian (i.e.,
has all Plücker coordinates strictly positive). Yet, MeasG′(wt′) belongs to the boundary of
Crit>0

2,4, i.e., to Crit>0
2,4 \Crit>0

2,4.

A natural compactification of Θ>0
k,n taking into account the ratios of distances between pairs

of colliding points in v is the (n− 1)-dimensional cyclohedron Cn studied in [BT94, Sim03].
See Section 3.2 for background. The cyclohedron Cn may be obtained as the Axelrod–Singer
compactification [AS94] of Θ>0

k,n. In particular, the interior of Cn is identified with Θ>0
k,n.

Theorem 1.3. The map Meask,n : Θ>0
k,n

∼−→ Crit>0
k,n extends to a continuous surjective map

Meask,n : Cn → Crit>0
k,n .

A similar result (Theorem 4.1) holds for arbitrary critical cells. Here, instead of the cyclohe-
dron, one needs to take an affine poset cyclohedron introduced in [Gal21b]. For an arbitrary
permutation f ∈ Sn, the critical cell Crit>0

f is parameterized by a configuration space Θ>0
f

of n points on a circle where some points are allowed to pass through each other. To this
data, we associate an affine poset P̃f such that the corresponding affine poset cyclohedron

C (P̃f ) gives a suitable compactification of Θ>0
f . This allows us to extend the boundary

measurement map Measf : Θ>0
f → Crit>0

f to a surjective continuous map

Measf : C (P̃f )→ Crit>0
f .

By considering images of different faces of C (P̃f ), we obtain a stratification of Crit>0
f .

It turns out that the map Meask,n is far from a homeomorphism. Instead, it has the
following remarkable property, which we call independence of infinitesimal ratios. Suppose
that v(t) ∈ Crit>0

k,n is a sequence of point configurations converging to some v ∈ Cn as t→ 0.

Let d(t) := maxp,q∈[n] |v(t)
p − v(t)

q |. It turns out that for all p, q such that limt→0
|v(t)p −v

(t)
q |

d(t)
= 0,

the limit Meask,n(v) of Meask,n(v(t)) does not depend on distance ratios involving |v(t)
p −v(t)

q |.
This property is surprising since the limiting edge weight function wt′ does depend on such
distance ratios. However, the resulting limiting graph G′ is not reduced in general, and after
applying reduction moves (see Figure 4) to it, all such ratios miraculously cancel each other
out.
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Figure 3. Taking a limit where the points v1, v2, v3 collide but are far from v4.
After applying a sequence of reduction moves from Figure 4, the edge weights
involving relative distances between v1, v2, v3 cancel out. See Example 1.4 and
Theorem 1.5.

Example 1.4. Let G be the graph in Figure 1, and suppose that v1, v2, v3, v4 collide so that

(|v2 − v1| : |v3 − v2| : |v3 − v1| : |v4 − v3| : |v4 − v2| : |v4 − v1|)→ (0 : 0 : 0 : 1 : 1 : 1),

(|v2 − v1| : |v3 − v2| : |v3 − v1|)→ (a : b : a+ b),

for some constants a, b > 0. After applying gauge transformations and taking a limit, we
obtain a weighted graph (G′,wt′) shown in Figure 3(middle left). Thus the edge weights wt′

of G′ depend on the ratio a : b in a non-trivial fashion. The graph G′ is not reduced, and
after applying reduction moves to it, we see that all edge weights involving a and b cancel
out; see Figure 3(right). Our result (Theorem 1.5) claims that this phenomenon occurs more
generally for arbitrary k and n, and for an arbitrary choice of the limiting ratios of distances
between the points in v.

To explain independence of infinitesimal ratios formally, consider a map

φ : Θ>0
k,n → RPn−1, v 7→ (|v2 − v1| : |v3 − v2| : · · · : |vn − vn−1| : |v1 − vn|).

Passing to the closure, φ can be extended to a continuous map φ : Cn → RPn−1. The image
φ(Cn) is essentially described by triangle inequalities, and it is straightforward to check
(Proposition 5.6) that it may be identified with the second hypersimplex

∆2,n := {(x1, x2, . . . , xn) ∈ [0, 1]n | x1 + x2 + · · ·+ xn = 2}.

Theorem 1.5 (Independence of infinitesimal ratios). The map Meask,n factors through the
map φ. That is, there exists a continuous map

ψ : ∆2,n → Crit>0
k,n

making the following diagram commutative:

(1.2) Cn ∆2,n Crit>0
k,n .φ

Meask,n

ψ

Moreover, the map ψ : ∆2,n → Crit>0
k,n is a stratification-preserving homeomorphism.

We note that currently we have no analog of Theorem 1.5 for other critical cells. First,
independence of infinitesimal ratios is very special to the top cell, and does not appear to
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Figure 4. Reduction moves for planar bipartite graphs. Each move preserves
the boundary measurements.
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Contraction-uncontraction Square move

Figure 5. Moves for planar bipartite graphs preserving the boundary mea-
surements and the strand permutation.

hold for lower cells. Second, showing that the map ψ is a homeomorphism relies on the
injectivity conjecture [Gal21a, Conjecture 4.3] being true for a certain family of critical cells;
see Section 5.4. This conjecture remains wide open for arbitrary critical cells.

2. Background on critical varieties

We review the background on positroid cells inside the totally nonnegative Grassman-
nian [Pos06]; see also [Lam16]. We then recall the construction of critical cells introduced
in [Gal21a].

2.1. Planar bipartite graphs. Fix a planar graph G as in Section 1. Recall that the n
boundary vertices of G are assumed to be black and to have degree 1, and that G is assumed
to be reduced. Any non-reduced graph G may be transformed into a reduced one using the
moves in Figures 4 and 5.

We switch to denoting strand permutations by f̄G, and reserve the notation fG for bounded
affine permutations introduced below.

Definition 2.1. A (k, n)-bounded affine permutation is a bijection f : Z→ Z such that

• f(j + n) = f(j) + n for all j ∈ Z,
• ∑n

j=1(f(j)− j) = kn, and

• j 6 f(j) 6 j + n for all j ∈ Z.

We denote the set of (k, n)-bounded affine permutations by B(k, n). For f ∈ B(k, n), we
let f̄ ∈ Sn be obtained by reducing f modulo n. In other words, f̄ is uniquely determined
by the conditions f̄(j) ∈ [n] and f̄(j) ≡ f(j) modulo n for all j ∈ [n].

Remark 2.2. We say that f ∈ B(k, n) is loopless if f(j) 6= j for all j ∈ Z. Each permutation
f̄ ∈ Sn arises via the above procedure from a unique loopless bounded affine permutation
f ∈ B(k, n): for j ∈ [n], one sets f(j) := f̄(j) if f̄(j) > j and f(j) := f̄(j) + n otherwise.
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The remaining values f(j + dn) = f(j) + dn are automatically determined for all d ∈ Z.
Positroid cells are labeled by arbitrary bounded affine permutations while critical cells are
labeled by loopless bounded affine permutations, which is why in the introduction we used
permutations in Sn to label critical cells.

In general, the bounded affine permutation fG is recovered from f̄G as follows. For j ∈ [n],
if f̄G(j) 6= j then fG(j) is uniquely determined by the conditions j 6 fG(j) 6 j + n
and fG(j) ≡ f̄G(j) modulo n. If f̄G(j) = j then, depending on the structure of G (see
Definition 2.3), either j is a loop (i.e., fG(j) = j) or j is a coloop (i.e., fG(j) = j + n).

An affine inversion of f ∈ B(k, n) is a pair (p, q) ∈ Z2 such that p < q and f(p) > f(q).
The length `(f) of f is the number of affine inversions of f considered modulo n:

`(f) := #{p, q ∈ Z | p < q, f(p) > f(q), and p ∈ [n]}.
The (real) Grassmannian Gr(k, n) is the set of all linear k-dimensional subspaces of Rn.

Choosing a basis of each subspace, Gr(k, n) may be identified with the space of full rank
k × n matrices M considered modulo row operations. With this identification, one has a
collection of Plücker coordinates on Gr(k, n). Let

(
[n]
k

)
denote the set of k-element subsets of

[n], and for each I ∈
(

[n]
k

)
and a k×n matrix M we let ∆I(M) denote the maximal minor of

M with column set I. Letting I vary, we obtain the Plücker embedding Gr(k, n) ↪→ RP(n
k)−1

sending the row span of M to (∆I(M))
I∈([n]

k ) ∈ RP(n
k)−1.

Let RPr−1
>0 be the subset of RPr−1 where all coordinates are nonzero and have the same sign,

and let RPr−1
>0 be the closure of RPr−1

>0 . The totally nonnegative Grassmannian Gr>0(k, n) is
the subset of Gr(k, n) where all nonzero Plücker coordinates have the same sign. In other

words, Gr>0(k, n) is the preimage of RP(n
k)−1

>0 under the Plücker embedding.
Given a planar bipartite graph G as above, the boundary measurement map MeasG :

RE(G)
>0 → Gr>0(k, n) is defined using the dimer model on G. An almost perfect matching A

of G is a collection of edges of G which uses each interior vertex exactly once. Importantly
(cf. Lemma 4.2 below), in order to define the boundary measurement map MeasG, we assume
that G admits at least one almost perfect matching.

Recall that the boundary vertices of G are assumed to be black and have degree 1. For
an almost perfect matching A, let ∂(A) ⊆ [n] denote the set of p ∈ [n] such that the
boundary vertex bp is used by A. There is an integer 0 6 k 6 n depending only on G such
that |∂(A)| = k for any almost perfect matching A of G. Given an edge weight function
wt : E(G)→ R>0, the weight wt(A) :=

∏
e∈Awt(e) of A is the product of the weights of the

edges used by A. For I ∈
(

[n]
k

)
, we set

∆I(G,wt) :=
∑

A: ∂(A)=I

wt(A).

We view the resulting boundary measurements

(2.1) MeasG(wt) := (∆I(G,wt))
I∈([n]

k )

up to multiplication by a common scalar, i.e., as an element of RP(n
k)−1. It was shown

in [Pos06, Tal08] (see [Lam18, Theorem 4.1]) that the entries of MeasG(wt) are the Plücker
coordinates of some point of Gr>0(k, n) which we also denote by MeasG(wt).

Definition 2.3. It is known that when f̄G(j) = j, exactly one of the following holds:
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• j /∈ A for any almost perfect matching A of G;
• j ∈ A for any almost perfect matching A of G.

In the former case, we say that j is a loop and set fG(j) = j. In the latter case, we say
that j is a coloop and set fG(j) = j +n. This completes the definition of the bounded affine
permutation fG ∈ B(k, n) associated to G. For f ∈ B(k, n), we let Gred(f) denote the set of
all reduced planar bipartite graphs G satisfying fG = f . For G ∈ Gred(f), the positroid cell
Π>0
G := {MeasG(wt) | wt : E(G) → R>0} depends only on f and is denoted Π>0

f . The top
cell bounded affine permutation fk,n ∈ B(k, n) is defined by fk,n(p) = p+ k for all p ∈ Z.

2.2. Critical cells. Let f ∈ B(k, n) be a loopless bounded affine permutation and let f̄ ∈ Sn
be the corresponding permutation. The combinatorics of the critical cell Crit>0

f associated
to f is described by the following objects.

Definition 2.4. Place 2n points b−1 , b
+
1 , . . . , b

−
n , b

+
n on the circle in clockwise order. The

reduced strand diagram of f is obtained by drawing an arrow b+
s → b−

f̄(s)
for each s ∈ [n].

We say that p, q ∈ [n], p 6= q, form an f -crossing if the arrows b+
s → b−p and b+

t → b−q cross,

where s := f̄−1(p) and t := f̄−1(q). We say that f has a connected strand diagram if the
resulting union of n arrows is topologically connected. See Figure 6(left) for an example.

Throughout the paper, we assume that f has a connected strand diagram. When the
strand diagram of f is not connected, the corresponding critical cell Crit>0

f (as well as its

closure Crit>0
f ) factorizes as a product over its connected components; see [Gal21a, Sec-

tion 4.4].

Definition 2.5. A tuple θ = (θ1, θ2, . . . , θn) ∈ Rn is called f -admissible if whenever two
indices 1 6 p < q 6 n form an f -crossing, we have

(2.2) θp < θq < θp + π.

We let

(2.3) Θ>0
f := {θ ∈ Rn | θ1 = 0 and θ is f -admissible}.

Letting vr := exp(2iθr) for r ∈ [n], we obtain a configuration v = (v1, v2, . . . , vn) of n
points on the unit circle which are not necessarily distinct or ordered counterclockwise. The
condition θ1 = 0 reflects that we consider these points modulo rotations of the circle.

A graph G ∈ Gred(f) is called contracted if it has no degree 2 vertices that are not
adjacent to the boundary. Any graph G ∈ Gred(f) may be transformed into a contracted
one using contraction-uncontraction moves (Figure 5(left)) which do not affect the boundary
measurements of G.

Given a contracted graph G ∈ Gred(f) and an f -admissible tuple θ ∈ Θ>0
f , we define a

weight function wtθ : E(G) → R>0 similarly to (1.1): if e ∈ E(G) is labeled by {p, q} with
1 6 p < q 6 n then we set

(2.4) wtθ(e) :=

{
sin(θq − θp), if e is not incident to a boundary vertex;

1, otherwise.

By [Gal21a, Proposition 4.2], we indeed get wtθ(e) > 0 for all e ∈ E(G). Setting vr :=
exp(2iθr) for r ∈ [n], we get sin(θq − θp) = 1

2
|vq − vp|. Thus wtθ differs from wtv defined

in (1.1) by applying gauge transformations at all black interior vertices.
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The crucial property of this assignment of edge weights is that the resulting boundary
measurements are invariant under square moves (Figure 5(right)). Thus it follows from the
results of [Pos06] that the point MeasG(wtθ) does not depend on the choice of G. We denote
Measf (θ) := MeasG(wtθ). The critical cell is given by

Crit>0
f := {Measf (θ) | θ ∈ Rn is f -admissible}.

3. Affine poset cyclohedra

We review some definitions and properties of affine posets and the associated polytopes;
see [Gal21b] for further details.

3.1. Order polytopes and tubings. We start with ordinary posets. Let (P,�P ) be a
connected (i.e., having a connected Hasse diagram) poset with |P | > 2. Let αP : RP → R
be a linear function given by

αP (x) :=
∑
p≺·P q

xq − xp,

where the sum is taken over all covering relations p ≺·P q in P . Let RP
Σ=0 denote the

linear subspace of RP consisting of vectors whose sum of coordinates is zero. Consider a
(|P | − 2)-dimensional polytope

O(P ) := {x ∈ RP
Σ=0 | αP (x) = 1 and xp 6 xq for all p �P q}.

When P has a maximal and a minimal element, O(P ) is projectively equivalent to the order
polytope [Sta86] of P ; see [Gal21b, Remark 2.5].

For a subset τ ⊆ P , we say that τ is convex if for any three elements p �P q �P r such
that p, r ∈ τ , we have q ∈ τ . We say that τ is connected if the restriction of �P to τ is a
connected poset. A P -tube is a convex connected nonempty subset τ ⊆ P . A tubing partition
of P is a set partition T of P into disjoint P -tubes such that the directed graph DT with
vertex set V (DT) := T and edge set

(3.1) E(DT) := {(τ, τ ′) | τ ∩ τ ′ = ∅ and p ≺P q for some p ∈ τ , q ∈ τ ′}
is acyclic. The faces of O(P ) are in bijection with tubing partitions of P . Explicitly, given
a point x ∈ O(P ), consider a maximal by inclusion set I ⊆ P such that all coordinates in
{xp}p∈I coincide. Then I is a disjoint union of P -tubes, which are the connected components
of the induced subgraph of the Hasse diagram of P with vertex set I. Collecting these P -
tubes for all such sets I, we obtain a tubing partition of P denoted B(x).

Definition 3.1. An affine poset (of order n > 1) is a poset P̃ = (Z,�P̃ ) such that:

• for all p ∈ Z, p ≺P̃ p+ n;
• for all p, q ∈ Z, p �P̃ q if and only if p+ n �P̃ q + n;
• for all p, q ∈ Z, we have p �P̃ q + dn for some d > 0.

We denote |P̃ | := n.

We identify points θ ∈ R|P̃ | with infinite sequences θ̃ = (θ̃p)p∈Z satisfying θ̃p = θp for

p ∈ [n] and θ̃p+n = θ̃p + π for p ∈ Z. Consider the (n− 1)-dimensional affine order polytope

O(P̃ ) and its interior O◦(P̃ ) defined by

O(P̃ ) := {θ ∈ R|P̃ | | θ1 = 0 and θ̃p 6 θ̃q for all p �P̃ q},(3.2)

O◦(P̃ ) := {θ ∈ R|P̃ | | θ1 = 0 and θ̃p < θ̃q for all p ≺P̃ q}.(3.3)
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A P̃ -tube (or simply a tube) is a convex connected nonempty subset τ ⊆ P̃ such that either
τ = P̃ or τ contains at most one element in each residue class modulo n. For each tube τ ,
we denote by τ := {τ + dn | d ∈ Z} its equivalence class, where τ + dn := {p+ dn | p ∈ τ}.
A collection T of tubes is called n-periodic if it is a union of such equivalence classes.

We say that two sets A,B are nested if either A ⊆ B or B ⊆ A.

Definition 3.2. A P̃ -tubing (or simply a tubing) is an n-periodic collection T of tubes such
that any two tubes in T are either nested or disjoint, and such that the directed graph DT

given by (3.1) is acyclic. A tube τ is called proper if τ 6= P̃ and |τ | > 1. A tubing T is
called proper if it consists of proper tubes. A tubing partition of P̃ is a tubing T which is
simultaneously a set partition of Z.

The face poset of O(P̃ ) is isomorphic to the poset of tubing partitions of P̃ ordered by
refinement. For example, the vertices of O(P̃ ) are in bijection with equivalence classes of
maximal proper tubes which are tubes τ 6= P̃ satisfying |τ | = n. For a point x ∈ O(P̃ ), we
let B(x) denote the corresponding tubing partition of P̃ .

3.2. Affine poset cyclohedra and compactifications. We showed in [Gal21b] that there
is an (n−1)-dimensional polytope C (P̃ ), called an affine poset cyclohedron, whose face poset
is the poset of proper tubings ordered by reverse inclusion. For example, the vertices of C (P̃ )
are in bijection with proper tubings T satisfying |T| = n − 1, where T := {τ | τ ∈ T} is
the set of equivalence classes of tubes in T. We refer the reader to [Gal21b, Section 1.3]
for examples of affine poset cyclohedra. In addition, we showed that C (P̃ ) arises as the
compactification of the space O◦(P̃ ), which may be identified with a certain configuration
space of n points on a circle; see [Gal21b, Remark 1.12]. We now review the construction of
this compactification.

Let τ ( P̃ be a proper tube. We treat τ as a finite subposet (τ,�P̃ ) of P̃ , thus we may

consider the order polytope O(τ). The projection R|P̃ | → Rτ sending (θ̃p)p∈Z 7→ (θ̃p)p∈τ gives

rise to a map ρτ : O◦(P̃ )→ O◦(τ). More precisely, given any set A ⊇ τ , define the following
maps:

avgτ : RA → R, x 7→ 1

|τ |
∑
p∈τ

xp; πτΣ=0 : RA → Rτ
Σ=0, x 7→ (xp − avgτ (x))p∈τ ;

ατ : RA → R, x 7→
∑

p,q∈τ : p≺·P̃ q

xq − xp; ρτ : RA 99K Rτ , x 7→ 1

ατ (x)
πτΣ=0(x).

Here ρτ is a rational map defined on the subset of RA where ατ (x) 6= 0. Applying this
construction to the case A = Z, we obtain a map ρτ : O◦(P̃ )→ O◦(τ). Notice that ατ takes
strictly positive values on O◦(P̃ ). By convention, for θ ∈ O◦(P̃ ), we set ρP̃ (θ) := θ. Let

ρ̃ : O◦(P̃ )→
∏̄
|τ |>1

O(τ), θ 7→ (ρτ (θ))|τ |>1.

Here
∏̄
|τ |>1O(τ) is the set of points (θ[τ ])|τ |>1 ∈

∏
|τ |>1 O(τ) satisfying θ[τ ] = θ[τ ′] whenever

two tubes τ, τ ′ are equivalent. The product is taken over all non-singleton tubes τ , including
the case τ = P̃ . We let

(3.4) Comp(P̃ ) := ρ̃(O◦(P̃ ))
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denote the closure of the image of ρ̃.
By definition, each point θ ∈ Comp(P̃ ) is an element (θ[τ ])|τ |>1 of the product

∏̄
|τ |>1O(τ).

We refer to its coordinates as (θ̃i[τ ])i∈τ for each non-singleton tube τ . We showed in [Gal21b,
Proposition 3.9] that Comp(P̃ ) may be alternatively described as the subset of

∏̄
|τ |>1O(τ)

consisting of all points satisfying the following coherence condition:

(3.5) for any τ ( τ+ with |τ | > 1, there exists λ ∈ R>0 such that πτΣ=0(θ[τ+]) = λθ[τ ].

Definition 3.3. For θ ∈ Comp(P̃ ), let T̂(θ) be the smallest collection of tubes such that

• T̂(θ) contains P̃ ;

• for each non-singleton τ ∈ T̂(θ), T̂(θ) also contains all tubes in B(θ[τ ]).

We let T(θ) be obtained from T̂(θ) by removing P̃ and all singleton tubes. More generally,

for a proper tubing T, we let T̂ be obtained from T by adding P̃ and all singleton tubes,
and vice versa.

The space Comp(P̃ ) is naturally subdivided into cells labeled by proper tubings: for a
proper tubing T, the corresponding cell is given by

CompT(P̃ ) := {θ ∈ Comp(P̃ ) | T(θ) = T}.
Cell closure relations are given by reverse inclusion of tubings:

CompT(P̃ ) =
⊔

T′⊇T

CompT′(P̃ ),

Theorem 3.4 ([Gal21b, Theorem 1.11]). There exists a stratification-preserving homeomor-

phism C (P̃ )
∼−→ Comp(P̃ ).

Remark 3.5. In what follows, we always identify C (P̃ ) with Comp(P̃ ). The map ρ̃ gives
a homeomorphism between O◦(P̃ ) and the unique open dense cell Comp∅(P̃ ) of Comp(P̃ ),
and we identify each of these spaces with the interior of the affine poset cyclohedron:

O◦(P̃ ) ∼= Comp∅(P̃ ) ∼= C ◦(P̃ ).

3.3. Circular chains. Let P̃ be an affine poset. Our goal is to construct a particular family
of continuous functions on C (P̃ ) indexed by circular P̃ -chains.

Definition 3.6. We say that a tuple p := (p1, p2, . . . , pr) of integers is a circular P̃ -chain if

(3.6) p1 ≺P̃ p2 ≺P̃ · · · ≺P̃ pr ≺P̃ p1 + n.

Thus p is a circular P̃ -chain if and only if σ(p) := (p2, . . . , pr, p1 + n) is a circular P̃ -chain.
We say that two such tuples differ by cyclic relabeling. We say that a tube τ contains the
residues of p modulo n if for each j ∈ [r], we have pj+djn ∈ τ for some dj ∈ Z. Equivalently,
since each tube τ is convex, it follows that τ contains the residues of p modulo n if and only
if τ contains all elements of a circular P̃ -chain σs(p) for some s ∈ Z.

Given a circular P̃ -chain p and a point θ ∈ C (P̃ ), the point θ[P̃ ] ∈ O(P̃ ) satisfies

(3.7) θ̃p1 [P̃ ] 6 θ̃p2 [P̃ ] 6 · · · 6 θ̃pr [P̃ ] 6 θ̃p1+n[P̃ ] = θ̃p1 [P̃ ] + π.
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For any tube τ ( P̃ satisfying p1, p2, . . . , pr ∈ τ , the vector θ[τ ] ∈ O(τ) satisfies

(3.8) θ̃p1 [τ ] 6 θ̃p2 [τ ] 6 · · · 6 θ̃pr [τ ].

Lemma 3.7. Let P̃ be an affine poset, and suppose that p = (p1, p2, . . . , pr) is a circular
P̃ -chain. Then the map

(3.9) ζ◦p : C ◦(P̃ )→ RPr−1
>0 , θ 7→

(
sin(θ̃p2 − θ̃p1) : · · · : sin(θ̃pr − θ̃pr−1) : sin(θ̃p1+n − θ̃pr)

)
extends to a continuous map

ζp : C (P̃ )→ RPr−1
>0 .

Proof. Let θ ∈ Comp(P̃ ) ∼= C (P̃ ) and let T := T(θ) be the associated tubing. Let τ ∈ T̂
be a minimal by inclusion tube containing the residues of p modulo n.

If τ = P̃ then we set

(3.10) ζp(θ) :=
(

sin(θ̃p2 [P̃ ]− θ̃p1 [P̃ ]) : · · · : sin(θ̃pr [P̃ ]− θ̃pr−1 [P̃ ]) : sin(θ̃p1+n[P̃ ]− θ̃pr [P̃ ])
)
.

We would like to show that the vector on the right hand side is nonzero. Otherwise, by (3.7),

we would have θ̃ps [P̃ ] = · · · = θ̃pr [P̃ ] = θ̃p1+n[P̃ ] = · · · = θ̃ps−1+n[P̃ ] for some s ∈ [r]. Let

S := {p ∈ Z | θ̃p[P̃ ] = θ̃ps [P̃ ]}.
Thus S is a convex subset of P̃ containing all elements in σs−1(p) = (ps, . . . , pr, p1 +
n, . . . , ps−1 + n). It follows that S splits as a disjoint union of tubes, all of which belong to

T̂ \ {P̃}. Because σs−1(p) is a circular P̃ -chain, there exists a path in the Hasse diagram of
P̃ which starts at ps, ends at ps−1 + n, and passes through all elements of σs−1(p). For each
vertex p on this path, we see that p ∈ S since S is convex. Thus all elements of σs−1(p)
belong to the same proper tube τ ′ ∈ T. This contradicts the minimality of τ . We have
shown that the vector on the right hand side of (3.10) is nonzero, thus ζp(θ) is a well defined

element of RPr−1
>0 when τ = P̃ .

Assume now that τ ( P̃ . Since τ is convex, we may assume after some cyclic relabeling1

that p1, p2, . . . , pr ∈ τ , in which case we set

(3.11) ζp(θ) :=
(

(θ̃p2 [τ ]− θ̃p1 [τ ]) : · · · : (θ̃pr [τ ]− θ̃pr−1 [τ ]) : (θ̃pr [τ ]− θ̃p1 [τ ])
)
.

The entries on the right hand side are nonnegative by (3.8). Similarly to the above, we

see that they cannot all be zero because that would imply θ̃p1 [τ ] = θ̃p2 [τ ] = · · · = θ̃pr [τ ],
contradicting the minimality of τ .

It remains to show that ζp is continuous. Let θ(m) be a sequence of elements of C (P̃ )
converging to θ as m→∞. By definition, this means that θ(m)[τ ′] converges to θ[τ ′] inside
O(τ ′) for each non-singleton tube τ ′. Without loss of generality, we may assume that all

points θ(m) belong to CompT′(P̃ ) for some fixed T′ ⊆ T. Let τ ′ ∈ T̂′ be a minimal by
inclusion tube containing the residues of p modulo n. Then τ ⊆ τ ′. If τ = τ ′ then clearly
ζp(θ

(m)) → ζp(θ) as m → ∞. If τ ( τ ′ ( P̃ then the result follows from (3.5). Finally,

if τ ( τ ′ = P̃ , we see that because τ ∈ T = T(θ), all coordinates of the vector on the
right hand side of (3.10) tend to zero. But since this vector is treated as an element of
RPr−1, we may replace the sines by their arguments. For the last coordinate, we replace

1Observe that the maps ζ◦p and ζ◦σ(p) are related by a cyclic shift on RPr−1.



TOTALLY NONNEGATIVE CRITICAL VARIETIES 13

1

2

3

4

5

-3
-2 -1

1
2 3

5 4

n+ 1
7 8

9...

...

Strand diagram of f ∈ Sn Affine poset P̃f

Figure 6. Associating an affine poset P̃f (right) to a strand diagram of a
permutation f ∈ Sn (left). Figure reproduced from [Gal21b].

sin(θ̃p1+n[P̃ ] − θ̃pr [P̃ ]) = sin(θ̃pr [P̃ ] − θ̃p1 [P̃ ]) with θ̃pr [P̃ ] − θ̃p1 [P̃ ]. Therefore the limit of
ζp(θ

(m)) coincides with the limit of

(3.12)
(

(θ̃(m)
p2

[P̃ ]− θ̃(m)
p1

[P̃ ]) : · · · : (θ̃(m)
pr [P̃ ]− θ̃(m)

pr−1
[P̃ ]) : (θ̃(m)

pr [P̃ ]− θ̃(m)
p1

[P̃ ])
)

as m→∞. By the coherence condition (3.5) applied to τ+ := P̃ , the vector in (3.12) equals

(3.13)
(

(θ̃(m)
p2

[τ ]− θ̃(m)
p1

[τ ]) : · · · : (θ̃(m)
pr [τ ]− θ̃(m)

pr−1
[τ ]) : (θ̃(m)

pr [τ ]− θ̃(m)
p1

[τ ])
)
.

Since θ(m)[τ ]→ θ[τ ] as m→∞, the vector in (3.13) converges to ζp(θ). �

3.4. From bounded affine permutations to affine posets. Suppose that f ∈ B(k, n) is
loopless and has a connected strand diagram. Let P̃f be the n-periodic transitive closure of
the relations p ≺P̃f

q ≺P̃f
p+n whenever 1 6 p < q 6 n form an f -crossing. (Explicitly, ≺P̃f

is the transitive closure of the relations p + dn ≺P̃f
q + dn ≺P̃f

p + (d + 1)n for all d ∈ Z.)

It follows that P̃f is an affine poset. See Figure 6 for an example.
Comparing (3.3) to (2.3), we see that the sets

O◦(P̃f ) = Θ>0
f

coincide as subsets of Rn. As explained in Remark 3.5, these spaces are identified with the
interior C ◦(P̃f ) of the corresponding affine poset cyclohedron.

4. Taking the closure

Suppose that f ∈ B(k, n) is loopless and has a connected strand diagram. Recall from
Section 3.4 that Θ>0

f is naturally identified with the interior C ◦(P̃f ). Thus we have a map

Measf : C ◦(P̃f )→ Crit>0
f .

Our goal is to show the following result.

Theorem 4.1. For any loopless f ∈ B(k, n), the map Measf extends to a surjective contin-
uous map between the closures

(4.1) Measf : C (P̃f )→ Crit>0
f .
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First, we describe a simple way to take a limit of a family of boundary measurements.
See [PSW09, Lemma 3.1] for a closely related result.

Lemma 4.2. Let G ∈ Gred(f). Suppose that we are given a sequence wt(m) ∈ RE(G)
>0 , m =

1, 2, . . . , such that for each e ∈ E(G), there exists a finite limit

wt(e) := lim
m→∞

wt(m)(e) ∈ [0,∞).

Let G′ be given by

V (G′) := V (G), E(G′) := {e ∈ E(G) | wt(e) > 0},
and let wt′ ∈ RE(G′)

>0 be the restriction of wt to E(G′). Then we have

(4.2) lim
m→∞

MeasG(wt(m)) = MeasG′(wt′) inside Gr>0(k, n),

provided that G′ admits at least one almost perfect matching.

Proof. Clearly, we have

(4.3) lim
m→∞

(∆I(G,wt(m)))
I∈([n]

k ) = (∆I(G
′,wt′))

I∈([n]
k ) inside R(n

k).

By construction, any almost perfect matching of G′ is an almost perfect matching of G.
Since the set of such almost perfect matchings is nonempty, the right hand side of (4.3) is

nonzero. Thus (4.3) also holds inside RP(n
k)−1. This implies (4.2). �

Remark 4.3. We caution that if G′ admits no almost perfect matchings, the limit on the
left hand side of (4.2) may still exist, since applying a gauge transformation to each wt(m)

may give rise to a different graph G′ in the limit.

Our next goal is to define the map Measf in (4.1). We identify C (P̃f ) with Comp(P̃f )

via Theorem 3.4. Fix θ ∈ C (P̃f ) and let T := T(θ) be the corresponding proper tubing.
Choose a contracted graph G ∈ Gred(f).

Lemma 4.4. Let v ∈ V (G) be an interior vertex of G of degree r, and let 1 6 p1 < p2 <
· · · < pr 6 n be the endpoints of the strands emanating from v. Then (p1, p2, . . . , pr) is a
circular P̃f -chain.

Proof. It is easy to see from the “no bad double crossings” condition on the strands [Pos06,
Theorem 13.2] that the edges incident to v are labeled by {p1, p2}, . . . , {pr−1, pr}, {pr, p1} in
clockwise order. The result follows by [Gal21a, Proposition 4.2]. �

In the setting of the above lemma, we denote pG(v) := (p1, p2, . . . , pr). Observe that the
entries of ζpG(v)(θ) are naturally labeled by {p1, p2}, . . . , {pr−1, pr}, {pr, p1}; see (3.9). Thus
we may treat the entries of ζpG(v)(θ) as nonnegative real edge weights assigned to the edges

incident to v. They form an element of RPr−1
>0 since rescaling them by a common positive

scalar corresponds to a gauge transformation at v.

Definition 4.5. Let θ ∈ Comp(P̃f ). We define a weight function wtθ ∈ RE(G)
>0 as follows.

For each boundary edge e, set wtθ(e) := 1. For each black interior vertex b ∈ V (G), set the
weights of the edges incident to b to be proportional to the entries of ζpG(b)(θ). Let G′ be
given by

(4.4) V (G′) := V (G), E(G′) := {e ∈ E(G) | wtθ(e) > 0},
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and let wt′θ be the restriction of wtθ to E(G′). Define

(4.5) Measf (θ) := MeasG′(wt′θ).

See Figures 2 and 3 for examples of weighted graphs (G′,wt′).

Remark 4.6. For θ ∈ Θ>0
f
∼= O◦(P̃f ), we have Measf (θ) = Measf (θ) in view of (2.4) and

Lemma 3.7.

Remark 4.7. The construction of Measf in Definition 4.5 formally depends on the choice of
G ∈ Gred(f). However, we will see later that the choice of G is immaterial: we will show that
Measf is a continuous extension of Measf to C (P̃f ). If such a continuous extension exists,
it must be unique, and thus any other choice of G would give rise to the same map Measf .

While the graph G in Definition 4.5 was assumed to be reduced and contracted, these
properties need not hold for G′. But first, in order for (4.5) to give a well-defined element
of the Grassmannian, we must show that not all coordinates of the vector MeasG′(wt′θ) are
zero, which is equivalent to the following statement.

Proposition 4.8. The graph G′ given by (4.4) admits at least one almost perfect matching.

Proof. Recall that we have set T := T(θ). Our first goal is to show that there exists a
maximal proper tube τ ′ such that T ∪ {τ ′} is a tubing.

The tubing T corresponds to a face CompT(P̃f ) of C (P̃f ). Let CompT′(P̃f ) be any vertex

of the closed face CompT(P̃f ). Thus T ⊆ T′ and CompT′(P̃f ) is a zero-dimensional face,
which means |T′| = n − 1. We claim that any proper tubing T′ satisfying |T′| = n − 1
contains a maximal proper tube.

To see this, consider a rooted tree T ′ (cf. [Gal21b, Definition 3.5]) with vertex set {P̃f} t
T′ t Z/nZ, where Z/nZ is identified with the set of equivalence classes of singleton tubes.
(We identify the set of singleton tubes with Z.) The root of T ′ is P̃f , while Z/nZ is the set

of leaves of T ′. The children of each τ ∈ {P̃f}tT′ are of the form τ− where τ− is a maximal
by inclusion element of T′ t Z satisfying τ− ( τ . We find that T ′ has 2n vertices, including
n leaves. Moreover, each non-leaf vertex of T ′ other than P̃f has at least two children. Since

a binary tree on n leaves contains 2n − 1 vertices, it follows that the root P̃f has exactly
one child in T ′. In other words, T′ contains a maximal proper tube τ ′. Thus T ∪ {τ ′} is
contained in a tubing T′, and therefore is itself a tubing.

We now construct an almost perfect matching A of G. Let v be a (black or white) interior
vertex of G. Since τ ′ is a maximal proper tube, it contains the residues of pG(v) modulo
n, and we let p1, p2, . . . , pr ∈ τ ′ be such that (p1, p2, . . . , pr) = σs(pG(v)) for some s ∈ Z.
Thus the strands emanating from v are labeled by p1, p2, . . . , pr in clockwise order, where we
consider their labels modulo n.

We see that v is incident to an edge ev labeled by {p1, pr}. Set

A := {ev | v is an interior vertex of G}.
Thus A is a collection of edges of G covering each interior vertex at least once.

Let b (resp., w) be a black (resp., white) interior vertex of G. We claim that

(4.6) eb connects b to w ⇐⇒ ew connects b to w.

Suppose that eb connects b to w. Label the strands emanating from b (resp., from w)
by p1, p2, . . . , pr ∈ τ ′ (resp., q1, q2, . . . , qs ∈ τ ′) in clockwise order. Thus eb is labeled by
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{p1, pr} while ew is labeled by {q1, qs}. Since w is also incident to the edge eb labeled by
{p1, pr}, we see that p1, pr ∈ {q1, q2, . . . , qs}, and moreover, pr appears right before p1 in
the sequence (q1, q2, . . . , qs, q1). It follows that q1 = p1 and qs = pr, therefore ew = eb. The
converse direction is handled similarly, except that for a white interior vertex w, ew may be
a boundary edge (in which case there is no black interior vertex b satisfying eb = ew).

It follows from (4.6) that A is an almost perfect matching of G. It remains to show that
A is an almost perfect matching of G′. Recall that V (G′) = V (G). Let b be a black interior
vertex of G with outgoing strands labeled by p1, p2, . . . , pr ∈ τ ′. Thus the edge eb ∈ A is
labeled by {p1, pr}. Our goal is to show that the r-th entry yr of y := ζ(p1,p2,...,pr)(θ) is
nonzero. By Lemma 3.7, the entries of y are not all zero.

Let τ ∈ T̂ be a minimal by inclusion tube containing the residues of (p1, p2, . . . , pr) modulo

n. We first consider the case τ = P̃f . By (3.10), we have yr = sin(θ̃p1+n[τ ] − θ̃pr [τ ]). Thus

by (3.7), yr = 0 implies that either θ̃pr [τ ] = θ̃p1 [τ ] or θ̃pr [τ ] = θ̃p1 [τ ] + π. In the former case,

the vector y would be zero, a contradiction. Thus assume θ̃pr [τ ] = θ̃p1 [τ ] + π. Let

S := {p ∈ Z | θ̃p[τ ] = θ̃pr [τ ]}.

We see that S is a convex subset of P̃f containing both pr and p1 + n. Recall that S is a
disjoint union of tubes. Since pr ≺P̃f

p1+n, these two elements belong to the same connected

component τ− of S. By Definition 3.3, we must have τ− ∈ T. This is a contradiction: T∪{τ ′}
is a tubing, however, the tubes τ−, τ

′ ∈ T ∪ {τ ′} are neither nested nor disjoint. We have
shown that yr 6= 0 when τ = P̃f .

Assume now that τ ( P̃f is a proper tube. By choosing a particular representative in τ ,
we may assume that p1 ∈ τ . Since any two tubes in T∪{τ ′} are either nested or disjoint, and
since p1 ∈ τ ∩ τ ′, we must have τ ⊆ τ ′. (Because |τ ′| = n, we cannot have τ ′ ( τ .) It follows

that p1, p2, . . . , pr ∈ τ . Since τ ( P̃f , y is given by (3.11). In particular, yr = θ̃pr [τ ]− θ̃p1 [τ ].
By (3.7), yr = 0 implies y = 0, a contradiction. �

Proof of Theorem 4.1. By Proposition 4.8, the map Measf lands inside Gr(k, n). By Re-

mark 4.6, it extends the map Measf to C (P̃f ). Next, we show that it is continuous.

Let (θ(m))m>1 be a sequence of points in C (P̃f ) converging to θ ∈ C (P̃f ) as m→∞. Let
b be a black interior vertex of G of degree r. By Lemma 3.7, the map ζpG(b) is continuous on

C (P̃f ):

lim
m→∞

ζpG(b)(θ
(m)) = ζpG(b)(θ) inside RPr−1.

Thus, after applying gauge transformations to each wtθ(m) at black interior vertices, we get

lim
m→∞

wtθ(m)(e) = wtθ(e) for all e ∈ E(G).

(Recall that the weight of each boundary edge e is not affected by gauge transformations at
black interior vertices, and satisfies wtθ(m)(e) = wtθ(e) = 1 for all m.) By Proposition 4.8,
G′ admits an almost perfect matching, therefore Measf is continuous by Lemma 4.2.

It remains to show that Measf (C (P̃f )) = Crit>0
f . We see that the image of Measf is

compact (since C (P̃f ) is compact) and thus closed. Since the image contains Crit>0
f =

Measf (C ◦(P̃f )), it contains the closure Crit>0
f of Crit>0

f . On the other hand, Measf (C (P̃f ))

must be contained inside Crit>0
f because C (P̃f ) is the closure of C ◦(P̃f ). �



TOTALLY NONNEGATIVE CRITICAL VARIETIES 17

Definition 4.9. We endow Crit>0
f with a stratification obtained by taking the common

refinement of the images of all open faces of C (P̃f ).

Conjecture 4.10. For any two open faces CompT(P̃f ),CompT′(P̃f ) of C (P̃f ), their images
under Measf either coincide or are disjoint.

Below we prove this conjecture for f = fk,n.

5. Top cell and the second hypersimplex

We concentrate on the case of the top cell (f = fk,n), where 2 6 k 6 n − 1. We denote

Crit>0
k,n := Crit>0

fk,n
, P̃k,n := P̃fk,n , etc. Note that C (P̃k,n) ∼= Cn is just the standard (n − 1)-

dimensional cyclohedron of [BT94, Sim03]. Our goal is to prove Theorem 1.5.

5.1. From C (P̃k,n) to ∆2,n. Recall from Theorem 4.1 that Crit>0
k,n is the image of the cyclo-

hedron C (P̃k,n) under the map Meask,n : C (P̃k,n) → Crit>0
k,n. Our first goal is to introduce

a map φ : C (P̃k,n) → ∆2,n to the second hypersimplex and to show that Meask,n factors
through φ.

We start with a few preliminary observations and definitions.

Notation 5.1. For a, b ∈ Z with a 6 b, we set [a, b) := {a, a + 1, . . . , b− 1}. For a, b ∈ [n],
we introduce a cyclic interval [a, b) := {a, a + 1, . . . , b − 1} if a 6 b and [a, b) := {a, a +
1, . . . , n, 1, . . . , b− 1} if a > b. The intervals (a, b], [a, b] ⊆ Z (for a 6 b) and cyclic intervals
(a, b], [a, b] ⊆ [n] (for a, b ∈ [n]) are defined analogously.

Definition 5.2. An inscribed polygon (resp., degenerate inscribed polygon) is a polygon all
of whose vertices lie on a single circle (resp., on a single line).

We view (degenerate) inscribed polygons modulo transformations that preserve the ratios
of the distances between their vertices. We write R = (v1, v2, . . . , vm) for a polygon with
vertices v1, v2, . . . , vm given in cyclic order. The following result is well known.

Lemma 5.3. Let (a1, a2, . . . , am) ∈ Rm
>0 be such that ap 6

∑
q 6=p aq for all p ∈ [m]. Then

there exists a unique possibly degenerate inscribed polygon R = (v1, v2, . . . , vm) such that

|vp+1 − vp|
|vq+1 − vq|

=
ap
aq

for all p, q ∈ [m],

where we set vm+1 := v1. �

Thus, up to a common scalar, the diagonals of a possibly degenerate inscribed polygon may
be reconstructed from its sides.

Next, observe that the order �P̃k,n
coincides with the usual total order 6 on Z. In par-

ticular, p(n) := (1, 2, . . . , n) is a circular P̃k,n-chain. By Lemma 3.7, we therefore have a
continuous map

ζp(n)
: C (P̃k,n)→ RPn−1

>0 .

Definition 5.4. Let θ ∈ C (P̃k,n). We denote by Bθ the partition of Z into intervals

consisting of the tubes in B(θ[τ ]) for each minimal by inclusion τ ∈ T̂(θ) satisfying |τ | = n.
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In the above definition, either τ = P̃k,n or τ is a maximal proper tube, which in the

case of P̃k,n is just an interval of the form [p, p + n) ⊆ Z for some p ∈ Z. Thus B(θ[τ ])
forms a partition of τ into intervals. Considering Bθ modulo n, we get a partition B̄θ =
(B̄1, B̄2, . . . , B̄m) of [n] into m > 2 nonempty cyclic intervals.

Remark 5.5. Recall from Remark 1.1 that for θ ∈ C ◦(P̃k,n), setting vr := exp(2iθr) for
r ∈ [n] gives n distinct points v1, v2, . . . , vn on the unit circle ordered counterclockwise. The
map ζ◦p(n)

in this case records the side length ratios of the n-gon R = (v1, v2, . . . , vn). When

we pass to the boundary (θ ∈ C (P̃k,n)), some of these points will collide. If not all points
collide then the cyclic intervals in B̄θ = (B̄1, B̄2, . . . , B̄m) record precisely the groups of
collided points, and ζp(n)

(θ) records the side length ratios of the corresponding m-gon. If all

points collide then T(θ) contains a maximal proper tube τ . In this case, θ[τ ] records the
positions of n points on a line, the cyclic intervals in B̄θ record which groups of those points
collided together, and ζp(θ) records the side length ratios of the corresponding degenerate
inscribed m-gon.

Consider a map

ξ : RPn−1
>0 → Rn

>0, (x1 : x2 : · · · : xn) 7→ 2

x1 + x2 + · · ·+ xn
(x1, x2, . . . , xn).

We note that the entries of an element of RPn−1
>0 are nonnegative and at least one of them is

nonzero, thus their sum is strictly positive. The image of ξ belongs to the subspace of Rn
>0

where the sum of coordinates is equal to 2. Let

φ : C (P̃k,n)→ Rn
>0, φ := ξ ◦ ζp(n)

.

Proposition 5.6. The image of the map φ equals

∆2,n = {(y1, y2, . . . , yn) ∈ [0, 1]n | y1 + y2 + · · ·+ yn = 2}.
Proof. By Remark 5.5, the map ζ◦p(n)

records the side length ratios of an inscribed n-gon,

and thus its image is described by triangle inequalities:

ζ◦p(n)
(C ◦(P̃k,n)) = {(x1 : x2 : · · · : xn) ∈ RPn−1

>0 | 0 < xp <
∑
q 6=p

xq for each p ∈ [n]}.

Observe that 0 < xp <
∑

q 6=p xq is equivalent to 0 < 2xp <
∑n

q=1 xq. Substituting yp :=
2xp

x1+x2+···+xn , we get

φ(C ◦(P̃k,n)) = {(y1, y2, . . . , yn) ∈ Rn | 0 < yp < 1 for each p ∈ [n] and y1 +y2 + · · ·+yn = 2}.
The result follows by taking the closure. �

5.2. From ∆2,n to Crit>0
k,n. The goal of this section is to prove the following result.

Theorem 5.7. There exists a continuous map

ψ : ∆2,n → Crit>0
k,n

making the diagram (1.2) commutative.
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AL AM AR

BL BM BR

gB(p) = p+ 1

gB(p) = p+ n

|AL| = |BR| = ovL(A,B)

|AR| = |BL| = ovR(A,B)

Figure 7. The permutation gB described in Lemma 5.8.

Thus, Theorem 1.5 consists of Theorem 5.7 together with the statement that the map ψ
is a homeomorphism, which we prove in Section 5.4.

Let θ ∈ C (P̃k,n). Since Meask,n(θ) ∈ Gr>0(k, n), it must belong to some positroid cell Π>0
g ,

g ∈ B(k, n). We will see later (Proposition 5.14) that the bounded affine permutation g has
the following description. For a subset A ⊆ Z and p ∈ Z, we let A+p := {a+p | a ∈ A}. By
an n-periodic interval partition of Z we mean a collection B of disjoint nonempty intervals
in Z of size strictly less than n such that their union is Z and for each interval B ∈ B, we
have B + dn ∈ B for all d ∈ Z.

Lemma 5.8. For any n-periodic interval partition B of Z, there exists a unique loopless
gB ∈ B(k, n) of maximal length such that gB(B − k) = B for all B ∈ B.

Proof. We describe gB explicitly; see Figure 7. Let B ∈ B and denote A := B − k. Let

(5.1) ovL(A,B) := |(A+ n) ∩B| and ovR(A,B) := |(A+ 1) ∩B|.
We have ovL(A,B) + ovR(A,B) 6 |A| = |B| < n. Let AL consist of the smallest ovL(A,B)
elements of A, let AR consist of the largest ovR(A,B) elements of A, and let AM consist of
the remaining elements of A. Thus we have a partition A = AL t AM t AR into intervals.
Next, we partition B = BLtBM tBR into intervals given by BL = AR+1 and BR := AL+n.
For p ∈ AR, we let gB(p) := p + 1 ∈ BL, and for p ∈ AL, we let gB(p) := p + n ∈ BR. The
restriction of gB to AM is an order reversing bijection AM → BM . This ensures that gB has
maximal possible length among all loopless bounded affine permutations sending A to B.
It is also clear that gB ∈ B(k, n) (as opposed to B(k′, n) for some k′ 6= k) since it can be
obtained from fk,n by applying (affine) simple transpositions. �

Recall from Remark 4.7 that any choice of a graph G ∈ Gred(fk,n) gives rise to the same
map Meask,n. We will take advantage of this observation by using a particular graph Gk,n ∈
Gred(fk,n) called the Le-diagram graph; see Figure 8(a) for an example and [Pos06, Section 20]
for background.

Notation 5.9. All interior vertices of Gk,n have degree either 2 or 3. Each interior vertex
v belongs to one horizontal strand directed east, one vertical strand directed south, and
one diagonal strand directed northwest; see Figure 8(b). We denote the endpoints of these
strands by E(v), S(v),NW(v) ∈ [n], respectively. If a black vertex b has degree 2 then we
have NW(b) = S(b). If a white vertex w has degree 2 then we have NW(w) = E(w). We
denote by V•(Gk,n) the set of black interior vertices of Gk,n.
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b1

b2

b3

b4

b10 b9 b8 b7 b6 b5

b1

b2

b3

b6 b5 b4

w

b

S(w) = S(b)

E(w) = E(b)

NW(w)

NW(b)

(a) Le-diagram graph Gk,n for k = 4, n = 10 (b) Strands in Gk,n; see Notation 5.9

Figure 8. A Le-diagram graph and its strands.

Thus each b ∈ V•(Gk,n) is uniquely determined by E(b) and S(b), which are its vertical and
horizontal coordinates in the plane.

After a cyclic shift, we may assume that

(5.2) k and k + 1 belong to different intervals in Bθ.

Definition 5.10. An interval B ∈ Bθ is called special if it contains both n and n + 1. We
also refer to the corresponding cyclic interval B̄ ∈ B̄θ as special.

Clearly, Bθ contains at most one special interval.
Next, we consider the weighted graph (G′,wt′) obtained from Gk,n via Definition 4.5.

Definition 5.11. We say that b ∈ V•(Gk,n) is of type (1) (resp., type (2) or type (3)) if the
endpoints of the strands emanating from b belong to exactly one (resp., two or three) distinct
cyclic intervals in B̄θ.

Remark 5.12. If b is of type (3), all three edges of b are present in G′. Their weights coincide
with their weights in G, and can be computed from φ(θ); cf. Remark 5.5 and Lemma 5.3.
If b is of type (2), only two edges of b are present in G′. Their weights are equal, and after
a gauge transformation at b, can be made equal to 1. Finally, if b is of type (1), either two
or three edges of b are present in G′, and their weights cannot in general be computed from
φ(θ). See e.g. Figures 3 and 9.

Lemma 5.13. If B̄θ does not contain a special cyclic interval (in the sense of Definition 5.10)
then V•(Gk,n) contains no vertices of type (1). If B̄θ contains a special cyclic interval B̄ then
for each b ∈ V•(Gk,n), b is of type (1) if and only if S(b),E(b) ∈ B̄.

Proof. In order for b ∈ V•(Gk,n) to be of type (1), S(b),E(b),NW(b) must belong to some
cyclic interval B̄ ∈ B̄θ. But since S(b) ∈ [k + 1, n] and E(b) ∈ [k], B̄ must be special in
view of (5.2). Conversely, suppose that B̄ ∈ Bθ is special and S(b),E(b) ∈ B̄. Since B̄ is
of the form [n − h + 1, n] t [v] for some v ∈ [k] and h ∈ [n − k], S(b),E(b) ∈ B̄ implies
NW(b) ∈ B̄. �

Thus the set of type (1) vertices forms a top left justified h×v rectangle in Gk,n; see Figure 9
for an example.
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(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

b1

b2

b3

b4

b5

b6

b12 b11 b10 b9 b8 b7

h = 3

v = 5

type (1)

type (2)

type (2)

ovR(A,B)

h

ovL(A,B)

v

Figure 9. Left: an example for Lemma 5.13. Here k = 6, n = 12, and B̄θ

contains a special cyclic interval B̄ = [10, 5] = [10, 12] t [1, 5]. The strands
terminating in B̄ are shown in red. Type (1) black vertices are marked by (1).
Dashed edges are present in G but not in G′. Each of them is incident to a
black vertex of type (2). Right: regions of Gk,n containing vertices of types
(1) and (2) with respect to the special region B̄.

For the next result, we need to refer explicitly to the edges of Gk,n. Each black vertex
b ∈ V•(Gk,n) of degree 3 is incident to a northern, eastern, and southwestern edge labeled
by {S(b),NW(b)}, {E(b),NW(b)}, and {S(b),E(b)}, respectively; see Figure 8(b). Recall
from (5.2) that k and k+1 cannot both belong to the special interval in B̄θ. We let gθ := gBθ

be given by Lemma 5.8. Let us say that a self-loop is an edge of a graph connecting a vertex
to itself.

Proposition 5.14. If B̄θ does not contain a special cyclic interval then set G′′ := G′.
Otherwise, let B̄ be the special cyclic interval of B̄θ, and let G′′ be obtained from G′ in one
of the following two ways:

• (if k /∈ B̄) remove all black vertices of type (1) and their southwestern white neighbors;
• (if k + 1 /∈ B̄) contract all edges incident to black vertices of types (1) and (2) and

remove all self-loops in the resulting graph.

Let wt′′θ be the restriction of wt′θ to the edges of G′′. Then

(5.3) G′′ ∈ Gred(gθ) and MeasG′′(wt′′θ) = MeasG′(wt′θ).

For the example in Figure 9(left), we have k, k+1 /∈ B̄, so either of the two above procedures
yields a reduced graph G′′ satisfying the conditions in (5.3).

Proof. Consider a vertex b ∈ V•(Gk,n) of type (1) and let e be its southwestern edge. We
claim that wtθ(e) equals the sum of wtθ(e

′) over all other edges e′ of b. (In particular,
wtθ(e) > 0 so e is present in G′.) Indeed, this is clear if b has degree 2. If b has degree 3
then NW(b) belongs to the cyclic interval [S(b),E(b)]. Thus there exists a P̃k,n-circular chain
(p, q, r) such that p, q, r are equal respectively to S(b), NW(b), E(b) modulo n, and such that



22 PAVEL GALASHIN

p, q, r ∈ τ for some proper tube τ ∈ T(θ). This implies that wtθ(e) = wtθ(e
′) + wtθ(e

′′),
where e, e′, e′′ are labeled by {p, r}, {p, q}, and {q, r}, respectively.

Let B̄ := [n − h + 1, n] t [v] for v ∈ [k] and h ∈ [n − k]; see Figure 9. Assume first that
k /∈ B̄, thus v < k. Let b ∈ V•(Gk,n) be a vertex satisfying E(b) = v + 1 and S(b) ∈ B̄.
Then b is of type (2) with S(b),NW(b) ∈ B̄, and its northern edge labeled by {S(b),NW(b)}
is not present in G′. Thus the bottom left black vertex b of type (1) (defined by S(b) = n,
E(b) = v) is adjacent to a white vertex of degree 1 in G′. Applying a sequence of leaf
removals (Figure 4(middle)) starting with b and proceeding up and to the right, we remove
all black vertices of type (1) and their southwestern white neighbors.

Assume now that k + 1 /∈ B̄, thus h < n − k. Let b′ ∈ V•(Gk,n) be a vertex satisfying
S(b′) = n−h and E(b′) ∈ [2, v]. Then b′ is of type (2) with E(b),NW(b) ∈ B̄, and its eastern
edge labeled by {E(b),NW(b)} is not present in G′. For a connected subgraph H of G′,
let G′/H be obtained from G′ by contracting all edges in H and removing all self-loops in
the resulting graph. Initialize H to consist of all edges incident to vertices b ∈ V•(Gk,n) of
type (2). This includes the edges incident to black vertices at the top (E(b) = 1, S(b) ∈ B̄)
and the right (S(b) = n− h, E(b) ∈ B̄) boundaries of the (h+ 1)× v rectangle. Choose the
top right type (1) black vertex that is not a vertex of H. Its northern and eastern white
neighbors are in H. Let e, e′, e′′ be the edges of G incident to b as above (where one of e′, e′′

may not be present in G′), so that e is the southwestern edge. If both e′, e′′ are present
then their images in G′/H form a double edge. Applying a parallel edge reduction move
(Figure 4(left)), we transform this double edge into a single edge of weight wtθ(e

′)+wtθ(e
′′),

which, as we have shown above, equals wtθ(e). Thus the image of b in G/H is a vertex
of degree 2, and the two edges incident to it have the same weight. These two edges may
be contracted using a contraction-uncontraction move (Figure 5(left)). This corresponds
to adding e, e′, e′′ and their endpoints to H, and constitutes the induction step. Once all
type (1) vertices have been added to H, we arrive at G′/H = G′′.

A straightforward consequence of the above construction is that G′′ has strand permuta-
tion fG′′ = gθ and satisfies MeasG′′(wt′′θ) = MeasG′(wt′θ). Indeed, we have MeasG′′(wt′′θ) =
MeasG′(wt′θ) since (G′′,wt′′θ) was obtained from (G′,wt′θ) via a sequence of moves in Fig-
ures 4 and 5. To see that fG′′ = gθ, we first observe directly that fG′′(p) = p + n (resp.,
fG′′(p) = p + 1) if and only if gθ(p) = p + n (resp., gθ(p) = p + 1). Next, since our edge
removals taking G to G′ and reduction moves taking G′ to G′′ only involved edges labeled
by {p, q} where p, q belong to a single interval B̄′ of B̄, we have f−1

G′′ (B
′) = B′− k = g−1

θ (B′)
for any interval B′ ∈ B. Finally, it is clear that the contracted version of G′′ contains no
edge labeled {p, q} where p, q belong to the same cyclic interval in B̄. Thus no two strands
terminating at any given B′ form a crossing, so fG′′ coincides with gθ.

We further note that for any black interior vertex b ∈ V (G′′),

(5.4) the weights wt′′θ(e) of the edges e of G′′ incident to b are proportional to ζpG′′ (b)(θ).

Morally, the last property is close to the statement MeasG′′(wt′′θ) = Measgθ(θ), except that
we have not yet shown that G′′ is reduced, and we also have not defined the map Measg for
the case when g does not have a connected strand diagram (cf. Definition 2.4).

In order to complete the proof of the proposition, we need to show that G′′ is reduced. For
that, we will use the following well-known characterization [Pos06] of reduced graphs: G′′ is
reduced if and only if it has no isolated connected components and has exactly k(n − k) +
1− `(gθ) faces. It is not hard to check that G′′ has no isolated connected components. Since



TOTALLY NONNEGATIVE CRITICAL VARIETIES 23

Gk,n has k(n− k) + 1 faces, we need to show that our process above decreases the number of
faces precisely by `(gθ). Since each affine inversion of gθ involves two strands with endpoints
in the same interval of Bθ, it suffices to show, for each interval B of Bθ, that the number of
affine inversions involving indices from B matches the number of faces removed from G due
to deleting/contracting edges labeled by {p, q} for p, q ∈ B̄.

Let B ∈ Bθ, and let A := B− k. It follows from the proof of Lemma 5.8 that the number
of affine inversions of the restriction of gθ to A equals

(5.5)

(|B|
2

)
−
(

ovR(A,B)

2

)
−
(

ovL(A,B)

2

)
.

If B is not special then we see that (5.5) also describes the number of type (2) vertices
involving two indices in B̄. Indeed, if B is not special then either B̄ ⊆ [k + 1, n] or B̄ ⊆ [k].
In the former case, we have ovL(A,B) = 0 and the number of type (2) vertices involving

two indices in B equals
(|B|

2

)
−
(

ovR(A,B)
2

)
. In the latter case, we have ovR(A,B) = 0 and the

number of type (2) vertices involving two indices in B equals
(|B|

2

)
−
(

ovL(A,B)
2

)
. Each such

type (2) vertex is incident to an edge of G which is not present in G′. We therefore see that
in both cases, the number of faces decreases by the quantity given in (5.5).

We concentrate on the case where B is special, so assume B̄ = [n−h+1, n]t [v]. Either of
the two ways to reduce G′ to G′′ removes exactly h(v− 1) faces contained in the rectangular
region. (When k + 1 ∈ B̄, this includes joining the v − 1 boundary faces contained between
the boundary vertices bp for p ∈ [v] into a single boundary face.) Next, we count the number
of edges removed when passing from G to G′. All of them are adjacent to type (2) black
vertices, and are contained in two trapezoidal regions shown in Figure 9(right). The lower
left (resp., upper right) region is a trapezoid if ovR(A,B) > 0 (resp., ovL(A,B) > 0) and

a triangle if ovR(A,B) = 0 (resp., ovL(A,B) = 0). It contains
(
h+1

2

)
−
(

ovR(A,B)
2

)
(resp.,(

v
2

)
−
(

ovL(A,B)
2

)
) vertices of type (2) involving two indices in B. The result follows since

h(v − 1) +

(
h+ 1

2

)
+

(
v

2

)
=

(
h+ v

2

)
=

(|B|
2

)
. �

Proof of Theorem 5.7. By Definition 4.5, we have Measf (θ) = MeasG′(wt′θ), which equals
MeasG′′(wt′′θ) by Proposition 5.14. By Remark 5.12, the edge weights of G′′ may be computed
purely in terms of the side length ratios encoded in φ(θ). Thus Measf factors through φ.
Since φ is surjective, there exists a unique map ψ : ∆2,n → Crit>0

k,n making the diagram (1.2)

commutative. It remains to show that ψ is continuous. Letting X := C (P̃k,n), Y := ∆2,n,

and Z := Crit>0
k,n, we have maps X

φ−→ Y
ψ−→ Z such that the composition ψ ◦φ is continuous.

Choose a closed subset Z ′ ⊆ Z. Then X ′ := (ψ ◦ φ)−1(Z ′) is a closed subset of X. Observe
that X is compact while Y is Hausdorff, thus φ is closed. Therefore Y ′ := φ(X ′) is a
closed subset of Y . It follows from the surjectivity of φ that Y ′ = ψ−1(Z ′). Thus ψ is
continuous. �

5.3. Positroids and weak separation. Before we proceed with the final step of the proof,
we need to introduce some constructions related to positroids ; see [Pos06, OPS15] for back-
ground.

Let g ∈ B(k, n) be a bounded affine permutation. For q ∈ Z, let

(5.6) Ĩq := {g(p) | p ∈ Z is such that p < q 6 g(p)}.
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bj−1bj

t

j

r

wj wj−1

b

Figure 10. An Ij-arch; see Definition 5.15.

We set Ĩg = (Ĩq)q∈Z. For q ∈ [n], let Iq ∈
(

[n]
k

)
be obtained from Ĩq by reducing all elements

modulo n. The Grassmann necklace of g is the sequence Ig = (I1, I2, . . . , In). For each
q ∈ [n], consider a total order 6q on [n] given by q 6q q + 1 6q · · · 6q q − 1. For two sets
I = {i1 <q i2 <q · · · <q ik} and J = {j1 <q j2 <q · · · <q jk}, we write I 6q J if ir 6q jr
for all r ∈ [k]. The positroid Mg of g is defined as the collection of all J ∈

(
[n]
k

)
satisfying

Iq 6q J for each q ∈ [n].

We say that I, J ∈
(

[n]
k

)
are weakly separated [LZ98] if there do not exist indices 1 6 a <

b < c < d 6 n such that a, c ∈ I \ J and b, d ∈ J \ I or vice versa.
For G ∈ Gred(g) and j ∈ [n], we let wj denote the unique neighbor of the degree 1 boundary

vertex bj.

Definition 5.15. Let g ∈ B(k, n) and j, t ∈ [n]. Let r := ḡ(j − 1) ∈ [n]. (Here and below
the index j − 1 is taken modulo n.) Assume that t 6= j 6= r 6= t. We say that t touches
an Ij-arch (with respect to g) if there exists a contracted graph G ∈ Gred(g) such that the
boundary face of G between bj and bj−1 is a pentagon with vertices (bj, wj, b, wj−1, bj−1) for
some black interior vertex b, and such that the strand labeled t passes through the edges
connecting wj to b and b to wj−1. See Figure 10.

Our notion of an Ij-arch is closely related to the notion of a BCFW bridge; see [BCFW05,
AHBC+16, Lam16]. In fact, a bridge is a special case of an arch when either wj or wj−1 has
degree 2; compare Figure 10 to e.g. [Gal21a, Figure 7]. We now establish a useful criterion
for the existence of an Ij-arch.

Lemma 5.16. Let g ∈ B(k, n), j, t ∈ [n], r := ḡ(j − 1) be such that t 6= j 6= r 6= t. Then t
touches an Ij-arch if and only if the sets

(5.7) J := Ij ∪ {t} \ {j} and R := Ij ∪ {t} \ {r}
belong to Mg and are weakly separated from all sets in Ig.
Proof. We start with the if direction. Since Ij, J, R ∈ Mg, they are all of size k, and since
t 6= j 6= r 6= t, we have Ij 6= J 6= R 6= Ij. In particular, j, j− 1 are neither loops nor coloops.
(Otherwise, either j or r would appear in either none or all of the three sets Ij, J, R.) Clearly,
J and R are weakly separated from each other. Since they are also weakly separated from
all sets in Ig, by [OPS15, Theorem 1.5], there exists a contracted graph G ∈ Gred(g) such
that J,R appear as face labels of G. Here we label the faces of G ∈ Gred(g) by k-element sets
as follows: for each face F of G, the label of F contains s ∈ [n] if and only if F is to the left
of the strand terminating at bs.

Observe that |J ∪ Ij ∪ R| = |Ij ∪ {t}| = k + 1. Thus J, Ij, R belong to a non-trivial black
clique in the sense of [OPS15, Section 9]. In particular, the faces of G labeled J, Ij, R share
a black vertex b ∈ V (G).
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Since j, j − 1 are neither loops nor coloops, we have Ij−1 6= Ij 6= Ij+1. Suppose that
J 6= Ij+1. Then Ij, J, Ij+1 belong to a non-trivial white clique, and thus the corresponding
faces of G share a common white vertex, which, since G is contracted, equals wj. If J = Ij+1

then the two faces labeled by J and Ij still share the degree 2 vertex wj. Similarly, the faces
labeled by R and Ij share wj−1. By [OPS15, Lemma 9.2], Ij and J share an edge connecting
wj to b while Ij and R share an edge connecting wj−1 to b. The strand labeled t therefore
must pass through both of these edges, so t touches an Ij-arch.

The only if direction is a trivial consequence of the results of [OPS15]: if t touches an
Ij-arch then J,R appear as labels of the faces of G containing b, and therefore J,R belong
to Mg and are weakly separated from all sets in Ig by [OPS15, Theorem 1.5]. �

Next, we apply the above lemma to a particular class of permutations gB constructed in
Lemma 5.8.

Definition 5.17. An n-periodic interval partition B of Z is called generic if we have

|B| 6 min(k − 1, n− k) for all B ∈ B.

In other words, B is generic if and only if ovL(A,B) = ovR(A,B) = 0 for all B ∈ B and
A := B− k. Consequently, gB restricts to an order-reversing map A→ B for each such pair
(A,B). For the rest of this subsection, we fix some generic B. Recall from Notation 5.1 that
for p, q ∈ [n], [p, q) denotes the corresponding cyclic interval.

Lemma 5.18. Let [p, q) ∈ B̄ and r ∈ [p, q). Let j ∈ [n] be equal to p+ q − k − r modulo n.
Then the corresponding element of the Grassmann necklace IgB is given by

Ij := [j, p) t [r, q).

Moreover, every element of IgB appears in this way for a unique triple (p, q, r).

We note that such Grassmann necklaces have been previously studied in [FG18, Section 4.4].

Proof. Follows from (5.6) by direct observation. �

Definition 5.19. A set J ∈
(

[n]
k

)
is called right-aligned if for each [p, q) ∈ B̄, we have

J ∩ [p, q) = [r, q) for some r ∈ [p, q].

Lemma 5.20. Let J ∈
(

[n]
k

)
be right-aligned. Then J ∈MgB and J is weakly separated from

all sets in IgB.

Proof. Let Ij ∈ IgB . After a cyclic shift, we may assume j = 1, thus I1 = [1, p) t [r, q) for
some [p, q) ∈ B̄ with r ∈ [p, q). Our goal is to show that I1 61 J and that J is weakly
separated from I1. If J does not contain any elements in [p, r) then both claims are clear.
Otherwise, let I ′1 := [1, p), J ′ := J ∩ [1, p), I ′′1 := [r, q), and J ′′ := J ∩ [p, q), thus J ′′ contains
an element s ∈ [p, r). However, since [p, q) ∈ B̄ and J is right-aligned, we must have J ′′ ⊇ I ′′1 .
On the other hand, J ′ ⊆ I ′1, so I1 and J are weakly separated. Moreover, because |I1| = |J |
and J contains the last q − r elements of I1, we get I1 61 J . �

Corollary 5.21. Let j ∈ [n] and [s, s′) ∈ B̄ be such that Ij ∩ [s, s′) = ∅. Then t := s′ − 1
touches an Ij-arch with respect to gB.

Proof. Let Ij = [j, p) t [r, q) with r ∈ [p, q) ∈ B̄ be as in Lemma 5.18. Observe that
r = ḡB(j − 1). The sets J,R given by (5.7) are clearly right-aligned. By Lemma 5.20, they
satisfy the conditions of Lemma 5.16. �
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Corollary 5.22. Assume that k 6 n − 2. Let [p1, q1), [p2, q2), [p3, q3), [p4, q4) ∈ B̄ be four
distinct intervals, listed in clockwise order. Then there exists a contracted graph G ∈ Gred(gB)
containing a square face whose edges are labeled by {t1, t2}, {t2, t3}, {t3, t4}, {t1, t4} with
tj ∈ [pj, qj) for each j = 1, 2, 3, 4.

Proof. Consider all right-aligned subsets of [n] whose intersection with [pj, qj) is nonempty
for each j = 1, 2, 3, 4. Clearly, such subsets can have any size between 4 and n. Let I be such
a set of size k + 2, and for j = 1, 2, 3, 4, let I ∩ [pj, qj) = [tj, qj), where tj ∈ [pj, qj). The sets
I \ {ti, tj} for 1 6 i < j 6 4 are all right-aligned. Thus they belong to MgB and are weakly
separated from all elements of IgB by Lemma 5.20. The result follows by combining [OPS15,
Proposition 3.2] with [OPS15, Theorem 1.3]. �

5.4. Injectivity. Our final goal is to show that the map ψ : ∆2,n → Crit>0
k,n constructed

in Theorem 4.1 is injective, which is closely related to the injectivity conjecture for critical
cells; see [Gal21a, Conjecture 4.3]. It was proved for Crit>0

k,n in [Gal21a, Theorem 4.4]. What

we need is an extension of that result to the closure Crit>0
k,n of Crit>0

k,n which turns out to be
more subtle.

Theorem 5.23. The map ψ : ∆2,n → Crit>0
k,n is a homeomorphism.

Proof. Since ∆2,n is compact, Crit>0
k,n is Hausdorff, and ψ is a continuous surjection, it remains

to show that ψ is an injection. Thus for θ ∈ C (P̃k,n), our goal is to show that the point
φ(θ) ∈ ∆2,n can be uniquely reconstructed from Meask,n(θ) ∈ Crit>0

k,n. Let Bθ, gθ, G
′′ ∈

Gred(gθ), and wt′′θ be as in Section 5.2 and Proposition 5.14.
First, observe that Bθ need not be generic in the sense of Definition 5.17 since gθ may have

some coloops and some indices j ∈ Z satisfying gθ(j) = j + 1. The corresponding strands
form isolated connected components of the reduced strand diagram of gθ. We remove these
components using the factorization procedure from [Gal21a, Section 4.4]. Thus the problem
reduces to the case where Bθ is generic, which allows us to apply the results of Section 5.3.

Let B̄ = (B̄1, B̄2, . . . , B̄m). The point φ(θ) records the side length ratios of a (possibly
degenerate) inscribed m-gon Rθ. For p, q ∈ [m], let dθ(p, q) denote the distance between
the corresponding vertices of Rθ. The ratio of any two such distances can be computed
from φ(θ); see Remark 5.5. Recall from (5.4) that the edge weights of the graph G′′ are
proportional to the distances between the vertices of Rθ. More precisely, if an interior (that
is, not incident to a boundary vertex) edge e of G′′ is labeled by {s, t} then s ∈ B̄p and t ∈ B̄q

belong to different cyclic intervals in B̄θ, and the weight wt′′θ(e) is proportional (compared
to the other edges sharing a black vertex with e) to dθ(p, q).

As explained in [Gal21a, Section 9], for any face F of G′′, the alternating ratio of the edge
weights that appear on the boundary of F may be reconstructed from Meask,n(θ) using the
left twist of Muller–Speyer; see [MS17, Corollary 5.11]. We will be interested in two kinds
of faces of G′′: Ij-arches as in Definition 5.15 and interior square faces as in Corollary 5.22.

Let s, t ∈ [m] and j ∈ B̄s be such that Ij ∩ B̄t = ∅. By Corollary 5.21, some element in B̄t

touches an Ij-arch. Then for r ∈ [m] such that ḡθ(j − 1) ∈ B̄r, we find that the ratio

(5.8)
dθ(s, t)

dθ(r, t)

may be recovered from Meask,n(θ).
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Similarly, assume k 6 n− 2 and let B̄p, B̄q, B̄t, B̄s ∈ B̄ be four distinct intervals listed in
clockwise order. Then by Corollary 5.22, the cross-ratio

(5.9)
dθ(p, q) · dθ(t, s)
dθ(q, t) · dθ(p, s)

may be recovered from Meask,n(θ). In fact, since the four corresponding vertices of Rθ lie
on a circle or on a line, the ratios

(5.10) (dθ(p, q) · dθ(t, s)) : (dθ(p, t) · dθ(q, s)) : (dθ(p, s) · dθ(q, t))

can all be recovered from Meask,n(θ) using standard relations for cross-ratios.
Recall that we have B̄ = (B̄1, B̄2, . . . , B̄m). Consider a directed graph D on [m] with edges

s → r whenever there exists j ∈ B̄s such that ḡθ(j − 1) ∈ B̄r. Thus the ratio in (5.8) may
be recovered from Meask,n(θ) for all t ∈ [r + 1, s− 1]. Clearly, each vertex of D has at least
one outgoing arrow. Moreover, since B̄ is generic, we see that each vertex s of D has an
outgoing arrow s→ r for r 6= s, s− 1 (modulo m). Finally, by comparing ḡθ(j) to ḡθ(j + 1),
we see that if D has an arrow s → r then D also has at least one of the following arrows:
s→ r + 1, s+ 1→ r, s+ 1→ r + 1.

By Lemma 5.3, it suffices to recover the ratio dθ(s, s− 1) : dθ(s− 1, s− 2) from Meask,n(θ)
for each s ∈ [m]. This task is trivial when k = n− 1, thus let us assume that k 6 n− 2. As
shown above, there exists r 6= s, s − 1 such that D contains an arrow s → r. If r = s − 2
then we are done, thus assume r 6= s, s− 1, s− 2 and let t ∈ [r + 2, s− 1]. We know that D
contains another arrow s′ → r′ for s′ ∈ {s, s+ 1}, r′ ∈ {r, r+ 1}. From (5.8), we recover the
ratios

(5.11) dθ(s, t) : dθ(r, t), dθ(s, r
′) : dθ(r, r

′), dθ(s
′, t) : dθ(r

′, t), dθ(s
′, s) : dθ(r

′, s),

some of which may coincide or be equal to 1 if s = s′ or r = r′.
Suppose first that s′ = s+ 1 and r′ = r + 1. Using (5.10), we recover the ratios

(5.12)
(dθ(s, s+ 1) · dθ(r, r + 1)) : (dθ(s, r) · dθ(s+ 1, r + 1)) : (dθ(s, r + 1) · dθ(s+ 1, r)),

(dθ(s+ 1, r) · dθ(r + 1, t)) : (dθ(s+ 1, r + 1) · dθ(r, t)) : (dθ(s+ 1, t) · dθ(r, r + 1)).

Combining (5.11) with (5.12), we recover

dθ(s, s+ 1) : dθ(s+ 1, r) : dθ(r, r + 1) : dθ(s, r + 1).

By Lemma 5.3, we recover the (possibly degenerate) inscribed quadrilateral with vertices
s, s + 1, r, r + 1. The cases s′ = s, r′ = r + 1 and s = s + 1, r′ = r are handled similarly.
In the former case, we recover the inscribed triangle with vertices s, r, r + 1, and in the
latter case, we recover the inscribed triangle with vertices s, s + 1, r. (When we say “we
recover a polygon” we mean that the ratio of any two of its side lengths may be recovered
from Meask,n(θ).) Thus we have recovered a possibly degenerate inscribed polygon R whose
vertex set Vert(R) contains s and r. By (5.8), for each t′ ∈ [r + 1, s − 1], we recover
the ratio dθ(s, t) : dθ(r, t), and thus the possibly degenerate inscribed polygon with vertex
set Vert(R) ∪ [r, s] is recovered. In particular, the ratio dθ(s, s− 1) : dθ(s− 1, s− 2) is
recovered. �
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