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Abstract. We show that braid varieties for any complex simple algebraic group G are cluster vari-
eties. This includes open Richardson varieties inside the flag variety G/B.

1. Introduction

This is one of two papers concerned with the construction of cluster structures on braid varieties.
In the present paper, we work in the setting of a general simple algebraic group G and construct
cluster seeds using algebraic geometry. In the companion paper [GLSBS22], joint with David Speyer,
we give an alternative proof in the special case G= SLn, using the combinatorics of plabic graphs
and surfaces. The current work is logically independent of [GLSBS22], which, however, ultimately
produces the same cluster structure in the case G=SLn.

Let G be a complex, simple, simply-connected algebraic group, B± opposing Borel subgroups, U±
their unipotent radicals,H :=B+∩B− the torus, I the vertex set of the Dynkin diagram,W the Weyl
group with simple generators si,i∈I, and denote by ẇ the lift of w∈W to G as in (2.1). Let w◦∈W
denote the longest element and i 7→ i∗ the action of w◦ on I. Let αi,α

∨
i ,ωi for i∈ I denote the simple

roots, simple coroots, fundamental weights, respectively, and let A=(aij)i,j∈I be the Cartan matrix
given by aij :=〈αi,α∨j 〉. Denote di :=2/(αi,αi) so that diaij =djaji.

1.1. Double braid varieties. A double braid word β= i1i2···im is a word in the alphabet ±I. For
i∈I, we set (−i)∗ :=−i∗. For i∈±I, define

(1.1) s+
i :=

{
si, if i>0,

id, if i<0,
s−i :=

{
id, if i>0,

s−i, if i<0.

A weighted (or framed) flag is an element F = gU+ ∈ G/U+. Two weighted flags (F,F ′) are
weakly w-related (resp., strictly w-related) if there exist g ∈ G and h ∈ H (resp., g ∈ G) such that

(gF,gF ′)=(U+,hẇU+) (resp., (gF,gF ′)=(U+,ẇU+)). We write this as F
w

=⇒F ′ (resp., F
w−→F ′).

Suppose that the Demazure product of β is w◦; see (2.4). We consider the set
◦
Yβ of tuples (X•,Y•)

of weighted flags satisfying the relative position conditions

(1.2)

X0 X1 ··· Xm

Y0 Y1 ··· Ym.

s+i1
s+i2 s+im

s−
i∗1

w◦

s−
i∗2

s−
i∗m
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The groupG acts on
◦
Yβ by acting on each individual weighted flag, and this action is free. The double

braid variety
◦
Rβ :=

◦
Yβ/G is defined as the quotient of

◦
Yβ modulo thisG-action. It is a smooth, affine,

irreducible complex algebraic variety (Proposition 2.5).
Double braid varieties include open Richardson varieties [Rie98, KLS14, Lec16], open positroid

varieties [KLS13], double Bott-Samelson cells [SW21], the strata in [WY07], and the braid varieties
of [Mel19, CGGS24]; see [GLSBS22] for further discussion. Braid varieties have deep connections to
knot theory, as their cohomology recovers part of the Khovanov–Rozansky homology [KR08, Kho07]
of the associated link [GL20, Tri21, CGGS21].

For each β, we construct a cluster seed Σβ. Our main result settles conjectures of [Lec16, CGGS21]
and generalizes work of [BFZ05, GL23, Ing19, SW21].

Theorem 1.1. The coordinate ring of
◦
Rβ is isomorphic to the cluster algebra Aβ=A(Σβ).

It would be interesting to compare our construction and the cluster-categorical approach of [GLS06,
BIRS09, Lec16, Mén22, CK22], as was done in type A in [SSB24].

Remark 1.2. At the final stages of completing our construction, we learned that a cluster struc-
ture for braid varieties was independently announced in a recent preprint [CGG+22]. We thank the
authors of [CGG+22] for updating us on their progress. It would be interesting to understand the
relation between our approach and their Legendrian-geometric viewpoint.

One application of Theorem 1.1 is that a curious Lefschetz theorem (see [HRV08, LS22], [GLSBS22,
Theorem 10.1], and [GL20, Theorem 1.5]) holds for double braid varieties; see Theorem 6.8. In the
case of open Richardson varieties, this implies that the doubly-graded extension group ExtO(Mw,Mv)
of two Verma modules in Category O satisfies curious Lefschetz; cf. [GL20, Section 1.11].

1.2. Cluster variables and Deodhar geometry. To construct a cluster structure on
◦
Rβ, we

need to identify certain regular functions on
◦
Rβ as (initial) cluster variables, and then construct the

exchange matrix B̃, or quiver, of the initial seed. In previous works [Sco06, GL23, BFZ05, SW21]
establishing cluster structures on the Grassmannian, positroid varieties, double Bruhat cells and dou-
ble Bott Samelson cells, the cluster variables are (generalized) minors of some kind. Determinantal
identities satisfied by the minors become exchange relations in the cluster algebra. A fundamental
obstacle, already pointed out by Leclerc [Lec16], to extending these constructions to open Richardson
varieties or braid varieties, is that the (generalized) minors are no longer irreducible elements of the

coordinate ring C[
◦
Rβ].

In the present work, we construct cluster variables using Deodhar geometry ; see Section 2 for details

and [GLSBS22, Gal23] for examples.1 We introduce an open dense algebraic torus Tβ ⊂
◦
Rβ called

the Deodhar torus, so named for its relation to the Deodhar decomposition of Richardson varieties
[Deo85, MR04]. It is defined by requiring the weighted flags Xc,Yc to be weakly wc-related, where

wc∈W is maximal possible subject to (1.2) (for each c=0,1,...,m). The complement
◦
Rβ\Tβ is a union

of irreducible mutable Deodhar hypersurfaces {Vc |c∈Jmut
β }. We define a partial compactification of

◦
Rβ so that the complement of Tβ in it also includes frozen Deodhar hypersurfaces {Vc | c∈J fro

β }. We

let Jβ :=J fro
β tJmut

β . The following definition, suggested by David Speyer, is key to our approach.

Proposition-Definition 1.3. For c∈ Jβ, define the cluster variable xc to be the unique character
of Tβ that vanishes to order one on Vc and has neither a pole nor a zero on Ve for e ∈ Jβ \{c}. We
denote the cluster by xβ={xc}c∈Jβ .

We show that the cluster variables thus defined form a basis of the character lattice of Tβ, and that

they extend to regular functions on the braid variety
◦
Rβ. A particular set of generalized minors also

1To compare our quivers to the quivers in [GLSBS22, Gal23], all arrows need to be reversed.



BRAID VARIETY CLUSTER STRUCTURES, II: GENERAL TYPE 3

form a basis of the character lattice of Tβ; the two sets of functions are related by an upper-triangular
monomial transformation. Since Deodhar hypersurfaces are irreducible, cluster variables are the
irreducible factors of these generalized minors.

1.3. Exchange matrix. In earlier works on the construction of cluster structures, the exchange
matrix B̃ is obtained directly from the combinatorics of planar bipartite graphs [Pos06, Sco06, GL23]
or double wiring diagrams [BFZ05, SW21], and can be defined using “local contributions” from each

edge or each crossing, respectively. Our construction of B̃ uses similar combinatorics, but in addition
we must take into account the monomial transformation between cluster variables and generalized
minors.

In the spirit of Fock and Goncharov [FG06], the exchange matrix B̃ is equivalent to the datum of

a 2-form ωβ on
◦
Rβ. We define ωβ in terms of generalized minors as a sum of local contributions for

each letter of the double braid word β. We introduce integers dβ = (dc)c∈Jβ and then expand ωβ in
the basis of cluster variables:

(1.3) ωβ=
∑

c,e∈Jβ : c≤e
deB̃cedlogxc∧dlogxe=

∑
c,e∈Jβ : c≤e

dcB̃ecdlogxe∧dlogxc.

The coefficients B̃ce define a Jβ×Jmut
β integer matrix B̃ :=(B̃ce) . The principal Jmut

β ×Jmut
β part of

the matrix B̃ is skew-symmetrizable, with symmetrizer diag(dc |c∈Jmut
β ). Therefore Σβ :=(xβ,B̃) is

a seed of a cluster algebra A(Σβ). The content of Theorem 1.1 is that A(Σβ)=C[
◦
Rβ].

The factorization of generalized minors into cluster variables, and thus the exchange matrix B̃ it-
self, is difficult to describe directly in a combinatorial manner. In the case G=SLn, we described the
factorization in [GLSBS22] using the combinatorics of 3D plabic graphs. In this work, we approach it
geometrically, via orders of vanishing of the minors on Deodhar hypersurfaces. In Section 7, we give
an algorithm, implemented in [Gal23], for computing these orders of vanishing — and thus the entire
cluster seed — using only root-system combinatorics.

1.4. Deletion-contraction induction. Our proof of Theorem 1.1 is inductive. We introduce in
Section 3.2 a deletion-contraction recurrence in the context of cluster varieties, which serves as the
main ingredient of the inductive step. Let X be an algebraic variety and let Σ be a cluster seed on X.
Consider a sink in the mutable part of the quiver, with corresponding cluster variable x. We consider
two subvarieties W :={x 6=0} and V :={x=0} of X. We show in Theorem 3.13 that if both V and W
are cluster varieties, and if some technical assumptions on X and Σ are satisfied, then X is a cluster
variety. We expect that deletion-contraction can be applied in situations beyond braid varieties.

We apply deletion-contraction to
◦
Rβ when β= iiβ′ starts with a repeated letter; the braids iβ′ and

β′ correspond to deletion and contraction, respectively. To transform an arbitrary braid word β to one
of this form, we utilize double braid moves β∼β′ on double braid words that induce natural isomor-

phisms
◦
Rβ∼=

◦
Rβ′ . The full flexibility of these moves is the reason we consider double braid words and

varieties here. Every double braid variety is isomorphic to some braid variety of [Mel19, CGGS24],
but using double braid words rather than usual braid words gives us access to more seeds.

In Theorem 4.2, we prove the key feature of double braid moves β ∼ β′: under the isomorphism
◦
Rβ ∼=

◦
Rβ′ the corresponding seeds Σβ and Σβ′ are related by mutation. In Section 4, we prove The-

orem 4.2 in the simply-laced case (i.e., for G of type A, D, E); the seeds Σβ and Σβ′ either coincide
or are related by a single mutation. The proof of Theorem 4.2 in the multiply-laced case is achieved
via folding in Sections 5 and 6; the seeds Σβ and Σβ′ are related by a sequence of mutations.

Acknowledgments. We are indebted to David Speyer for his contributions to this project. We
thank Roger Casals, Eugene Gorsky, and Daping Weng for inspiring conversations. We are grateful
to the anonymous referees for their valuable feedback on the first version of the manuscript.
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2. Deodhar geometry

We discuss the geometry of the double braid variety
◦
Rβ with the goal of defining a cluster seed

on it. The ingredients of a cluster seed were outlined in Section 1.2. In Section 2.4, we construct a

Deodhar torus Tβ⊂
◦
Rβ. In Section 2.8, we introduce a family xβ ={xc}c∈Jβ of cluster variables and

show that they are regular functions on
◦
Rβ. Finally, in Section 2.9, we introduce a 2-form ωβ on Tβ

from which the B̃-matrix can be extracted via (1.3).

2.1. Background. For each i∈I, we fix a group homomorphism

φi :SL2→G,

(
1 t
0 1

)
7→xi(t),

(
1 0
t 1

)
7→yi(t),

where xi(t),yi(t) are the exponentiated Chevalley generators. The data (H,B+,B−,xi,yi;i∈ I) is a
pinning of G; see [Lus94, Section 1.1].

Let Φ be the root system of G, with positive roots Φ+ corresponding to B+. Let X∗(H) :=
Hom(H,C×) be the character lattice of H and X∗(H) :=Hom(C×,H) be the cocharacter lattice of H.
Let {αi}i∈I ⊂X∗(H) (resp., {α∨i }i∈I ⊂X∗(H), {ωi}i∈I ⊂X∗(H)) be the simple roots (resp., simple
coroots, fundamental weights) of Φ+. We have a natural pairing 〈·,·〉 :X∗(H)×X∗(H)→Z satisfying
〈ωi,α∨j 〉=δij and 〈αi,α∨j 〉=aij , where A=(aij)i,j∈I is the Cartan matrix of G.

Let the Weyl group W have simple generators {si}i∈I , length function `(·), and identity id∈W .
For i∈I, we set

ṡi=si :=φi

(
0 −1
1 0

)
, ṡ−1

i =si :=φi

(
0 1
−1 0

)
.

For a reduced expression w=si1si2 ···sil , where l=`(w), we set

(2.1) ẇ=w :=si1 ·si2 ···sil , w :=si1 ·si2 ···sil .
The resulting product does not depend on the choice of the reduced expression. For u∈W and h∈H,

we set u·h := u̇hu̇−1 =uhu−1 =uhu
−1

. We also consider elements

(2.2) zi(t) :=φi

(
t −1
1 0

)
=xi(t)ṡi, z̄i(t) :=φi

(
t 1
−1 0

)
=xi(−t)ṡ−1

i .

For each w∈W , it is well known [Hum75, Proposition 28.1] that the multiplication map gives rise
to an isomorphism

(2.3) (ẇ−1U+ẇ∩U−)×(ẇ−1U+ẇ∩U+)
∼−→ ẇ−1U+ẇ.

2.2. Weighted flags. Recall from Section 1.1 that a weighted flag is an element F = gU+ ∈G/U+.
Associated to a weighted flag F is the flag π(F )=gB+, the image of F in G/B+.

The following elementary facts can be found in e.g. [SW21, Appendix]; see also [GLSBS22, Sec-
tion 6.2].

Lemma 2.1. Let F,F ′,F ′′ be weighted flags. Suppose v,w∈W with `(vw)=`(v)+`(w).

(1) F
id−→F ′ if and only if F =F ′.

(2) If F
v−→F ′

w−→F ′′, then F
vw−→F ′′.

(3) If F
vw−→F ′′, then there exists a unique F ′ such that F

v−→F ′
w−→F ′′. If F

vw
=⇒F ′′ then there

exist unique F ′1,F
′
2 such that F

v−→F ′1
w

=⇒F ′′ and F
v

=⇒F ′2
w−→F ′′.

Lemma 2.2. Suppose F
si−→ F ′ and say F = gU+. Then there exists a unique t ∈ C such that

F ′=gzi(t)U+. Similarly, if F ′=g′U+, there exists a unique t′∈C such that F =g′z̄i(t
′)U+. The maps

(g,F ′) 7→ t and (g′,F ) 7→ t′ are regular on the appropriate subvarieties of G×G/U+.

Lemma 2.3. Suppose F
v

=⇒ gU+
si−→ gzi(t)U+ and F

w
=⇒ gzi(t)U+. If vsi>v, then w= vsi for all

t∈C. If vsi<v, then there exists t∗∈C such that w=vsi for t= t∗ and w=v for t∈C\{t∗}.
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2.3. Distinguished subexpressions. To define the Deodhar torus of
◦
Rβ, we need the following

combinatorics.
Fix β= i1i2...im∈ (±I)m. We write [m] :={1,2,...,m} and [0,m] :={0,1,...,m}. Recall the notation

s+
i and s−i from (1.1).

Given two elements u, v ∈ W with u ≤ v in the Bruhat order, we write max(u, v) := v and
min(u,v) :=u. We also define u∗si :=max(u,usi). The Demazure product of β is defined by
(2.4) δ(β) :=s−im∗s

−
im−1
∗···∗s−i1∗s

+
i1
∗s+

i2
∗···∗s+

im
∈W.

From now on, we assume that δ(β)=w◦.

Definition 2.4. A w◦-subexpression of β is a sequence u=(u0,u1,...,um)∈Wm+1 such that u0 =id,
um =w◦, and such that for each c ∈ [m], we have either uc−1 = uc or uc−1 = s−icucs

+
ic

. Since δ(β) =
w◦ there exists a unique “rightmost” subexpression, called the positive distinguished subexpression;
see [MR04, Lemma 3.5]. It is given by um :=w◦ and uc−1 :=min(uc,s

−
ic
ucs

+
ic

) for all c=m,m−1,...,1.

From now on, we fix u = (u0,u1, ... ,um) to be the positive distinguished w◦-subexpression of β.
We also define wc :=w◦uc for c∈ [0,m] and w =w◦u := (w0,w1,...,wm). Note that w0 =w◦. We set
Jβ :={c∈ [m] |uc=uc−1}. We refer to the indices in Jβ as solid crossings and to the indices in [m]\Jβ
as hollow crossings. We denote d(β) :=m−`(w◦)= |Jβ|.
2.4. Double braid varieties and the Deodhar torus. Recall that

◦
Yβ :={(X•,Y•)∈(G/U+)[0,m]×(G/U+)[0,m] |(X•,Y•) satisfy (1.2)}

and that G acts on
◦
Yβ by acting on each weighted flag.

Proposition 2.5. The G-action on
◦
Yβ is free. The quotient

◦
Rβ :=

◦
Yβ/G is a smooth, affine, irre-

ducible complex algebraic variety of dimension d(β).

Proof. We repeat the argument from [GLSBS22, Proposition 6.13]. Consider the space of tuples of
weighted flags satisfying

(2.5)

X0 =U+ X1 ··· Xm

Y0 Y1 ··· Ym

s+i1
s+i2 s+im

s−
i∗1

s−
i∗2

s−
i∗m

id

This space is an iterated C-bundle and is thus affine. Imposing the condition that U+ and Y0 are
weakly w◦-related (that is, Y0∈B+w◦B+ =U+w◦B+) cuts out a nonempty smooth affine open subset

V of the iterated C-bundle. The braid variety
◦
Rβ is the quotient of V by the diagonal action of

U+ =StabG(U+). The group U+ acts freely on U+ẇ0B+ and thus acts freely on V . It follows that the

quotient
◦
Rβ is also smooth and affine; it is also clearly irreducible. Explicitly, one may fix theU+-action

by identifying
◦
Rβ with the subvariety of V where Ym∈w◦B+, which is the viewpoint of [CGGS24].

For the dimension, note that

dim(
◦
Yβ)=dim(G/U+)+m=dim(G)−`(w◦)+m,

so dim(
◦
Rβ)=dim(

◦
Yβ)−dim(G)=m−`(w◦)=d(β). �

LetYβ be a partial compactification of
◦
Yβ obtained by removing the conditionX0

w◦⇐=Y0 from (1.2).

Definition 2.6. Let T̃β⊂Yβ be the set of tuples (X•,Y•)∈Yβ satisfying

(2.6) Xc
wc⇐=Yc for c∈ [0,m].

Since w0 =w◦, we have T̃β ⊂
◦
Yβ and thus G acts freely on T̃β. Define the Deodhar torus Tβ ⊂

◦
Rβ to

be the quotient Tβ := T̃β/G.

We will show in Corollary 2.10 below that Tβ is indeed a d(β)-dimensional algebraic torus.
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Lemma 2.7. The subsets T̃β⊂
◦
Yβ are open dense in Yβ.

Proof. We can parameterize the varietyYβ as follows. We choose an arbitrary weighted flagXm=Ym,
and then for c=m,m−1,...,1, assuming (Xc,Yc)=(gcU+,g

′
cU+), we set (cf. Lemma 2.2)

(2.7) (Xc−1,Yc−1) :=

{
(gczic(t

′
c)U+,g

′
cU+), if ic>0,

(gcU+,g
′
cz̄|ic|∗(t

′
c)U+), if ic<0,

for arbitrary parameters t′ :=(t′1,t
′
2,...,t

′
m)∈Cm.

For (X•,Y•) to be a point in T̃β, (2.6) needs to be satisfied for each c∈ [0,m]. It is clearly satisfied
for c=m. If it is satisfied for some solid index c∈ [m], then it will be satisfied for c−1 if and only if
the parameter t′c is not equal to the value t∗ from Lemma 2.3. If the index c∈ [m] is instead hollow

and (2.6) is satisfied for c it will be satisfied for c−1 regardless of the value of t′c. Thus, T̃β is indeed

an open dense subset of Yβ. Since T̃β ⊂
◦
Yβ,

◦
Yβ is dense in Yβ. Since

◦
Yβ is cut out of Yβ by an open

condition X0
w◦⇐=Y0, it is open in Yβ. �

2.5. H-valued functions. Recall thatH=B+∩B− is the Cartan torus ofG. Over the next sections,

we will discuss various functions on Tβ and
◦
Rβ. To do so, it is convenient to introduce a regular map

Tβ→H. We also use this map in this section to show that Tβ is an algebraic torus.

Given (X•, Y•) ∈
◦
Rβ, let Zc := Y −1

c Xc ∈ U+\G/U+. Abusing notation, we use double cosets
Zc∈U+\G/U+ interchangeably with their representatives in G. For (X•,Y•)∈Tβ, Zc belongs to the

Bruhat cell
◦
Xwc :=B+wcB+ =U+wcHU+ of G.2 There exist unique elements h+

c ,h
−
c ∈H satisfying

(2.8) Zc∈U+ẇch
+
c U+, Zc∈U+w◦h

−
c ucU+, thus, h−c =uc ·h+

c .

The third statement follows from the first two since ẇc =w◦ ·uc and uc ·h+
c = uch

+
c uc

−1
. The map

(X•,Y•) 7→h±c is a rational H-valued function on
◦
Rβ (resp., on Yβ), regular on Tβ (resp., on T̃β).

Lemma 2.8. There exist rational functions (tc)c∈Jβ on
◦
Rβ such that for c∈ [m],

(2.9) h+
c−1 =

{
sic ·h+

c , if c is hollow, ic∈I;

α∨ic(tc)h
+
c , if c is solid, ic∈I;

h−c−1 =

{
s|ic| ·h−c , if c is hollow, ic∈−I;

α∨|ic|(tc)h
−
c , if c is solid, ic∈−I.

Proof. Fix (X•, Y•) ∈ Tβ. For c ∈ Jβ, define tc to be such that if Zc = ẇch
+
c = w◦h

−
c uc then

Zc−1 =Zczic(tc) if ic∈ I and Zc−1 = z̄|ic|∗(tc)
−1Zc if ic∈−I; see Lemma 2.2. The following identities

in G can be checked inside SL2:

(2.10) xi(t)ṡi=yi(1/t)α
∨
i (t)xi(−1/t) and ṡixi(t)=xi(−1/t)α∨i (1/t)yi(1/t).

Suppose that ic ∈ I. We have Zc−1 = ẇch
+
c xic(tc)ṡic . If c is hollow then ẇch

+
c xic(tc) ∈ U+ẇch

+
c ,

and thus Zc−1∈U+ẇcṡic(sic ·h+
c ). This implies that h+

c−1 = sic ·h+
c . If c is solid then we use the first

identity in (2.10) to write Zc−1 = ẇch
+
c yic(1/tc)α

∨
ic

(tc)xic(−1/tc). Since ẇch
+
c yic(t)∈U+ẇch

+
c , we see

that Zc−1∈U+ẇch
+
c α
∨
ic

(tc)U+, which implies that h+
c−1 =h+

c α
∨
ic

(tc).
The case when ic ∈−I is handled similarly. When c is solid, we use the second identity in (2.10)

together with α∨|ic|∗(1/tc)w◦=w◦α
∨
|ic|(tc); see [FZ99, Equation (1.2)]. �

Corollary 2.9. Suppose c is hollow. If ic∈I then h−c−1 =h−c , and if ic∈−I then h+
c−1 =h+

c .

Corollary 2.10. The Deodhar torus Tβ⊂
◦
Rβ is isomorphic to an algebraic torus of dimension d(β),

and the functions (tc)c∈Jβ form a basis of the character lattice of Tβ.

Proof. For c∈ Jβ, the function tc is regular on Tβ by Lemma 2.2. With notation as in the proof of
Lemma 2.8, we have Zc = ẇch

+
c = w◦h

−
c uc and Zc−1 = Zczic(tc) if ic ∈ I and Zc−1 = z̄|ic|∗(tc)

−1Zc

2Here and below, we omit the dot over ẇc in products such as B+wcB+ that involve multiplying ẇc by a subgroup
of G containing H.
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if ic ∈ −I. It follows that tc 6= 0 if and only if Zc−1 ∈
◦
Xwc−1 =

◦
Xwc (thus, t∗ = 0 in the notation of

Lemma 2.3). Thus, we get a regular map Tβ→(C×)Jβ , (X•,Y•) 7→(tc)c∈Jβ .
To show that this map is an isomorphism, we construct the inverse: given (tc)c∈Jβ , we explain

how to recover (X•,Y•) ∈ Tβ. We have h+
m = h−m = 1 ∈H, and for c=m−1,m−2,...,0, we recover

h+
c ,h
−
c using (2.9). Next, since (X•,Y•) is defined up to G-action, we may assume that Y0 =U+ and

X0 = ẇ◦h
+
0 . Suppose that for c = 1,2, ... ,m, (Xc−1,Yc−1) has been recovered. If c is hollow then

(Xc,Yc) is recovered uniquely using part (3) of Lemma 2.1. If c is solid then the parameter t′c in (2.7)
is recovered uniquely from tc by an argument similar to the proof of Lemma 2.8. (Alternatively, one
can recover t′c as a ratio of grid minors discussed in the next subsection.) We have constructed the
inverse map, and it is clearly regular on the torus (C×)c∈Jβ . �

2.6. Grid and chamber minors. In this section, we introduce a basis of characters of Tβ consisting
of certain generalized minors called grid minors. This basis will be crucial in our definition of the
exchange matrix. We will show later in Corollary 2.24 that grid minors are related to cluster variables
by an invertible monomial transformation.

Recall that A=(aij)i,j∈I , aij := 〈αi,α∨j 〉 is the Cartan matrix, and that diaij =djaji. For i,j∈±I,
we define aij = 0 if i,j have different signs, and aij = a(−i)(−j) otherwise. Also set d−i := di for i∈ I.
Abusing notation, given a double braid word β, we let

(2.11) dβ=(dc)c∈Jβ , where dc :=dic for c∈Jβ.
Following [FZ99, Definition 1.4], for i∈I and v,w∈W , we have a generalized minor ∆vωi,wωi :G→C.

It is a regular function satisfying

∆ωi,ωi(y−xy+)=∆ωi,ωi(x) for all (y−,x,y+)∈U−×G×U+;(2.12)

∆vωi,wωi(x)=∆ωi,ωi

(
v−1xw

)
=∆ωi,ωi

(
v̇−1xẇ

)
;(2.13)

see [FZ99, Section 1.4]. For h ∈ H, we have ∆ωi,ωi(h) = hωi . For x ∈ G, we also have [FZ99,
Equation (2.14)]

(2.14) ∆ωk,ωk(xh)=∆ωk,ωk(hx)=hωk∆ωk,ωk(x).

Definition 2.11. For c∈ [0,m] and k∈I, we define the grid minors

(2.15) ∆c,k(X•,Y•)=∆wcωk,ωk(Zc) and ∆c,−k(X•,Y•)=∆w◦ωk,u
−1
c ωk

(Zc).

The chamber minors are defined as ∆c :=∆c−1,ic , for c∈ [m].

Lemma 2.12. For c ∈ [0,m] and k ∈ I, the grid minors ∆c,k and ∆c,−k are well-defined regular

functions on T̃β. For (X•,Y•)∈ T̃β, we have

(2.16) ∆c,k(X•,Y•)=(h+
c )ωk and ∆c,−k(X•,Y•)=(h−c )ωk .

Proof. Recall that we view Zc ∈U+\G/U+ as an element of G, and that for (X•,Y•) ∈ T̃β, we have

Zc∈
◦
Xwc =U+wcHU+ for all c∈ [0,m]. Write Zc=y′+ẇch

+
c y
′′
+ for y′+,y

′′
+∈U+. We have

∆c,k(X•,Y•)=∆wcωk,ωk(Zc)=∆ωk,ωk

(
w−1
c y′+ẇch

+
c y
′′
+

)
=∆ωk,ωk(ẇ−1

c y′+ẇch
+
c ).

Factorizing ẇ−1
c y′+ẇc = b−b+ for (b−,b+) ∈ U−×U+ using (2.3), using (h+

c )−1b+h
+
c ∈ U+, and ap-

plying (2.14), we get the first identity in (2.16). In particular, since the result does not depend on
y′+,y

′′
+∈U+, we see that ∆c,k(Zc) is invariant under the U+×U+-action on Zc, and thus descends to

a well-defined function on U+\
◦
Xwc/U+. The proof for ∆c,−k is similar. �

Corollary 2.13. For each c∈ [0,m] and k∈I, the grid minors ∆c,k and ∆c,−k are well-defined regular

functions on Yβ,
◦
Yβ, and

◦
Rβ. These regular functions commute with the quotient map

◦
Yβ→

◦
Rβ and

the inclusion map
◦
Yβ ↪→Yβ.
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Proof. For (X•,Y•)∈ T̃β, we have Zc∈
◦
Xwc , and the proof of Lemma 2.12 implies that ∆wcωk,ωk is well

defined on U+\
◦
Xwc/U+. Since T̃β is dense in Yβ by Lemma 2.7, it follows that for (X•,Y•)∈Yβ, we

have Zc∈Xwc . By continuity, it follows that ∆wcωk,ωk is well defined on U+\Xwc/U+. Thus, ∆c,k (and

similarly ∆c,−k) is well defined on Yβ. The fact that it commutes with the quotient map
◦
Yβ→

◦
Rβ

follows since the map (Xc,Yc) 7→Zc=Y −1
c Xc commutes with theG-action (Xc,Yc) 7→(gXc,gYc), g∈G,

on
◦
Yβ. It also trivially commutes with the inclusion map

◦
Yβ ↪→Yβ. �

Combining Lemma 2.12 with (2.9), we get the following.

Corollary 2.14. If c is solid and k∈±I has the same sign as ic then

(2.17) ∆c−1,k=

{
tc∆c,k, if k= ic;

∆c,k, if k 6= ic.

Proposition 2.15.

(1) The grid minors are characters of Tβ.
(2) The solid chamber minors (∆c)c∈Jβ form a basis of the character lattice of Tβ.

Proof. We relate the parameters (tc)c∈Jβ from Corollary 2.10 to the grid and chamber minors by
combining (2.9) with (2.16). Suppose that ic ∈ I and let k ∈ I. If k 6= ic then ∆c−1,k = ∆c,k by
Corollary 2.14. If c is hollow then

∆c−1,ic =(h+
c−1)ωic =(sic ·h+

c )ωic =(h+
c )sicωic .

Expand sicωic =ωic−αic in the basis of fundamental weights using αic =
∑

j∈Iaicjωj . This gives

(2.18) ∆c−1,i∆c,i

∏
j 6=i

∆
aij
c,j =1, if c is hollow and i := ic,

which holds for ic∈±I. If c is solid, Corollary 2.14 yields ∆c−1,ic = tc∆c,ic . Thus,

(i) For each solid c∈Jβ, tc=∆c−1,ic/∆c,ic is a ratio of two grid minors.
(ii) For each solid c∈Jβ, the grid minors (∆c−1,j)j∈±I are Laurent monomials in the grid minors

(∆c,k)k∈±I and the chamber minor ∆c=∆c−1,ic .
(iii) For each hollow c∈ [m]\Jβ, the grid minors (∆c−1,j)j∈±I are Laurent monomials in the grid

minors (∆c,k)k∈±I .
(iv) Every grid minor ∆c,j is a Laurent monomial in the solid chamber minors (∆e)e∈Jβ .

We have already shown (i)–(iii), and (iv) follows from (ii)–(iii). This implies the result. �

2.7. Almost positive sequences and Deodhar hypersurfaces. Here we discuss the complement
of the Deodhar torus and its irreducible components, the Deodhar hypersurfaces. We first introduce
additional combinatorics, which we will use to describe an open subset of the Deodhar hypersurface.

Recall that we have uc−1 =min(uc,s
−
ic
ucs

+
ic

) and wc−1 =max(wc,s
−
i∗c
wcs

+
ic

) for all c∈ [m].

Definition 2.16. Let e∈Jβ. Let u
〈e〉
m :=w◦, and for c=m,m−1,...,1, define

u
〈e〉
c−1 :=

{
max(u

〈e〉
e ,s−ieu

〈e〉
e s+

ie
), if c=e,

min(u
〈e〉
c ,s−icu

〈e〉
c s+

ic
), otherwise.

We call the sequence u〈e〉 := (u
〈e〉
0 ,...,u

〈e〉
m ) the 〈e〉-almost positive sequence. We set w

〈e〉
c :=w◦u

〈e〉
c for

all c∈ [0,m], and write w〈e〉=w◦u
〈e〉 :=(w◦u

〈e〉
0 ,...,w◦u

〈e〉
m ).

Definition 2.17. We say that e ∈ Jβ is mutable if u
〈e〉
0 = id. Otherwise, e is frozen. We let Jmut

β

(resp., J fro
β ) denote the set of mutable (resp., frozen) indices.

Definition 2.18. Let e∈Jβ. Define the open Deodhar hypersurface Ṽ ◦e ⊂Yβ by

(2.19) Ṽ ◦e :={(X•,Y•)∈Yβ |Xc
w
〈e〉
c⇐= Yc for all c∈ [0,m]}.

Define the (closed) Deodhar hypersurface Ṽe⊂Yβ to be the closure of Ṽ ◦e .
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It follows that an index e∈Jβ is mutable (resp., frozen) if and only if Ṽ ◦e ⊂
◦
Yβ (resp., Ṽ ◦e ∩

◦
Yβ=∅).

If e is mutable then the G-action on Ṽ ◦e is free. In this case, we set V ◦e := Ṽ ◦e /G and let Ve be the

closure of V ◦e in
◦
Rβ.

Proposition 2.19. The closed subset Yβ \T̃β is a union of the Deodhar hypersurfaces Ṽe for e∈Jβ.

Each Ṽe is irreducible and has codimension one in Yβ, and the hypersurfaces Ṽe,Ṽe′ are distinct for
distinct e,e′∈Jβ.

Proof. We prove the second sentence. As explained in the proof of Lemma 2.7, Yβ is an iterated fiber

bundle over G/U+, where each fiber is either C (if c is hollow) or C× (if c is solid). Similarly, Ṽ ◦ is
an iterated fiber bundle over G/U+, where each fiber is either C, C×, or (in the case of the crossing

c = e) a point. It follows that Ṽe is an irreducible subvariety of Yβ of codimension one: we have

dimYβ =dim(G/U+)+m and dimṼe=dimṼ ◦e =dim(G/U+)+m−1. For distinct e,e′∈Jβ, any point

(X•,Y•) in Ṽ ◦e′ satisfies Ze−1 ∈
◦
Xwe−1 . Meanwhile, any point (X•,Y•) in Ṽe satisfies Ze−1 ∈ Xw〈e〉e−1

.

Since w
〈e〉
e−1<we−1 in the Bruhat order, we see that Ṽ ◦e′ 6⊂ Ṽe, and thus Ṽe′ 6= Ṽe.

We now prove the first sentence. First, recall from Lemma 2.7 that T̃β is open in Yβ, so Yβ \T̃β is
closed. For each e∈ [m], we introduce an auxiliary subset

(2.20) Ṽ≥e :={(X•,Y•)∈Yβ |Xc
wc⇐=Yc for all c≥e, and Xe−1

w′⇐=Ye−1 for w′ 6=we−1.}.
Recall that if e is hollow then Xe

we⇐= Ye implies Xe−1
we−1⇐= Ye−1. Thus, Ṽ≥e is empty unless e∈ Jβ.

For e∈Jβ, the element w′ in (2.20) must be equal to w
〈e〉
e−1 because there are only two possibilities for

the relative position of (Xe−1,Ye−1) given that Xe
we⇐=Ye.

Let (X•,Y•)∈Yβ \ T̃β. Then (2.6) must fail for (X•,Y•) for some index c∈ [0,m]. We always have

Xm
wm⇐= Ym, so there exists a unique e ∈ [m] such that (X•,Y•) ∈ Ṽ≥e. Applying an iterated fiber

bundle argument as above, we see that Ṽ ◦e is an open dense subset of Ṽ≥e, and therefore

(2.21) Ṽ ◦e ⊂ Ṽ≥e⊂ Ṽe.
Thus, (X•,Y•)∈ Ṽe. We have shown that Yβ\T̃β=

⋃
e∈Jβ Ṽe. �

2.8. Cluster variables. By Proposition 2.19, the irreducible components of Yβ\T̃β are the Deodhar

hypersurfaces Ṽe, e∈Jβ. For a grid minor ∆c,k and e∈Jβ, we denote by ordVe∆c,k ∈Z the order of

vanishing of ∆c,k on the hypersurface Ṽe; cf. Corollary 2.13. Since ∆c,k is regular on Yβ, we have that
ordVe∆c,k≥0. In this section, we utilize properties of ordVe∆c,k to define a new basis of characters of
Tβ, the cluster variables.

We have the following basic unitriangularity property.

Proposition 2.20. For e∈Jβ solid, c∈ [0,m], and k∈±I, we have

(2.22) ordVe∆c,k=

{
0, if e≤c;
1, if (c,k)=(e−1,ie), i.e., ∆c,k=∆e.

Proof. Suppose that e≤ c. Let (X•,Y•) be a generic point in Ṽe. Then we have Xc
wc⇐=Yc, and thus

∆c,k(X•,Y•) 6=0. It follows that ordVe∆c,k=0 when e≤c.
Suppose now that (c,k)=(e−1,ie). Recall that we have introduced an open dense subset Ṽ≥e⊂ Ṽe

in (2.20). The subset T̃β∪Ṽ≥e⊂ T̃β∪Ṽe is thus also open dense, and recall that for (X•,Y•)∈ T̃β∪Ṽ≥e,
we have Xe′

we′⇐=Ye′ for all e′≥e.
We may parameterize Yβ using parameters (t′, Xm = Ym) as in (2.7). We specialize all of

these parameters except for t := t′e to some fixed generic values, and view the resulting tuple
(X•, Y•) = (X•(t), Y•(t)) as a function of t. Since the parameters t′>e := (t′e+1, ... , t

′
m,Xm = Ym)

are generic, we have (X•,Y•)∈ T̃β∪Ṽ≥e (and therefore Xe
we⇐=Ye) for all t∈C.
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Assume that ie∈I. Thus, we have Ze∈U+ẇehU+ for h=h+
e ∈H. The proof of Lemma 2.12 implies

that ẇ−1
e Ze ∈U−hU+. Let us write ẇ−1

e Ze = y−hy+ for (y−,y+)∈U−×U+. Since e∈Jβ is solid, we
have we−1 =we. We find

∆e−1,k(X•,Y•)=∆we−1ωk,ωk(Zezk(t))=∆ωk,ωk(ẇ−1
e Zezk(t))=∆ωk,ωk(y−hy+zk(t)).

Recall that zk(t) =xk(t)ṡk. Let Ψ := Φ+\{αk} and let U+(Ψ) := (ṡ−1
k U+ṡk)∩U+ be the correspond-

ing root subgroup; see [Hum75, Theorem 26.3]. We have xk(−t)U+(Ψ)xk(t) ⊂ U+(Ψ) by [Hum75,
Lemma 32.5]. Next, we have ṡ−1

k U+(Ψ)ṡk⊂U+(Ψ), since sk permutes Ψ. Using (2.3), we can factor-
ize y+ =xk(p)y

′
+ for some p∈C and y′+∈U+(Ψ). (Here p depends only on the parameters in t′>e and

not on t.) We therefore get y′+xk(t)ṡk∈xk(t)ṡkU+. Using (2.12), we get
∆e−1,k(X•,Y•)=∆ωk,ωk(y−hxk(p)y

′
+xk(t)ṡk)=∆ωk,ωk(hxk(p+t)ṡk).

It is clear that if p+t= 0 then ∆e−1,k(X•,Y•) = 0. If p+t 6= 0, applying the first identity in (2.10) to
xk(p+t)ṡk and using (2.14), we find
(2.23) ∆e−1,k(X•,Y•)=(p+t)∆ωk,ωk(h).
Thus, (2.23) holds regardless of whether p+ t= 0, and we have p+ t= 0 if and only if the condition

Xe−1
we−1⇐= Ye−1 fails, i.e., (X•,Y•)∈ Ṽ≥e. By (2.23), since ∆ωk,ωk(h) 6=0, we have p+t=0 if and only if

∆e−1,k(X•,Y•)=0. Since ∆e−1,k is of degree 1 in t, we find that ordVe∆e−1,k≤1. On the other hand,

we have shown that ∆e−1,k vanishes on Ṽ≥e, and thus on Ṽe (cf. (2.21)), so ordVe∆e−1,k≥1. �

The integers ordVe∆c,k are nonnegative. Our next result shows that whether ordVe∆c,k is zero or

positive is determined by the almost positive subexpression u〈e〉. The stronger result that ordVe∆c,k∈
{0,1} holds when G= SLn [GLSBS22, Proposition 7.10]. The precise value of ordVe∆c,k for G of ar-
bitrary type is given in Section 7.

Proposition 2.21. For all c∈ [0,m], e∈Jβ, and k∈I, we have

ordVe∆c,k=0 ⇐⇒ ucωk=u〈e〉c ωk and ordVe∆c,−k=0 ⇐⇒ u−1
c ωk=(u〈e〉c )−1ωk.

Proof. Let ≤ denote the Bruhat order on W and the quotient order on the orbit Wωk of the funda-

mental weight ωk. Comparing Definitions 2.4 and 2.16, we see that uc ≤ u〈e〉c and wc ≥ w〈e〉c for all

c∈ [0,m]. Thus wcωk≥w〈e〉c ωk for all c∈ [0,m] and k∈I.

For (X•,Y•) ∈ Ṽ ◦e , we have Zc ∈
◦
X
w
〈e〉
c
⊂ Xwc for all c ∈ [0,m], because w

〈e〉
c ≤ wc. Recall that

∆c,k(X•,Y•) = ∆wcωk,ωk(Zc). It is well known that the function ∆wcωk,ωk(Zc), when restricted to

Zc∈Xwc , does not vanish at Zc∈
◦
X
w
〈e〉
c

if and only if w
〈e〉
c ωk=wcωk; this can be shown by e.g. adapt-

ing the proof of [FZ99, Proposition 2.4]. Similarly, we consider ∆c,−k(X•,Y•)=∆w◦ωk,u
−1
c ωk

(Zc) and

observe that this function does not vanish atZc∈
◦
X
w◦u

〈e〉
c
⊂Xw◦uc if and only ifu−1

c ωk=(u
〈e〉
c )−1ωk. �

Corollary 2.22. The Jβ×Jβ matrix Mβ=(ordVe∆c)c,e∈Jβ is upper unitriangular.

Inverting the matrix Mβ, we arrive at the following definition, which is crucial for our analysis; cf.
Proposition-Definition 1.3. Recall from Proposition 2.15 that a character on Tβ is just a Laurent
monomial in the solid chamber minors {∆c}c∈Jβ .

Definition 2.23. For c∈Jβ, the cluster variable xc is the character of Tβ satisfying

(2.24) ordVexc=

{
1, if c=e,

0, otherwise,
for all e∈Jβ.

We denote the cluster by xβ={xc}c∈Jβ .

The conditions (2.24) are equivalent to

(2.25) ∆c,k=
∏
e∈Jβ

x
ordVe∆c,k
e for all c∈Jβ and k∈±I.

Corollary 2.24.
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(1) For each c∈Jβ, there exists a unique character xc∈X∗(Tβ) satisfying the conditions (2.24).

(2) For c∈Jβ, the character xc∈X∗(Tβ) extends to a regular function on
◦
Rβ,

◦
Yβ, Yβ.

(3) For c∈J fro
β , the frozen cluster variable xc is invertible in C[

◦
Rβ] and C[

◦
Yβ].

(4) The cluster variables in xβ are irreducible and algebraically independent.

Proof. The existence and uniqueness of xc follows from the invertibility of Mβ: writing M−1
β =

(me,c)e,c∈Jβ , we have xc=
∏
e∈Jβ∆

me,c
c . For c∈Jβ, xc is a rational function on Yβ which does not have

a pole on T̃β or on Ṽe for all e∈Jβ. This implies that xc is regular on
◦
Rβ,

◦
Yβ, Yβ. By Proposition 2.19,

xc is irreducible. Since xβ ={xc}c∈Jβ is a basis of the character lattice of Tβ, we see that the cluster

variables in xβ are algebraically independent. Finally, for c ∈ J fro
β , the function 1/xc is regular on

◦
Yβ\Ṽ ◦c , and as we mentioned after Definition 2.18, we have Ṽ ◦c ∩

◦
Yβ=∅ for c∈J fro

β . �

Recall from Proposition 2.20 that ordVe∆c,k can only be nonzero when e>c; see also (2.25). The
next result follows from the parametrization (2.7) and will be used later in the proof. We denote

ordVe∆c,k by ord
(β)
Ve

∆c,k to emphasize dependence on β.

Lemma 2.25. The integer ordVe∆c,k only depends on ic+1,...,im. That is, suppose that β= i1i2···im
and β′= i′1i

′
2···i′m′ are two double braid words in the alphabet±I such that for some c∈ [m] and c′∈ [m′]

(with m−c=m′−c′), we have ic+1···im= i′c′+1···i′m′. Then we have

ord
(β)
Ve

∆c,k=ord
(β′)
Ve′

∆c′,k

for all k∈±I, e>c, and e′>c′ such that m−e=m′−e′.
2.9. A two-form on the braid variety, and a seed. We now introduce a two-form, which, to-
gether with the cluster variables, determines an exchange matrix via (1.3). At the end of the section,
we put everything together to define a seed for the braid variety.

We start by introducing a family of 1-forms on Tβ.
For i,j ∈±I, recall that aij = 0 if i,j have different signs, and aij = a(−i)(−j) otherwise, and that

di :=d|i|. For each c∈ [0,m] and i∈±I, we set

(2.26) Lc,i :=dlog

( ∏
k∈±I

∆aik
c,k

)
=

1

2

∑
k∈±I

aikdlog∆c,k=
1

2

∑
k∈±I, e∈Jβ

aik

(
ord

(β)
Ve

∆c,k

)
dlogxe.

Consider the following 2-forms on Tβ:

(2.27) ωβ,c :=sign(i) di Lc−1,i∧Lc,i for c∈ [m] and i := ic, and ωβ :=
∑
c∈[m]

ωβ,c.

Note that dlog∆c−1,j∧dlog∆c,k only contributes to ωβ,c if j=k or |j|,|k| are adjacent in the Dynkin
diagram for G. Written in terms of dlog∆c−1,j ∧ dlog∆c,k, ωβ,c is essentially the same as [SW21,
Definition of ε(n)], which generalizes [BFZ05, Definitions 2.2, 2.3].

Remark 2.26. By (2.26), the form ωβ has constant coefficients when expressed in terms of (dlogxc∧
dloge)c,e∈Jβ .

Since Tβ is open dense in
◦
Rβ, the forms ωβ and ωβ,c are rational 2-forms on

◦
Rβ. Though it is not

apparent from the above formula, it will follow from our main result (Theorem 1.1) combined with

the results of [Mul12] that ωβ extends to a regular 2-form on the entire
◦
Rβ.

Recall that (2.18) holds for ic∈±I. Taking dlog of both sides of (2.18), we get
(2.28) Lc−1,ic+Lc,ic =0 if c is hollow.
Thus, ωβ,c=0 for all c∈ [m]\Jβ, which implies the following result.

Corollary 2.27. We have ωβ=
∑

c∈Jβωβ,c.

The next proposition follows immediately from Corollaries 2.10 and 2.24.
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Proposition 2.28. Let β∈(±I)m be such that δ(β)=w◦. The tuple
(2.29) Σβ :=(Tβ,xβ,dβ,ωβ)

is an abstract seed on
◦
Rβ in the sense of Definition 3.1 below.

3. Cluster algebras

Cluster algebras were discovered by Fomin and Zelevinsky [FZ02]. We consider skew-symmetrizable
cluster algebras, relying on formalism similar to [FG09].

3.1. Background.

Definition 3.1. A rank n and dimension n+m (abstract) seed is a quadruple Σ=(T,x,d,ω), where

(1) T is a complex algebraic torus of dimension n+m,
(2) x = (x1, ... ,xn+m) is an ordered basis of X∗(T ), where x1, ... ,xn (resp., xn+1, ... ,xn+m) are

mutable (resp., frozen) variables,
(3) d=(d1,...,dn+m) is a collection of positive integers,
(4) ω is a 2-form on T of the form

(3.1) ω=
∑
i≤j

djB̃ijdlogxi∧dlogxj =
∑
i≤j

diB̃jidlogxj∧dlogxi,

where B̃ii=0 for i∈ [n+m] and B̃ij∈Q for all i,j∈ [n+m].

The matrix B̃=(B̃ij)(i,j)∈[n+m]×[n] is the usual (n+m)×n extended exchange matrix in the theory

of cluster algebras. We have djB̃ij =−diB̃ji for i,j ∈ [n+m]; in particular, the top n×n principal

part B of B̃ is skew-symmetrizable.

Definition 3.2. Let Σ = (T,x,d,ω) be a seed and k a mutable index. We say that Σ is integral at k

if B̃jk∈Z for all j∈ [n+m]. In this case, we define

(3.2) x′k :=

∏
B̃jk>0x

B̃jk
j +

∏
B̃jk<0x

−B̃jk
j

xk
.

The mutation of Σ in the direction k is the seed µk(Σ)=(T ′,x′,d,ω′) where T ′ is the algebraic torus
with basis of characters x′= (x1,...,x

′
k,...,xn+m) and the 2-form ω′ on T ′ is the pullback of ω via the

natural rational map T ′→T .

We say that Σ is integral if it is integral at each k∈ [n], i.e., if B̃ik∈Z for all i∈ [n+m] and k∈ [n].

Remark 3.3. As discussed in [FG09], ω′ may be expressed in the form (3.1) using another ma-

trix B̃
′
= µk(B̃) obtained from B̃ via the usual cluster mutation of exchange matrices as defined in

e.g. [FWZ16, Definition 2.7.6]. In particular, if Σ is integral (resp., integral at k) then so is µk(Σ).

For the rest of this subsection, we assume that all seeds are integral. Following [LS22, Section 5.1],

a seed Σ is really full rank if the columns of B̃ span Zn over Z. We will prove this for the seeds Σβ

from (2.29) in Corollary 6.7.
Let X be an irreducible complex algebraic variety of dimension n+m. A seed on X is an abstract

seed Σ=(T,x,d,ω) together with an identification T ⊂X of T with an open dense subset of X. The
inclusion T ↪→X induces an identification of the field C(X) of rational functions on X with the field
of rational functions C(x) :=C(x1,...,xn+m) in the initial cluster variables x. In practice, we abuse
notation and write x for a tuple of elements in C(X).

The cluster algebra A(Σ) is the subring of C(x) generated by all cluster variables together with
inverses of frozen variables. We let V(Σ):=Spec(A(Σ)) denote the cluster variety. We say that (X,Σ)
is a cluster variety ifX is an affine variety and the coordinate ring C[X] is identified withA(Σ) under
the identification C(X)∼=C(x).

We will need the following property of cluster variables.
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Proposition 3.4 ([GLS13, Theorem 3.1]). Each cluster variable is an irreducible element of A(Σ).

Our proofs will utilize some notions on cluster algebras that we now recall.

Definition 3.5. Let Σ be an abstract seed of rank n and dimension n+m, and let F ⊂ [n]. The

freezing of Σ at F , denoted Σ\F , is the seed obtained from Σ by declaring the variables {xc}c∈F to be

frozen. It is a seed of rank n−|F | and dimension n+m. For k∈ [n], we denote Σ\k :=Σ\{k}.

To a seed Σ we associate a directed graph Γ̃(Σ) with vertex set [n+m] and an arrow i→j whenever

B̃ij>0. We let Γ:=Γ(Σ) be the mutable part of Γ̃(Σ), i.e., the induced subgraph of Γ̃(Σ) with vertex
set [n]. We say that a mutable index s∈ [n] is a sink if it has no outgoing arrows in Γ. Let N in

s (Γ)

denote the set of vertices of Γ having an arrow to s, and denote N̂ in
s (Γ) :=N in

s (Γ)∪{s}. The follow-
ing definition is a variation of locally-acyclic seeds [Mul13] and Louise seeds [LS22]; see also [GL24,
Section 5.4 and Remark 5.14].

Definition 3.6. The class of sink-recurrent seeds is defined recursively as follows.

• Any seed Σ such that Γ(Σ) has no arrows is sink-recurrent.
• Any seed that is mutation equivalent to a sink-recurrent seed is sink-recurrent.

• Suppose that Σ is a seed with a sink s ∈ [n] such that the seeds Σ\s and Σ\N̂
in
s (Γ(Σ)) are

sink-recurrent. Then Σ is sink-recurrent.

The upper cluster algebra [BFZ05] U(Σ)⊂C[x±1] is the intersection C[x±1]∩⋂k∈[n]C[µk(x)±1].

Proposition 3.7. Suppose that Σ is a sink-recurrent seed. Then A(Σ)=U(Σ).

Proof. It follows from induction and [Mul13, Lemma 5.3] that sink-recurrent seeds are locally acyclic
in the sense of [Mul13, Mul14]. By [Mul14, Theorem 2], we have A(Σ)=U(Σ). �

We will also need the notion of quasi-equivalence of seeds, which was first studied in [Fra16]. We
adapt the definition of [Fra16] to our conventions.

Definition 3.8. Two seeds Σ = (T,x,d,ω) and Σ̃ = (T̃,x̃,d̃,ω̃) of rank n and dimension n+m are

quasi-equivalent, denoted Σ∼ Σ̃, if the following conditions are satisfied:

(1) T = T̃ , d= d̃, ω= ω̃;
(2) the sublattice of X∗(T ) spanned by the frozen variables xn+1, ... , xn+m coincides with the

sublattice spanned by x̃n+1,...,x̃n+m;
(3) for each k∈ [n], we have x̃k=xkMk, where Mk is a Laurent monomial in xn+1,...,xn+m.

It is easy to see that if Σ is integral and Σ∼ Σ̃ then Σ̃ is integral. The following is also straightforward
to check.

Lemma 3.9. If Σ and Σ̃ are quasi-equivalent seeds then µk(Σ)∼µk(Σ̃) for all mutable k.

Corollary 3.10. Suppose two seeds Σ,Σ̃ are quasi-equivalent. Then they define the same cluster
algebra A(Σ)=A(Σ′)⊂C(T ).

Proof. It follows from Lemma 3.9 that each cluster variable in A(Σ) differs from the corresponding

cluster variable in A(Σ̃) by a factor equal to a Laurent monomial in the frozen variables. �

3.2. Deletion-contraction. We give an inductive criterion for a pair (X,Σ) to be a sink-recurrent
cluster variety, which is a key part of our proof of Theorem 1.1. In Section 4.8, we will apply this
criterion to the seeds Σβ from (2.29). See [GL24, Corollary 5.15] for a different application suggesting
our nomenclature.
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Assumption 3.11. Throughout this section, we let Σ=(T,x,d,ω) be an abstract seed of rank n and
dimension n+m. Let Γ :=Γ(Σ). We assume that Σ is sink-recurrent, with sink s in Γ such that Σ is

integral at s. Further, we assume that there exists a frozen index f such that B̃fs=±1 and B̃fj =0
for j∈ [n]\{s}. Suppose that the exchange relation for xs in Σ is given by xsx

′
s=M1+xfM2 for some

monomials M1,M2 in {xj}j∈[n+m]\{s,f}.

Definition 3.12. Suppose that s has q := |N in
s (Γ)| mutable neighbors. The contraction Σ/s =

(T /s,x/s,d/s,ω/s) is a seed of rank n−q−1 and dimension n+m−2 defined as follows.

(1) x/s is obtained from x by omitting xs and xf and declaring the indices inN in
s (Γ) to be frozen.

(2) T /s is an algebraic torus with character lattice generated by x/s.

(3) d/s is obtained by restricting the sequence d to the set [n+m]\{s,f}.
(4) ω/s is obtained from ω by writing it in the form (3.1) and substituting dlogxs := 0 and

dlogxf :=dlogM1−dlogM2.

The deletion3 Σ\s is the seed of rank n− 1 and dimension n+m obtained by declaring xs to be
frozen (cf. Definition 3.5).

In our next result, we use the following notation. If the same cluster variable x is viewed as a
function on two different varieties U and U ′ (for example, U=V(Σ) and U ′=V(Σ\s)), we denote the
corresponding two functions by x|U and x|U ′ .
Theorem 3.13 (Deletion-contraction recurrence). Let X be an affine, normal, irreducible, complex
algebraic variety, and let Σ = (T,x,d,ω) be a seed on X with a sink s satisfying Assumption 3.11.
Assume that all cluster variables in xt{x′s} are regular on X. Define subvarieties W := {xs 6= 0}
and V := {xs = 0} of X. Suppose that we have isomorphisms W ∼= V(Σ\s) and V ∼= V1× V2 with

V1 := Spec(C[x′s])
∼=C and V2 :=V(Σ/s). Let p1 : V → V1, p2 : V → V2, ιW :W ↪→X, and ιV : V ↪→X

denote the natural projections and inclusions. Suppose that:

• for each cluster variable x of Σ\s, we have ι∗W (x|X)=x|W ;

• for each cluster variable x of Σ/s, we have ι∗V (x|X)=p∗2(x|V2);
• for the cluster variable x′s, we have ι∗V (x′s|X)=p∗1(x′s|V1).

Then (X,Σ) is a cluster variety.

Proof. First, the condition that Σ\s is integral is included in the assumption that (W,Σ\s) is a cluster
variety. Since Σ is integral at s, this implies Σ is also integral.

Let j∈ [n]\{s} be a mutable index. Clearly, the (pullback under ιW of the) exchange relation for

xj in Σ coincides with the exchange relation for xj in Σ\s. Thus, the mutated variable x′j is regular

on W . Next, assume that j /∈N in
s (Γ). By assumption, j is not connected to s,f in Γ, and thus the

terms involving dlogxj are unchanged when passing from ω to ω/s. Thus, the pullback of the exchange

relation for xj under ιV is still the exchange relation for xj in Σ/s, and therefore the mutated variable
x′j is regular on V . For j∈N in

s (Γ), we claim that x′j must also be regular on V . Indeed, by (3.2), x′j
is regular on V if x−1

j is regular on V . But ι∗V (xj |X)=p∗2(xj |V2), and xj |V2 is a frozen variable in Σ/s,

so indeed xj is invertible on V . It follows that for all j∈ [n]\{s}, the mutated variable x′j is a regular

function on X since it is regular on both V and W . For j=s, x′s is regular on X by assumption.
Next, we show that C[X] ⊂ U(Σ). This is equivalent to constructing inclusions T ↪→ X and

µj(T ) ↪→X for all j∈ [n]. Since Σ is a seed onX, we have T ⊂X. For the tori µj(T ), we show that the
subsetXj⊂X where the regular functions in µj(x) are all non-vanishing is isomorphic to an algebraic
torusµj(T )∼=(C×)n+m via the mapϕj :Xj→µj(T ) sending y∈Xj to z :=(x1(y),...,x′j(y),...,xn+m(y)).

3The terminology “deletion-contraction” comes from an analogous construction for matroids and hyperplane
arrangements. Note that, in the case of cluster seeds, “deletion” corresponds to freezing xs (thus deleting s from the
mutable part Γ) and not to deleting xs from the seed.
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If j∈ [n]\s then we have Xj⊂W , and thus the statement follows since W is a cluster variety. So let
j = s. Consider the torus µs(T )∼= (C×)n+m. Let p :=M1 +xfM2 ∈C[X] be the exchange binomial
for xs (cf. Assumption 3.11). Since p does not involve xs and x′s, we can also view p as a regular
function on µs(T ) compatible with pullback under ϕs. Let z= (z1,...,zn+m)∈µs(T ). Our goal is to
show that z has a unique preimage under ϕs. Suppose first that p(z) 6=0. Then ϕ−1

s (z)⊂T , and the
result follows. Suppose now that p(z)=0. Then ϕ−1

s (z)⊂V . Recall that V ∼=V1×V2. Since x′s=zs,
the first coordinate p1◦ϕ−1

s (z) of the preimage is uniquely determined by z. The second coordinate
p2◦ϕ−1

s (z) of the preimage is uniquely determined by (zi)i∈[n+m]\{s,f}. We have shown that z has a
unique preimage under ϕs, which completes the proof of the inclusion C[X]⊂U(Σ). The statement
of the theorem now follows from Proposition 3.14 below. �

Proposition 3.14. Let X be an affine, normal, irreducible, complex algebraic variety, and let
Σ = (T,x,d,ω) be an integral sink-recurrent seed on X. Suppose that C[X] ⊂ U(Σ). Then (X,Σ)
is a cluster variety.

Proof. The inclusions C[X] ⊂ C[x±1
1 , ... ,(x′j)

±1, ... ,x±1
n+m] give tori µj(T ) ∼= Xj ⊂ X as in the proof

of Theorem 3.13. By a standard argument, this implies that the complement of T ∪⋃j∈[n]Xj has

codimension greater than or equal to two inX; see [Zel00, Section 3], [BFZ05, Proof of Theorem 2.10],
or [GLSBS22, Lemmas 9.5–9.8]. Since X is normal, we have C[X] = C[T ∪⋃j∈[n]Xj ] = U(Σ). By

assumption, Σ is sink-recurrent, so we are done by Proposition 3.7. �

Remark 3.15. If the seed Σ\s is really full rank then it follows from Assumption 3.11 that Σ is really
full rank. Indeed, row f of the exchange matrix of Σ contains a single nonzero entry equal to ±1 in
column s. The exchange matrix of Σ\s is obtained from that of Σ by removing column s. This implies
that if Σ\s is really full rank then so is Σ.

4. Double braid moves

Recall from Section 2 that we have constructed a single seed Σβ for each double braid variety
◦
Rβ. In

this section, we first study natural isomorphisms between braid varieties corresponding to double braid
moves, and show that pullbacks along them are well-behaved on seeds. In Section 4.8, we show how to

apply Theorem 3.13 on deletion-contraction to
◦
Rβ for β of a particular form. Finally, in Section 4.9,

we use double braid moves and deletion-contraction to prove Theorem 1.1 in simply-laced types.
Double braid moves are defined as follows:

(B1) ij↔ji if i,j∈±I have different signs;
(B2) ij↔ji if i,j∈±I have the same sign and (s|i|s|j|)

2 =1;
(B3) iji...︸︷︷︸

mij letters

↔ jij...︸ ︷︷ ︸
mij letters

if i,j∈±I have the same sign and (s|i|s|j|)
mij =1 with mij≥3;

(B4) β0i↔β0(−i∗) for i∈±I and β0∈(±I)m−1;
(B5) iβ0↔(−i)β0 for i∈±I and β0∈(±I)m−1.

If double braid words β and β′ are related by one of the moves (B1)–(B5), there is a natural

isomorphism φ :
◦
Rβ

∼−→
◦
Rβ′ , discussed below.

Definition 4.1. Suppose that β and β′ are related by one of the moves (B1)–(B3). If this move in-

volves indices l,l+1,...,r, the isomorphism φ sends (X•,Y•)∈
◦
Rβ to the unique tuple (X ′•,Y

′
•)∈

◦
Rβ′ such

thatX ′c=Xc andY ′c =Yc for 0≤c<l or r≤c≤m. The remaining weighted flagsX ′l ,...,X
′
r−1,Y

′
l ,...,Y

′
r−1

are uniquely determined by Lemma 2.1.

For the moves (B4) and (B5), the isomorphism φ is described in Sections 4.6 and 4.7, respectively.
The main result of this section is the following.

Theorem 4.2. Suppose that β and β′ are related by one of the moves (B1)–(B5). If (
◦
Rβ,Σβ) is a

cluster variety then so is (
◦
Rβ′ ,Σβ′).
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We then use Theorem 4.2 and Theorem 3.13 to prove Theorem 1.1; see Theorem 4.10 and Sections 4.9
and 6.3.

The proof of Theorem 4.2 will occupy Sections 4–6. Along the way, we will construct a seed
Σ′=(T ′,x′,d′,ω′) obtained from Σβ=(T,x,d,ω) by one or several mutations, followed by a relabeling.
We will show the following for moves (B1)–(B5):

(F) The 2-form is invariant: φ∗ωβ′=ωβ.

(Q) Suppose that (
◦
Rβ,Σβ) is a cluster variety. Then the seeds Σ′ and φ∗Σβ′ are quasi-equivalent.

Here, for a seed Σβ′=(Tβ′ ,xβ′ ,dβ′ ,ωβ′), φ
∗Σβ′=(T ∗,x∗,d∗,ω∗) is an abstract seed on

◦
Rβ defined by

(4.1) T ∗ :=φ−1(Tβ′), x∗ :=φ∗xβ′ , d∗ :=dβ′ , and ω∗ :=φ∗ωβ′ .
Note that (Q) immediately implies Theorem 4.2.

Definition 4.3. A (B1)–(B3) move is solid if all indices involved are solid. For i,j∈I, the (B1) move
(−i)j↔j(−i) on indices c,c+1 is special if ucsi=sjuc and solid-special if it is both solid and special.
A (B3) move with mij>3 is long ; all other moves are short. Finally, a (B1)–(B5) move is a mutation
move if it involves at least one cluster mutation; otherwise it is a non-mutation move.

Remark 4.4. As we will show in Section 4.1, a solid-special (B1) move corresponds to a single
mutation, at the rightmost index involved in the move. The move (B3) involving q solid indices

corresponds to a sequence of
(
q−1

2

)
mutations on the rightmost mij−2 indices involved in the move

(see Sections 4.4 and 6). We will show that all other moves are non-mutation moves.

We will show (F), (Q) for short moves directly. This will complete the proof of Theorem 4.2 in
simply-laced types. We then use this and folding to show (F), (Q) for long moves in Sections 5 and 6.

Throughout the rest of this section, we fix β,β′ related by a short move and thus an isomorphism

φ :
◦
Rβ

∼−→
◦
Rβ′ . For a rational function or a form f on

◦
Rβ′ , we use the shorthand f∗ :=φ∗f .

Remark 4.5. If all indices involved in a move (B1)–(B3) are hollow, then the statements (F), (Q)
follow trivially; cf. Corollary 2.27.

4.1. Mutation move: (B1), solid-special. Consider the case of a solid-special move (B1) on in-
dices c,c+1. Since both indices are solid, we denote u :=uc−1 =uc=uc+1 and w :=wc−1 =wc=wc+1.
The indices i,j∈±I are of opposite signs; we assume that i∈−I and j∈I as the other case is similar.
The solid-special condition yields
(4.2) u<s|i|u=usj and s|i|∗w=wsj<w.

To show (F), we will utilize the following relation among grid minors.

Proposition 4.6 ([FZ99, Theorem 1.17]). We have4

(4.3) ∆c,j∆
∗
c,j =∆c+1,j∆c−1,j+

∏
k 6=j

∆
−ajk
c,k .

Proof. We may choose t,t′ ∈ C such that Zc = Zc+1zj(t), Z
∗
c = z̄|i|∗(t

′)−1Zc+1, and Zc−1 = Z∗c−1 =

z̄|i|∗(t
′)−1Zc+1zj(t) = ṡ|i|∗x|i|∗(t

′)Zc+1xj(t)ṡj . Let Z := x|i|∗(t
′)Zc+1xj(t). By [FZ99, Theorem 1.17],

we have
(4.4) ∆wωj ,sjωj (Z)∆wsjωj ,ωj (Z)=∆wsjωj ,sjωj (Z)∆wωj ,ωj (Z)+

∏
k 6=j

∆wsjωk,ωk(Z)−ajk .

Using properties of generalized minors from Section 2.6, one can check that each term of (4.3) equals
the corresponding term of (4.4). For example, we have

∆c,j =∆wωj ,ωj (Zc+1xj(t)ṡj)=∆ωj ,ωj (ẇ
−1Zc+1xj(t)ṡj)=∆ωj ,ωj (ẇ

−1Zṡj)=∆wωj ,sjωj (Z),

where we have used ẇ−1x|i|∗(t
′)∈U−ẇ−1; cf. (2.12) and (4.2). For ∆

−ajk
c,k , k 6=j, we additionally used

that sjωk=ωk. �

4Our Cartan matrix aij :=〈αi,α∨j 〉 is the transpose of that of [FZ99]; see [FZ99, Equation (2.27)].
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We shall use the following analog of [GLSBS22, Lemma 8.10].

Lemma 4.7. For e∈ [0,m] and −i,j∈I such that uesj =s|i|ue, we have

(4.5)
∏
k∈±I

∆aik
e,k =

∏
k∈±I

∆
εajk
e,k and Le,i=εLe,j , where ε :=

{
1, if ue<uesj,

−1, if ue>uesj.

Proof. We have αj =
∑

k∈Iajkωk and similarly for α|i|. By (2.16), the first identity in (4.5) therefore

becomes (h−e )α|i|=(h+
e )εαj , which follows from the assumption ueαj =εα|i| together with h−e =ue ·h+

e ;
cf. (2.8). Taking dlog of both sides, we obtain the second identity. �

Remark 4.8. Equations (4.3) and (4.5) are true as stated in the case i,−j∈I as well.

Proof of (F) for (B1), solid-special. Only the terms ωβ,c and ωβ,c+1 change when applying the move
(B1). Note that we must have di = dj because the simple roots α|i|,αj are related by the action of
u∈W (which preserves the lengths of roots). Applying (4.5), we get

1

dj
(ωβ−ω∗β′)=

1

dj

(
ωβ,c+ωβ,c+1−ω∗β′,c−ω∗β′,c+1

)
=−Lc−1,i∧Lc,i+Lc,j∧Lc+1,j−L∗c−1,j∧L∗c,j+L∗c,i∧L∗c+1,i

=−Lc−1,j∧Lc,j+Lc,j∧Lc+1,j−Lc−1,j∧L∗c,j+L∗c,j∧Lc+1,j

=(Lc,j+L
∗
c,j)∧(Lc−1,j+Lc+1,j).

For e∈{c−1,c,c+1}, let Me :=
∏
k 6=j∆

−ajk
e,k . Thus, Mc is the third term in (4.3). By (2.9), we have

h+
c =α∨j (tc+1)h+

c+1 and h−c−1 =α∨|i|(tc)h
−
c . This implies that h+

c−1 =α∨j (tctc+1)h+
c+1 since h−c =u ·h+

c .

Thus, we have M :=Mc−1 =Mc =Mc+1. Since M∗c+1 =Mc+1, we get that M =M∗c−1 =M∗c =M∗c+1.

Set A :=
∆c,j∆

∗
c,j

M and B :=
∆c−1,j∆c+1,j

M . Then (4.3) gives A = B + 1. Thus, dA = dB, and so
dlogA∧dlogB= 0. It remains to prove that dlogA=Lc,j+L∗c,j and dlogB=Lc−1,j+Lc+1,j . Indeed,

by (2.26), for e∈{c−1,c,c+1}, we have

(4.6) Le,j =
1

2
dlog

(
∆2
e,j

Me

)
=dlog

(
∆e,j

M1/2

)
and L∗e,j =

1

2
dlog

(
(∆∗e,j)

2

M∗e

)
=dlog

(
∆∗e,j

M1/2

)
,

since Me = M∗e = M . Using the additivity of dlog, we get dlogA = Lc,j + L∗c,j and dlogB =
Lc−1,j+Lc+1,j . �

Proof of (Q) for (B1), solid-special. We do not use the assumption that (
◦
Rβ,Σβ) is a cluster variety

until the last paragraph of this proof. Let x := xc+1 and V := Vc+1. Applying Propositions 2.20
and 2.21, we see that
(4.7) ordV ∆c,j =ordV ∆c,i=1 and ordV ∆e,k=0 for (e,k)∈ [0,m]×(±I)\{(c,j),(c,i)}.
In particular, dlogx appears in ωβ only in the terms Lc,j and Lc,i in ωβ,c+1 = djLc,j ∧Lc+1,j and
ωβ,c =−diLc−1,i∧Lc,i, respectively. Recall from (4.5) that we actually have Lc,j =Lc,i. Using this
and di=dj , we find

ωβ−ωrest =ωβ,c+ωβ,c+1 =djLc,j∧(Lc+1,j+Lc−1,i),
whereωrest :=

∑
e∈Jβ\{c,c+1}ωβ,e by Corollary 2.27. Expanding the formsLe,k in terms of (dlogxe′)e′∈Jβ

via (2.26), we see from (4.7) that dlogx appears in Lc,j with coefficient 1 and that dlogx does not
appear in ωrest. Using (4.6), we get

(4.8) ωβ−ω′rest =djdlogx∧(Lc+1,j+Lc−1,i)=djdlogx∧

dlog(∆c+1,j∆c−1,j)−dlog
∏
k 6=j

∆
−ajk
c,k

,
where ω′rest is a linear combination of terms dlogxe∧dlogxe′ for xe,xe′ 6=x.

By Proposition 2.20, a cluster variable xe for e ∈ Jβ may appear on the right-hand side of (4.8)
only for e ≥ c. Moreover, we have already observed that dc = di = dj = dc+1. Let us denote

pe :=ordVe(∆c+1,j∆c−1,j) and qe :=ordVe
∏
k 6=j∆

−ajk
c,k . Clearly, pe,qe≥0.
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Expanding ωβ as a linear combination of terms dlogxe∧dlogxe′ for e<e′ (resp., e>e′) via (2.26),

we see from (3.1) that for each e∈ Jβ \{c+1}, djB̃e,c+1 equals the coefficient of dlogxe∧dlogxc+1,
regardless of whether e<c+1 or e>c+1. Since x=xc+1 does not appear in ω′rest, we see from (4.8)

that djB̃e,c+1 =qe−pe for all e∈Jβ \{c+1}. In fact, this identity also holds for e=c+1 since in this

case B̃e,c+1 =qe=pe=0.

Combining (4.2) and Definition 2.16, we see that u
〈c+1〉
e = ue for all e 6= c. In particular, by

Definition 2.17, the cluster variable x is mutable. Thus, the mutated variable x′ :=x′c+1 satisfies

(4.9) xx′=
∏

e∈Jβ :pe>qe

xpe−qee +
∏

e∈Jβ :qe>pe

xqe−pee .

We have Ve=V ∗e and xe=x∗e for all e∈Jβ\{c+1}. Let V ∗ :=V ∗c+1 and x∗ :=x∗c+1. A generic point

(X•,Y•)∈ V satisfies Xc−1
wsj⇐= Yc+1 and Xc+1

w⇐= Yc−1, while a generic point (X•,Y•)∈ V ∗ satisfies

Xc+1
wsj⇐=Yc−1 and Xc−1

w⇐=Yc+1. Thus, V 6=V ∗.
For e∈Jβ, applying ordVe to both sides of (4.3), we get

(4.10) ordVe∆c,j+ordVe∆
∗
c,j≥min(pe,qe).

For e= c+1, we have ordV ∆c,j = 1, ordV ∆∗c,j = 0 (since V 6=V ∗), and pc+1 = qc+1 = 0 by (4.7). Sim-

ilarly, ordV ∗∆
∗
c,j = 1, ordV ∗∆c,j = 0, and the order of vanishing of ∆∗c+1,j∆

∗
c−1,j and

∏
k 6=j(∆

∗
c,k)
−ajk

at V ∗ is zero.
Dividing both sides of (4.3) by

∏
e∈Jβ\{c+1}x

min(pe,qe)
e , we get

xx∗
∏

e∈Jβ\{c+1}

xree =
∏

e∈Jβ :pe>qe

xpe−qee +
∏

e∈Jβ :qe>pe

xqe−pee ,

where re :=ordVe∆c,j+ordVe∆
∗
c,j−min(pe,qe)≥0. By (4.9), we get

(4.11) x′=x∗
∏

e∈Jβ\{c+1}

xree .

Now, assume that (
◦
Rβ,Σβ) is a cluster variety. We get from Proposition 3.4 that the mutated

cluster variable x′ is irreducible in C[
◦
Rβ]. The function x∗ vanishes on V ∗⊂

◦
Rβ and therefore is not

a unit in C[
◦
Rβ]. It follows that re=0 for all mutable e, i.e.,

(4.12) ordVe∆c,j+ordVe∆
∗
c,j =min(pe,qe) for e∈Jmut

β .

Thus, x′ and x∗ differ by a monomial in the frozen variables: we have

(4.13) x′=x∗
∏
e∈J fro

β

xree .

We claim that the mutated seed Σ′ :=µc+1Σβ is quasi-equivalent to the pulled back seed Σ∗β′ . Recall

that Σ∗β′ = (T ∗,x∗,d∗,ω∗) was defined in (4.1) while Σ′= (T ′,x′,d′,ω′) was defined in Definition 3.2.
To show that these seeds are quasi-equivalent, we check each condition in Definition 3.8. We have
d∗ = d′ since di = dj . We have ω′ = ωβ by Definition 3.2 and ω∗ = ωβ by (F). The tori T ∗ = T ′ are

both obtained as the subset of
◦
Rβ where the cluster variables in {xe}e∈Jβ\{c+1}∪{x′} are nonzero in

view of (4.13). Thus, condition (1) in Definition 3.8 is satisfied. The set of frozen variables has not
changed, so condition (2) is satisfied trivially. Condition (3) is satisfied by (4.13). �

4.2. Non-mutation move: (B1), not solid-special. We continue to assume that the move in-
volves indices c,c+1, and that i∈−I, j∈I.

4.2.1. (B1), special, non-solid. Suppose that at least one of the indices is hollow, and that the move
is special. Then it follows that c+1 is hollow and c is solid in both β and β′. By (2.28), Lc,j =−Lc+1,j

and L∗c,i=−L∗c+1,i. Applying (4.5) with ε=1 for e= c−1,c and ε=−1 for e= c+1 and using di=dj ,
we obtain

ωβ,c
dj

=−Lc−1,i∧Lc,i=Lc−1,i∧Lc+1,i=L∗c−1,i∧L∗c+1,i=−L∗c−1,j∧L∗c+1,j =L∗c−1,j∧L∗c,j =
ω∗β′,c
di

,
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which proves (F). The clusters xβ and x∗β′ are identical, which proves (Q).

4.2.2. (B1), non-special. We start by introducing a formalism for working with the forms Le,k. Let

λ :=
∑

k∈Ibkωk with bk∈Q, and let h be anH-valued rational function on
◦
Rβ. We introduce a rational

1-form

dloghλ :=
∑
k∈I

bkdlog(hωk).

It is clear that

(4.14) dloghλ1+λ2 =dloghλ1 +dloghλ2 and dlog(h1h2)λ=dloghλ1 +dloghλ2 .

For e∈ [0,m] and k∈I, Lemma 2.12 gives

(4.15) Le,k=dlog(h+
e )αk/2 =dlog(h−e )ueαk/2, Le,−k=dlog(h−e )αk/2 =dlog(h+

e )u
−1
e αk/2.

Finally, suppose that h1 =h2α
∨
k (t). Then we have

(4.16) dloghλ1 =dloghλ2 +〈λ,α∨k 〉dlogt.

Proof of (F) and (Q) for (B1), non-special. Suppose as before that the move involves indices c,c+1,
and that i ∈−I, j ∈ I. Assume first that both c,c+1 are solid, and let u := uc−1 = uc = uc+1. Let
a :=〈u−1α|i|/2,α

∨
j 〉 and a′ :=〈uαj/2,α∨|i|〉. Using (4.15)–(4.16) and (2.9), we get

Lc,i=Lc+1,i+adlogtc+1, Lc−1,i=Lc,i+dlogtc, Lc,j =Lc+1,j+dlogtc+1;(4.17)

L∗c,j =L∗c+1,j+a
′dlogt∗c+1, L∗c−1,j =L∗c,j+dlogt∗c , L∗c,i=L∗c+1,i+dlogt∗c+1.(4.18)

Since the move is non-special, the coroots α∨j and u−1α∨|i| are linearly independent, which implies

t∗c = tc+1 and t∗c+1 = tc. Note also that we have L∗c+1,i=Lc+1,i and L∗c+1,j =Lc+1,j . Using (4.17)–(4.18)
to express each 1-form Le,k in terms of Lc+1,i, Lc+1,j , dlogtc, and dlogtc+1, we find

ωβ,c+ωβ,c+1−ω∗β′,c−ω∗β′,c+1 =(dja
′−dia)dlogtc∧dlogtc+1.

Since dja
′=dia, we get that ωβ=ω∗β′ . The clusters xβ and x∗β′ differ by a relabeling c↔c+1.

Suppose now that one of c,c+1 is hollow. For instance, let c /∈Jβ and c+1∈Jβ. By Corollary 2.9,

we have h+
c =h+

c−1, and thus Lc,j =Lc−1,j . Similarly, L∗c,j =L∗c+1,j . Recall that L∗c±1,j =Lc±1,j . Thus,

ωβ,c+1 =ω∗β′,c, and so ωβ =ω∗β′ . The case where c∈Jβ and c+1 /∈Jβ is similar. The clusters xβ and

x∗β′ differ by a relabeling c↔c+1. For the case c,c+1 /∈Jβ, see Remark 4.5. �

4.3. Non-mutation move: (B2). Suppose that the move involves indices c, c + 1. We have
ωβ,c=ω∗β′,c+1 and ωβ,c+1 =ω∗β′,c, so ωβ =ω∗β′ . The chamber minors satisfy ∆c=∆∗c+1 and ∆c+1 =∆∗c .

Thus, the clusters xβ and x∗β′ differ by a relabeling c↔c+1. This shows (F) and (Q).

4.4. Mutation move: (B3), solid, short. We proceed analogously to the case of solid-special
(B1) in Section 4.1. Suppose that the move β→β′, iji→ jij, involves indices c−1,c,c+1, and that
all three indices are solid. Suppose in addition that i,j∈I; the case i,j∈−I is similar.

For (F), we will use the following relation among grid minors.

Proposition 4.9 ([FZ99, Theorem 1.16(1)]). We have

(4.19) ∆c,i∆
∗
c,j =∆c+1,i∆c−2,j+∆c−2,i∆c+1,j .

Proof. We have Zc−2 = Zc+1zi(t1)zj(t2)zi(t3) for some t1, t2, t3 ∈ C. We have zi(t1)zj(t2)zi(t3) =
zj(t3)zi(t

′
2)zj(t1) for t′2 := t1t3−t2, which can be checked inside SL3. Thus, Zc−1 =Zc+1zi(t1)zj(t2),

Zc=Zc+1zi(t1), and Z∗c =Zc+1zj(t3). Let Z :=Zc−2(ṡiṡj ṡi)
−1. Let w :=wc−1 =wc=wc+1. By [FZ99,

Theorem 1.16(1)],

(4.20) ∆wωi,siωi(Z)∆wωj ,sjωj (Z)=∆wωi,ωi(Z)∆wωj ,sisjωj (Z)+∆wωi,sjsiωi(Z)∆wωj ,ωj (Z).

Similarly to the proof of Proposition 4.6, we observe that each term in (4.19) equals the corresponding
term in (4.20). �
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Proof of (F) for (B3), solid, short. Let β̃ = βw◦ and β̃
′

= β′w◦. By definition,
∑

j∈Jβ̃
ωj(β̃) and∑

j∈[m]ωj(β) are identical when expressed in terms of the symbols ∆c,i. It is known ([SW21, Propo-

sition 3.25] or [BFZ05]) that Proposition 4.9 implies ωβ̃=ω
β̃
′ . Since the same identity for grid minors

in Proposition 4.9 holds on
◦
Rβ, we deduce that ωβ=ωβ′ . �

Proof of (Q) for (B3), solid, short. Let x :=xc+1 and V :=Vc+1. By Propositions 2.20 and 2.21, x is
mutable, ordV ∆c−1,i=ordV ∆c,i=1, and ordV ∆e,k=0 when e /∈{c−1,c} or k∈I\{i}.

Note that di=dj . Collecting the terms of ωβ,c−1+ωβ,c+ωβ,c+1 involving dlogx, we get

(4.21) didlogx∧
(
Lc+1,i−Lc−2,i+

1

2
(Lc−1,j−Lc,j)

)
.

Applying (2.26) and using Corollary 2.14, we get

Lc+1,i−Lc−2,i=dlog(∆c+1,i)−dlog(∆c−2,i)+
1

2
dlog(∆c−2,j)−

1

2
dlog(∆c+1,j);

Lc−1,j−Lc,j =dlog(∆c−1,j)−dlog∆c,j =dlog(∆c−2,j)−dlog∆c+1,j .

Thus, (4.21) becomes didlogx∧ (dlog(∆c+1,i∆c−2,j)−dlog(∆c−2,i∆c+1,j)). The rest of the proof is
entirely analogous to the argument for solid-special (B1) given at the end of Section 4.1, using (4.19)
in place of (4.3). �

4.5. Non-mutation move: (B3), non-solid, short. Suppose that at least one of the indices
c−1,c,c+1 is hollow. By Remark 4.5, we may assume that there are either one or two hollow indices
in {c−1,c,c+1}. Explicitly, underlining the hollow crossings, the possible moves are iji↔ jij and
iji↔jij (or the moves obtained from these by swapping the roles of i and j).

For l∈{i,j} and e∈Jβ, let us denote

(4.22) Al :=dlog
∏
k 6=i,j

∆alk
c+1,k, Bl :=dlog∆c+1,l, and Te :=dlogte.

Using (2.17)–(2.18), we can express the dlogs of grid minors ∆e,l for l∈{i,j} and e∈{c−1,c,c+1} in the
symbols (4.22). Using dlog∆∗c−2,l=dlog∆c−2,l for l∈{i,j}, we express T ∗e in terms of Te′ for all indices

e∈{c−1,c,c+1} which are solid in β′. Thus, we can express the forms ωβ,e, ω
∗
β′,e, e∈{c−1,c,c+1}

in terms of the symbols (4.22). Using a straightforward computation, we check ωβ=ω∗β′ .

We observe using Corollary 2.14 that the clusters xβ and x∗β′ differ by a relabeling, which shows (Q).

4.6. Non-mutation move: (B4). Suppose that i ∈ I. The isomorphism φ :
◦
Rβ

∼−→
◦
Rβ′ sending

(X•,Y•) 7→ (X ′•,Y
′
•) is given by X ′m−1 =X ′m=Y ′m :=Xm−1, Y ′m−1 :=Ym−1, and (X ′c,Y

′
c ) :=(Xc,Yc) for

all 0≤ c<m−1. The last crossing in β0i and β0(−i∗) is always hollow, and thus the statements (F)
and (Q) follow trivially.

4.7. Non-mutation move: (B5). Suppose that i ∈ I. The isomorphism φ :
◦
Rβ

∼−→
◦
Rβ′ sending

(X•,Y•) 7→ (X ′•,Y
′
•) is defined as follows. For c ∈ [m], we set (X ′c,Y

′
c ) := (Xc,Yc) and X ′0 := X ′1.

Note that Y0 = Y1 = Y ′1 and recall X0
w◦=⇒ Y0. We let Y ′0 be the unique weighted flag satisfying

X0
w◦si∗=⇒ Y ′0

si∗−→ Y0. It follows that X ′0
w◦⇐= Y ′0 and Y ′0

si∗−→ Y ′1 , so (X ′•,Y
′
•)∈

◦
Rβ′ . The inverse map is

defined similarly: X0 is the unique weighted flag satisfying X ′0
si−→X0

siw◦=⇒ Y ′0 .
The statement (F) is trivial if the first crossing of β is hollow. If the first crossing of β is solid, we have

X ′0 =X ′1 =X1
si−→X0

siw◦=⇒ Y ′0
si∗−→Y0 =Y1 =Y ′1 .

It follows that after acting on all these flags by some g∈G, we can find t,t′∈C and h∈H such that

X ′0 =X ′1 =X1 = ẇ◦ṡihz̄i(t)U+, X0 = ẇ◦ṡihU+, Y ′0 =U+, Y0 =Y1 =Y ′1 =zi∗(t
′)U+.

Here, we haveX0
siw◦=⇒ Y ′0 and thusX0

w◦si⇐= Y ′0 , and we have used a representative ẇ◦ṡi ofw◦si inNG(H).

Let us denote h0 := h+
0 = h−0 and h∗0 := (h+

0 )∗ = (h−0 )∗. We have Z0 = Y −1
0 X0 = zi∗(t

′)−1ẇ◦ṡih, and
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thus, proceeding as in the proof of Lemma 2.8, we get h0 =h. Similarly, Z ′0 =(Y ′0)−1X ′0 = ẇ◦ṡihz̄i(t),
so h∗0 =si ·h. Applying (4.15), we find

L∗0,−i=dlog(si ·h0)αi/2 =dlog(h0)−αi/2 =−L0,i.

Applying (4.5) for e= 0,1, we obtain L0,i =L0,−i and L1,i =L1,−i. Recall that L1,i =L∗1,i. Thus, we

get ωβ,1 =ω∗β′,1, and therefore ωβ=ω∗β′ , finishing the proof of (F).

We now prove (Q). Let β= iβ0 and β′=(−i)β0. If the first crossing is hollow, the claim is trivial.
Suppose that the first crossing is solid. We have ∆c,k=∆∗c,k for all c≥1 and k∈±I. Thus, xc=x∗c for

all c∈Jβ such that c>1. Since h∗0 =si ·h0, Lemma 2.12 implies that x∗1 =x−1
1 M , whereM is a Laurent

monomial in the grid minors ∆0,k for k 6= i of the same sign as i. It follows from Propositions 2.20
and 2.21 that M is a Laurent monomial in the frozen variables other than x1. This shows (Q).

4.8. Deletion-contraction for double braid varieties. Theorem 4.2 tells us that it is enough to

show (
◦
Rβ,Σβ) is a cluster variety for a single β in a double-braid-move equivalence class. We now

explain how the cluster algebraic results from Section 3.2 apply to (
◦
Rβ,Σβ) for a special shoice of β.

Theorem 4.10. Let i∈I and consider a double braid word β= iiβ′ on positive letters. If (
◦
Riβ′ ,Σiβ′)

and (
◦
Rβ′ ,Σβ′) are sink-recurrent cluster varieties, then (

◦
Rβ,Σβ) is a sink-recurrent cluster variety.

Proof. Suppose first that at least one of the first two crossings in β is hollow, in which case 1 must

be solid and 2 must be hollow. Consider an arbitrary point (X•,Y•)∈
◦
Rβ. Since the letters in β are

positive, we have Y0 = Y1 = ···= Ym =Xm. Since w2≤w◦si and w0 =w◦, we must have X1
w◦⇐=Xm

and X2
w◦si⇐= Xm. It follows that h±1 and h±2 are regular functions on

◦
Rβ. Choose a representative

Z2 = ẇ◦h
−
2 ṡ
−1
i as in (2.8), and let t,t′ ∈ C be such that Z1 = Z2zi(t) and Z0 = Z2zi(t)zi(t

′). Thus,

t,t′ are regular functions on
◦
Rβ. Proceeding as in the proof of Lemma 2.8, we find h+

1 = h−2 and

h+
0 =h−2 α

∨
i (t′), where h+

0 ,h
+
1 are regular on

◦
Rβ. It follows that ∆0,i= t′∆1,i. For any e∈Jβ such that

e>1, the function xe depends on Z2,Z3,...,Zm but does not depend on t,t′. By Proposition 2.20, we
have ∆0,i=x1M for some monomial M in {xe}e>1. The Deodhar hypersurface V1 is clearly given by
the equation t′=0. We conclude that x1 = t′. We thus have an isomorphism

(4.23) r :
◦
Rβ

∼−→
◦
Riβ′×C×, (X•,Y•) 7→((X1,...,Xm,Y1,...,Ym),x1).

Moreover, since ∆1,i = M involves only frozen variables, we see that 1 is connected to only frozen

indices in Γ̃(Σβ). It follows that the principal parts of Σβ and Σiβ′ agree, and therefore (
◦
Rβ,Σβ) is a

sink-recurrent cluster variety. Moreover, if Σiβ′ is really full rank then so is Σβ.
Suppose now that the first two crossings are both solid. Our goal is to apply Theorem 3.13. Recall

from Proposition 2.5 that
◦
Rβ is affine, smooth (and thus normal), and irreducible. We now show that

Σβ is sink-recurrent. Let Γ:=Γ(Σβ). The seed Σ
\2
β is obtained from Σiβ′ by adding an isolated frozen

variable x1, and Σ
\N̂ in

s (Γ)
β is obtained from Σβ′ by adding isolated frozen variables x1 and x2, so both

of these seeds are sink-recurrent.
Next, the variable x1 is frozen in Σβ. We claim that B̃12 =1, and B̃1c=0 for mutable c>2. Indeed,

since the first two crossings are solid, we have u0 = u1 = u2 = id. Moreover, since i1 = i2 = i, by

Definition 2.16, we get that u
〈c〉
0 =u

〈c〉
1 for all c∈Jβ such that c>2. (For c= 2, we have u

〈2〉
0 = id and

u
〈2〉
1 =si.) Let c>2 be mutable so that u

〈c〉
0 =id. Then u

〈c〉
1 =id, and thus by Proposition 2.21, we have

ordVc∆0,k = ordVc∆1,k = 0 for all k ∈±I. Thus, dlogxc does not contribute to L1,i, and so B̃1c = 0.
By Propositions 2.20 and 2.21, we have ordV1∆0,i = ordV2∆1,i = 1, ordV1∆0,j = ordV2∆1,j = 0 for all

j∈I\{i}, and ordV1∆1,j =ordV2∆0,j =0 for all j∈I. Thus, B̃12 =1.
Next, by Corollary 2.14, the sum of terms of ωβ involving x2 is clearly of the form didlogx2∧dlogM

for a Laurent monomial M in x, and thus Σβ is integral at 2. We have shown that Σβ satisfies
Assumption 3.11.
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Next, we show that the mutated cluster variable x′2 is regular on
◦
Rβ. We apply the moves iiβ′

(B5)−−−→
(−i)iβ′ (B1)−−−→ i(−i)β′. Denote ẋ :=x(−i)iβ′ and ẍ :=xi(−i)β′ . It follows from the argument in Section 4.1

that ẋ2 is mutable in Σ(−i)iβ′ , and by (4.11), its mutation ẋ′2 is regular on
◦
R(−i)iβ′ , as it equals the

pullback ẍ∗2 times a monomial in the other cluster variables in ẋ with nonnegative exponents. As
explained in Section 4.7, the seeds Σβ and Σ(−i)iβ′ are quasi-equivalent. By Lemma 3.9, we find that

the mutation x′2 differs from ẋ′2 by a unit (cf. part (3) of Corollary 2.24), and thus x′2 is regular on
◦
Rβ.

Let W :={x2 6=0} V :=V2 ={x2 =0} be the open-closed covering of
◦
Rβ coming from x2. Our final

goal is to construct isomorphisms

W ∼=
◦
Riβ′×C×∼=V(Σ

\2
β ) and V ∼=V1×V2 =Spec(C[x′2])×

◦
Rβ′∼=C×V(Σ

/2
β )

satisfying the conditions of Theorem 3.13. Recall that by Proposition 2.21, for e∈Jβ, e>2, we have
ordVe∆1,i = 0 if and only if ordVe∆0,i = 0. Moreover, the same proposition implies ordV2∆0,i = 0. It
follows by Proposition 2.20 that ∆1,i is equal to x2 times a monomial in the frozen variables, and that
∆0,i is equal to x1 times a monomial in the same set of frozen variables. Since W is the complement

of V2, we see that (X•,Y•) ∈W if and only if X1
w◦⇐= Y1 = Xm. Thus, h+

1 is a regular function on
W . We choose a representative Z1 = ẇ◦h

+
1 and let t ∈ C be such that Z0 = Z1zi(t

′). Then we get
t′=∆0,i/∆1,i=Mx1/x2, whereM is a Laurent monomial in the frozen variables other than x1. Simi-

larly to (4.23), we let r :W→
◦
Riβ′×C× be the map sending (X•,Y•) to ((X1,...,Xm,Y1,...,Ym),Mx1/x2).

By assumption, we have
◦
Riβ′∼=V(Σiβ′). The frozen index 1 is only connected to other frozen indices

in Γ̃(Σβ). Thus, the seed Σ
\2
β is obtained from Σiβ′ by adding an isolated frozen vertex, and therefore

V(Σ
\2
β )∼= V(Σiβ′)×C×. Adjusting the isolated frozen variable by a Laurent monomial in the other

frozen variables, we see that the pullbacks of x1,...,xn+m under the inclusion V(Σ
\2
β )∼=W ↪→X are

indeed the same-named cluster variables in Σ
\2
β . This verifies the assumptions on ιW in Theorem 3.13.

Now suppose that (X•, Y•) ∈ V . We have X0
w◦⇐= Xm but not X1

w◦⇐= Xm, so we must have

X1
w◦si⇐= Xm, and therefore X2

w◦⇐= Xm. Consider the map r : V →
◦
Rβ′ × C sending (X•,Y•) to

((X2,...,Xm,Y2,...,Ym),x′2). We claim that this map is an isomorphism. To construct an inverse, we
need to show how to recover X0,X1,Y0,Y1 from the image of r. We have Y0 =Y1 =Xm. Also, X1 is

uniquely determined by Y1 =Y2 and X2, since Y1
siw◦⇐= X1

si←−X2. It remains to recover X0. Note also
that we can recover the cluster variables xe, e > 2, as well as the mutated cluster variable x′2, from
the image of r. Since (X•,Y•)∈V , the frozen variable x1 is also recovered from the exchange relation
0=x2x

′
2 =M1+x1M2 for x2.

In order to recoverX1, we apply moves iiβ′
(B5)−−−→(−i)iβ′ (B1)−−−→ i(−i)β′ as we did above. Let (Ẍ•,Ÿ•)

denote the image of (X•,Y•) in
◦
Ri(−i)β′ under this isomorphism φ, and let ẍ := xi(−i)β′ . As in Sec-

tion 4.7, let Y ′0 be the unique weighted flag satisfying X0
w◦si∗=⇒ Y ′0

si∗−→Y0. Then Ẍ2 =X2, and Ÿ2 =Y2,

and (Ẍ1,Ẍ0,Ÿ0,Ÿ1) = (X2,X1,Y
′

0 ,Y
′

0). We have that Y ′0 is uniquely determined by X2, Y2, and ẍ:

if ẍ2 = 0 then Y ′0 is uniquely determined by Y2
si∗←− Y ′0

w◦si∗⇐= X2; otherwise, we have X2
w◦⇐= Y ′0 , and

the values of ẍ uniquely fixes the U+×U+-double coset Z̈1 := (Y ′0)−1X2 which determines Y ′0 . The

weighted flag X0 is then uniquely determined by X1
si−→X0

siw◦=⇒ Y ′0 . It thus suffices to show that ẍ is
uniquely determined by the image of r. For e∈Jβ, e>2, we have ẍe=xe. Moreover, ẍ1 =M/x1 for
some monomial M in the frozen variables xe other than x1 (all of which must satisfy e>2 since x2 is
mutable). Finally, by (4.11), ẍ2 differs from x′2 by a monomial in the cluster variables other than x2.
We are done with verifying the assumptions on ιV in Theorem 3.13.

We have verified all conditions in Assumption 3.11 and Theorem 3.13. Thus, (
◦
Rβ,Σβ) is a cluster

variety. We have already shown that it is sink-recurrent. �
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4.9. Proof of Theorem 1.1 for G simply-laced. We proceed by induction on the number m of
indices in β. Recall that we always assume δ(β) =w◦. The base case is m= `(w◦), where all indices

are hollow. The cluster algebra is Aβ=C and the braid variety
◦
Rβ is a point.

Suppose now that m>`(w◦). Applying (B1) and (B4), we can assume that all letters of β belong
to I. Since G is simply-laced, all braid moves are automatically short. Applying (B2)–(B3), we may
therefore transform β into a braid word of the form β1iiβ2 for some braid words β1,β2 and i∈I. We
can also apply conjugation moves to β: if β=jβ0, the conjugation move consists of the moves

(4.24) β=jβ0
(B5)−−−→(−j)β0

(B1)−−−→··· (B1)−−−→β0(−j) (B4)−−−→β0j
∗.

Applying conjugation moves, we may further transform β into the form β′ := iiβ2β
∗
1 , where β∗1 is

obtained from β1 by applying the map j 7→ j∗ to each letter. Utilizing the inductive hypothesis and

applying Theorem 4.10 to β′, we find that (
◦
Rβ′ ,Σβ′) is a cluster variety. It follows from Theorem 4.2

(for short moves) and Corollary 3.10 that (
◦
Rβ,Σβ) is therefore also a cluster variety. �

Remark 4.11. It follows from our proof that the seed Σβ is really full rank when G is simply-laced.
Indeed, this property is preserved under moves (B1)–(B5), and by Remark 3.15 is compatible with
deletion-contraction.

Finally, we show that forG simply-laced, double braid moves correspond to mutation equivalence.

Proposition 4.12. Suppose that G is simply-laced and β,β′ are related by a braid move (B1)–(B4).
The seeds Σβ,Σ

∗
β′ are mutation equivalent (up to relabeling cluster variables).

Proof. By Theorem 1.1 for simply-laced G, (
◦
Rβ,Σβ) is a cluster variety. By (Q), there is a seed Σ′,

which differs from Σβ by mutation and possibly relabeling, such that Σ′∼Σ∗β′ . We claim that these
seeds are actually identical. Indeed, choose a double braid word β0 such that all cluster variables of

β,β′ become mutable in β̃ :=β0β, β̃
′
:=β0β

′; cf. Lemma 2.25. Let Σ̃′ be obtained from Σβ̃ using the

same mutations and relabeling by which Σ′ was produced from Σβ. Now, (
◦
Rβ̃,Σβ̃) is also a cluster

variety, so by (Q), Σ̃′∼Σ∗
β̃
′ . Since all frozen variables of Σ′ are mutable in Σ̃′, it follows that the seeds

Σ′ and Σ∗β′ are identical. �

5. Folding

Before completing the proof in Section 6, we review some background on folding. We first compare
Deodhar geometry (Section 2) in the case of a multiply-laced group G to the case of the “unfolded”

simply-laced group Ġ. We then review folding on seeds.

5.1. Pinnings. Let G be a complex, simple, simply-connected algebraic group. Choose a pinning
(H,B+,B−,xi,yi;i ∈ I). Then there exists an algebraic group Ġ of simply-laced type with pinning

(Ḣ, Ḃ+, Ḃ−, ẋi′ , ẏi′ ; i
′ ∈ İ); see [Lus94, §1.6]. We have a bijection σ : İ → İ which extends to an

automorphism σ :Ġ→Ġ, and a map ι :G→Ġ which yields algebraic group isomorphisms

ι :G
∼−→Ġσ, H

∼−→Ḣσ, B±
∼−→(Ḃ±)σ, U±

∼−→(U̇±)σ.

The maps gB+ 7→ ι(g)Ḃ+ and gU+ 7→ ι(g)U̇+ induce isomorphisms of varieties:

(5.1) ι :G/B+
∼−→(Ġ/Ḃ+)σ and G/U+

∼−→(Ġ/U̇+)σ.

For the first isomorphism, see [Lus94, §8.8]. The surjectivity and injectivity of the second map follow
from that of the first by a straightforward computation.

For an element i ∈ I, we denote by i ⊂ İ the associated σ-orbit, i.e., the orbit under the cyclic
group generated by σ. We also let −i := {−i′ | i′ ∈ i} ⊂−İ. We let {α̇i′ | i′ ∈ İ}, {α̇∨i′ | i′ ∈ İ}, and

{ω̇i′ | i′ ∈ İ} be the simple roots, simple coroots, and fundamental weights of the root system of Ġ.
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Letting ȧi′j′ := 〈α̇i′ ,α̇∨j′〉 be the entries of the associated Cartan matrix (and setting ȧ(−i′)(−j′) := ȧi′j′

and ȧ(±i′)(∓j′) :=0 as before), we have

(5.2) di= |i| and aij =
∑
j′∈j

ȧi′j′ for all i,j∈±I and i′∈i.

The Coxeter generators of the Weyl group Ẇ of Ġ are denoted by {s̃i′ | i′ ∈ İ}. Restricting ι to the
normalizer of H, we get a group isomorphism

(5.3) ι :W
∼−→Ẇ σ, si 7→

∏
i′∈i

s̃i′ .

Here the order inside i is immaterial since the corresponding elements s̃i′ commute. It follows that the
longest element w◦∈W gets mapped under (5.3) to the longest element w̃◦ of Ẇ , because σ :Ẇ→Ẇ

preserves Coxeter length and therefore w̃◦∈Ẇ σ. The following result is immediate.

Lemma 5.1. Let B1,B2 ∈G/U+. If B1
w−→B2 then ι(B1)

ι(w)−−→ ι(B2). If B1
w

=⇒B2 then ι(B1)
ι(w)
=⇒

ι(B2). In particular, if B1
w◦=⇒B2 then ι(B1)

w̃◦=⇒ ι(B2).

5.2. Braid varieties. Let β= i1i2...im∈(±I)m be a double braid word. Let β̃= i′1i
′
2...i

′
m̃∈(±İ)m̃ be

obtained by concatenating the letters in i1,i2,...,im (choosing the order inside each ic arbitrarily),
where m̃ := |i1|+|i2|+···+|im|. We let λβ : [m̃]→ [m] denote the unique order-preserving map satisfy-

ing |λ−1
β (c)|= |ic| for all c∈ [m]. It is clear that an index c∈ [m] is solid (resp., hollow) if and only if all

indices in λ−1
β (c) are solid (resp., hollow). In other words, the set J̇β̃ of solid crossings for β̃ is given by

(5.4) J̇β̃=λ−1
β (Jβ).

Let
◦
Y ′β be the variety of tuples (Ẋ•,Ẏ•) of weighted flags in Ġ/U̇+ satisfying

Ẋ0 Ẋ1 ··· Ẋm

Ẏ0 Ẏ1 ··· Ẏm.

ι(s+i1
) ι(s+i2

) ι(s+im )

ι(s−
i∗1

)

w̃◦

ι(s−
i∗2

) ι(s−
i∗m

)

Let Y ′β be obtained by omitting the condition Ẋ0
w̃◦⇐= Ẏ0. Lemma 2.1 yields isomorphisms

◦
Y ′β ∼=

◦
Yβ̃

and Y ′β∼=Yβ̃. Let
◦
R′β be the quotient of

◦
Y ′β by the free Ġ-action. Then

◦
R′β
∼=
◦
Rβ̃.

The map σ acts on the varieties
◦
Y ′β, Y ′β, and

◦
R′β termwise by acting on each Ẋc and Ẏc. Let T ′β⊂

◦
R′β

be the image of the Deodhar torus Tβ̃⊂
◦
Rβ̃ under the isomorphism

◦
Rβ̃
∼=
◦
R′β. We have the following

straightforward result.

Proposition 5.2. Applying ι termwise yields isomorphisms

(5.5)
◦
Yβ ∼−→(

◦
Y ′β)σ, Yβ ∼−→(Y ′β)σ,

◦
Rβ

∼−→(
◦
R′β)σ, and Tβ

∼−→(T ′β)σ.

5.3. Grid minors. Recall that we have the character and cocharacter latticesX∗(H) :=Hom(H,C×),

X∗(H) :=Hom(C×,H). The map ι :H→Ḣ induces a map ι∗ :X∗(H)→X∗(Ḣ) sending α∨i 7→
∑

i′∈iα̇
∨
i′

for i∈I, so that ι(α∨i (t))=
∏
i′∈iα̇

∨
i′(t) for t∈C×. It also induces a map ι∗ :X∗(Ḣ)→X∗(H) sending

ω̇i′ 7→ωi for all i∈ I and i′ ∈ i, so that ι(h)ω̇i′ =hωi for h∈H. It follows that for all g∈G, v,w∈W ,
i∈I, and i′∈i, we have

(5.6) ∆vωi,wωi(g)=∆ι(v)ω̇i′ ,ι(w)ω̇i′
(ι(g)).

Let (X•,Y•) ∈
◦
R′β. As usual, for c = 0,1, ... ,m, we denote Zc := Y −1

c Xc. Let ũc := ι(uc) and

w̃c := ι(wc). For i′∈ İ, consider analogs of grid minors for
◦
R′β:

(5.7) ∆′c,i′(X•,Y•)=∆w̃cω̇i′ ,ω̇i′ (Zc), ∆′c,−i′(X•,Y•)=∆w̃◦ω̇i′ ,ũ
−1
c ω̇i′

(Zc).
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Comparing (5.6)–(5.7) to Definition 2.11, we find that the grid minors on
◦
Rβ are pullbacks of the

minors defined in (5.7): for c=0,1,...,m, i∈±I, and i′∈i, we have
(5.8) ι∗∆′c,i′=∆c,i.

Using Corollary 2.14, we obtain the following description of chamber minors on
◦
Rβ̃, which we denote

by ∆̃c′ , c
′∈ J̇β̃; cf. (5.4).

Lemma 5.3. Let c′ ∈ J̇β̃ be a solid crossing for β̃. Set i′ := i′c′ and c := λβ(c′) ∈ J . Then the

isomorphism
◦
Rβ̃
∼=
◦
R′β sends the chamber minor ∆̃c′ to ∆′c−1,i′, and we have ι∗∆′c−1,i′=∆c.

5.4. 2-form. Our next goal is to show that the two-form also folds.

Lemma 5.4. Let ω′β be the pullback of the 2-form ωβ̃ on
◦
Rβ̃ under the isomorphism

◦
R′β
∼=
◦
Rβ̃. We

have ι∗ω′β=ωβ.

Proof. Recall from (2.26)–(2.27) that we have 1-forms Lc,i = 1
2

∑
k∈±Iaikdlog∆c,k on

◦
Rβ for (c,i)∈

[m]×(±I), and that for c∈ [m] and i := ic, we set ωc(β) :=sign(i)diLc−1,i∧Lc,i. For i′∈±İ, introduce
a 1-form L′c,i′ :=

1
2

∑
j′∈±İ ȧi′j′dlog∆′c,j′ . By Corollary 2.14, we have

(5.9) ω′β=
∑
c∈Jβ

sign(ic)
∑
i′∈ic

L′c−1,i′∧L′c,i′ .

Next, applying (5.8) and (5.2), we see that for all c∈ [m], i∈±I, and i′∈i, we have

(5.10) ι∗L′c,i′= ι∗

1

2

∑
j′∈±İ

ȧi′j′dlog∆′c,j′

=
1

2

∑
j∈±I

∑
j′∈j

ȧi′j′

dlog∆c,j =Lc,i.

The result follows by combining (5.9)–(5.10) with (5.2). �

5.5. Folding seeds. We briefly review the notion of folding seeds, following [FWZ16, Section 4.4],
though translating into our conventions.

Definition 5.5. Let Σ̇ = (Ṫ, ẋ, ḋ, ω̇) be a seed with ḋ = (1, ... ,1), with mutable indices J̇mut and

frozen indices J̇ fro. Let σ be a bijection acting on J̇ := J̇mutt J̇ fro. Let J be the set of σ-orbits, and
for j ∈ J , we denote the corresponding orbit by j. An orbit is mutable (resp., frozen) if it consists
entirely of mutable (resp., frozen) indices. The bijection σ also acts on the set of cluster variables by

σ(ẋj′)= ẋσ(j′). We call Σ̇ weakly σ-admissible5 if:

(1) Every orbit is either mutable or frozen.
(2) The 2-form ω is invariant under the σ-action.

(3) For all a′,a′′∈ J̇mut in the same σ-orbit, ˙̃Ba′a′′=0, where ˙̃B is the exchange matrix of Σ̇.

Part (1) implies a natural decomposition J = Jmut t J fro. The map σ also acts on the torus Ṫ

by permuting coordinates. Notice that Ṫ σ is isomorphic to (C×)|J |. We denote by ι : Ṫ σ ↪→ Ṫ the
inclusion map.

Definition 5.6. Suppose Σ̇ is weakly σ-admissible, with notation as in Definition 5.5. The folded
seed is a seed with index set J=JmuttJ fro, defined as ι∗Σ̇=Σ:=(T,x,d,ω) where

• T = Ṫ σ;
• x=(xj)j∈J , where for j∈J , xj := ι∗ẋj′ for any j′∈j;
• dj = |j| for j∈J ;
• ω= ι∗ω̇.

5Our notion of weak σ-admissibility differs from the notion of admissibility in [FWZ16, Definition 4.4.1] in that we

do not require that for any a′,a′′ in the same orbit and any k′ mutable, ˙̃Ba′k′B̃a′′k′≥0.
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Note that xj is well-defined, since ι∗ẋj′ = ι∗ẋσ(j′) for all j′ ∈ j. The exchange matrix B̃ of Σ is

therefore written in terms of the exchange matrix ˙̃B of Σ̇ as

(5.11) B̃ab=
∑
a′∈a

˙̃Ba′b′ , where b′∈b is arbitrary.

In particular, if Σ̇ is integral then so is Σ. For the rest of this subsection, we assume that Σ̇ and Σ are
integral.

For weakly σ-admissible Σ̇ and j∈Jmut, we denote by µjΣ̇=µj(Σ̇) the result of mutating Σ̇ once

at each index in j, and call µj an orbit-mutation. Note that µjΣ̇ does not depend on the order of

mutation. The seed µjΣ̇ may not be weakly σ-admissible; we introduce the following notion to avoid
such mutations.

Definition 5.7. Let Σ̇ be a weakly σ-admissible seed and j ∈ Jmut. We call µj quasi-admissible if

for all k∈Jmut, we have B̃k′j′B̃k′′j′≥0 for all k′,k′′∈k and j′∈j.

The name “quasi-admissible” is justified by the following proposition.

Proposition 5.8. Let Σ̇ be a weakly σ-admissible seed and j∈Jmut. If µj is quasi-admissible, then

µj(Σ̇) is weakly σ-admissible and

µj(ι
∗Σ̇)∼ ι∗j (µjΣ̇),

where ιj is an inclusion of the associated tori.

Proof. We use the notation of Definitions 5.5 and 5.6. In particular, let Σ := ι∗Σ̇ be the folded seed

on index set J . Since the exchange matrix ˙̃B of Σ̇ is skew-symmetric, it is equivalent to a quiver Q̇;
we will use the two interchangeably.

It is clear that µjΣ̇ satisfies condition (1) of Definition 5.5. Because there are no arrows be-

tween vertices in j, mutating at all vertices of j shows that the exchange matrix of µjΣ̇ satisfies

(µj
˙̃B)a′b′ = (µj

˙̃B)σ(a′)σ(b′) for a′,b′ ∈ J̇ . The assumption that µj is quasi-admissible implies that for

k∈Jmut, (µj
˙̃B)k′k′′=0 for all k′,k′′∈k. Thus, µjΣ̇ is weakly σ-admissible.

Let Σ1 := µj(Σ) and Σ2 := ι∗j (µjΣ̇). Let y and z be the clusters in Σ1 and Σ2, respectively. For
k 6=j, yk=zk because both are equal to the cluster variable xk of Σ.

To analyze the relationship between yj and zj , we need the following notions. Let a,k ∈ J and

choose a′ ∈ a, k′ ∈ k. We call a path a′→ k′→ a′′ in Q̇ a bad path if a′,a′′ are in the same orbit;
condition (2) of Definition 5.7 implies that no bad path in Q̇ begins or ends in a mutable orbit. Let
Pk′ be a maximal (by inclusion) collection of arrow-disjoint bad paths with middle vertex k′.

In Σ̇, for j′∈j, the mutation ẋ′j′ of ẋj′ is defined by the exchange relation

ẋj′ ẋ
′
j′=M ′N ′+M ′′N ′′, where

N ′ :=
∏

(a′→j′→a′′)∈Pj′

ẋa′ and N ′′ :=
∏

(a′→j′→a′′)∈Pj′

ẋa′′ ,

and M ′,M ′′ are the appropriate monomials in the cluster variables of Σ̇. Notice that if ẋa′ appears in
M ′ and ẋb′ appears in M ′′ for a′∈a, b′∈b, then a 6=b, by the maximality of Pj′ . Notice also that by
assumption, N ′ and N ′′ are monomials in the frozen variables. We set N := ι∗(N ′) = ι∗(N ′′). Using
(5.11), we have

(5.12) ι∗(ẋ′j′)=N
ι∗M ′+ι∗M ′′

xj
, and µj(xj)=

ι∗M ′+ι∗M ′′

xj
.

This shows that the tori and the lattices spanned by the frozens of Σ1,Σ2 agree, and that cluster
variables differ by Laurent monomials in frozens. The multipliers d of both seeds are the same by
definition. The 2-forms of the two seeds agree by the functoriality of pullbacks. �
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6. Proof of Theorem 1.1 for G multiply-laced

Fix multiply-laced braid words β,β′ related by a long braid move (B3), so that
β=β1 iji...︸︷︷︸

mij letters

β2 =β1δβ2 and β′=β1 jij...︸ ︷︷ ︸
mij letters

β2 =β1δ
′β2.

By Definition 4.1, we have an isomorphism φ :
◦
Rβ

∼−→
◦
Rβ′ . The goal of this section is to show (F), (Q),

and thus Theorem 4.2, for the geometrically defined seeds Σβ and φ∗Σβ′ , and a particular mutation
Σ′ of Σβ (defined in (6.1)). We will then show Theorem 1.1 for G multiply-laced in Section 6.3, and
discuss consequences of Theorem 1.1 in Section 6.4

Note that we already have shown Theorems 1.1 and 4.2 for simply-laced braid varieties.

6.1. Proof of (F) for long braid moves. Let β̃1,β̃2,δ̃,δ̃
′ be lifts of β1,β2,δ,δ

′, respectively, following

the conventions of Section 5.2. Define β̃ := β̃1δ̃β̃2, β̃′ := β̃1δ̃
′β̃2 which are lifts of β and β′, respectively.

There is at least one sequence of short braid moves (B3) relating β̃ and β̃′; fix such a sequence of braid

moves and denote the corresponding isomorphism of braid varieties by φ̃ :
◦
Rβ̃

∼−→
◦
Rβ̃′ .

Throughout this section, we abuse notation and use ι to denote the compositions

ι :
◦
Rβ

∼−→(
◦
R′β)σ ↪→

◦
R′β

∼−→
◦
Rβ̃ and ι :

◦
Rβ′

∼−→(
◦
R′β′)

σ ↪→
◦
R′β′

∼−→
◦
Rβ̃′ .

Lemma 6.1. We have the equality ι◦φ= φ̃◦ι.
Proof. Observe that the words δ̃,δ̃′ are reduced. Thus, the sequence of moves (B3) from δ̃ to δ̃′ fixes

the weighted flags to the left and right of the indices involved in δ̃,δ̃′, and all weighted flags in between
are uniquely determined; cf. Definition 4.1. �

Lemma 6.2. We have ωβ=φ∗ωβ′; that is, (F) holds for β,β′.

Proof. We have ωβ = ι∗ωβ̃ = ι∗φ̃∗ωβ̃′=φ∗ι∗ωβ̃′=φ∗ωβ′ , where we have used Lemma 5.4, (F) for β̃,β̃′,

Lemma 6.1, and Lemma 5.4 again (in that order). �

6.2. Proof of (Q) for long braid moves. We continue to use the notation established earlier in
this section. Without loss of generality, we assume that either δ= ijij (in the case when αi,αj form
a root subsystem of type B2 or C2, where |i|= 2 and |j|= 1), or δ= 121212 (in the case of G=G2,
where |1|=3 and |2|=1).

The words δ,δ′ involve indices r+1,...,r+p, and for convenience, we decrease all indices by r so that
δ,δ′ are supported on 1,...,p. Similarly, we assume that δ̃,δ̃′ involve indices 1,...,p̃. We define the seed
(6.1) Σ′ :=τfold◦µfold(Σ),
where τfold is a permutation and µfold is a sequence of mutations involving 1,...,p. We list τfold,µfold

in Table 1(a–b). In our tables, we only list the restriction of τfold to the solid crossings in 1,...,p. We
would like to show that Σ′ and φ∗Σβ′ are quasi-equivalent. To do so, we will eventually fold the seeds
Σβ̃ and Σβ̃′ , and then establish a chain of quasi-equivalences involving the folded seeds, Σ′ and φ∗Σβ′ .

As a first step, we fix a particular sequence S of braid moves (B3) between the lifts β̃,β̃′, and thus

also fix φ̃. By Theorems 1.1 and 4.2, there is a corresponding mutation sequence µbraid and relabeling
τbraid such that
(6.2) τbraid◦µbraid(Σ̇β̃)= φ̃∗Σ̇β̃′ ,

where the seeds Σ̇β̃,Σ̇β̃′ are the seeds denoted Σβ̃,Σβ̃′ in Section 2. The sequence S of braid moves is

chosen so that µbraid and τbraid are as in Table 1(c–d).
We have the relabeling maps λβ : [m̃]→ [m] and λ′β : [m̃]→ [m] as in Section 5.2, where β,β′ (resp.,

β̃,β̃′) are on m (resp., on m̃) letters. By construction, we can extend the action of σ from I to J̇β̃ and

J̇β̃′ . Specifically, for each letter ic in β, σ permutes the letters ic in the corresponding consecutive

subword λ−1
β (c) of β̃, and similarly for β̃′.
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Proposition 6.3. Let C⊂Jβ be the set of indices c such that none of c′∈c is used in µbraid, and let

C :=λ−1
β (C). Let C ′⊂Jβ′ and C′⊂ J̇β̃′ be defined similarly. Then

ι∗(Σ̇
\C
β̃

)∼Σ
\C
β and ι∗(Σ̇

\C′

β̃′
)∼Σ

\C′
β′ .

Proof. We focus on the first quasi-equivalence. By Lemma 6.2, it suffices to show that for each
e∈Jβ \C and e′ ∈λ−1

β (e), we have ι∗(ẋe′) =xe. Let us fix such e,e′. Choose also c∈ [0,p], k∈ I, and

k′∈k. It is enough to show the statement
(6.3) ordVe∆c,k=ordV ′

e′
∆′c,k′ ,

where V ′e′ ⊂ Y ′β is the Deodhar hypersurface corresponding to ẋe′ ∈ C[
◦
Rβ̃] ∼= C[

◦
R′β] and ∆′c,k′ was

defined in Section 5.3.
We observe that the hollow crossings in δ,δ′ (and thus in δ̃,δ̃′) have a very special form: one of δ,δ′

has hollow crossings in positions [r+1,p], while the other one has hollow crossings in positions [r,p−1],
for some r; cf. Table 1(a–b). In this case, computing ordVe∆c,k is straightforward. First, suppose
that e≤r. Then all crossings in [p] to the left of e are solid. It follows from Propositions 2.20 and 2.21
and Corollary 2.14 that for c∈ [0,p] and k ∈ I, we have ordVe∆c,k = 1 if (c,k)∈{(e−1,ie),(e−2,ie)}
and ordVe∆c,k = 0 otherwise. Applying the same argument to compute ordV ′

e′
∆′c,k′ , we obtain (6.3).

It remains to consider the case e=p when the hollow crossings are in positions [r,p−1]. The crossings
r−1 and r−2 are solid, so Proposition 2.21 implies that ordVe∆c,k=0 for k= ir−1, c<r−1 or k= ir−2,
c< r−2. Here {ir−1,ir−2}= {i,j}. For c= p−1, we have ordVe∆c,k = 〈ωk,α∨ip〉 by Propositions 2.20

and 2.21. Thus, for c∈ [r,p−1], Lemma 2.8 implies that ordVe∆c,k = 〈ωk,sic+1 ···sip−1α
∨
ip
〉. We have

thus determined the values ordVe∆c,k for all (c,k) ∈ [0,p]×{i,j} except for (c,k) = (r−1,ir−2). By
Corollary 2.14, we have ordVe∆r−1,ir−2 = ordVe∆r,ir−2 . It is clear that we have ordVe∆c,k = 0 for
k∈I\{i,j}. Computing ordV ′

e′
∆′c,k′ via a similar argument, we obtain (6.3). �

For the remainder of the section, let C,C,C ′,C′ be as in Proposition 6.3.
The sequence µbraid is ill-adapted to folding, so we find another mutation sequence µlift relating

Σ̇β̃ and a relabeling τlift of φ̃∗Σ̇β̃′ . Explicitly, µlift is a sequence of orbit-mutations lifting the sequence

µfold from Table 1(a–b), and τlift is given in Table 1(e–f). Part (1) of the next result generalizes [FG06,
Theorem 3.5], which concerns the “all solid” case.

Proposition 6.4. Let µlift and τlift be as listed in Table 1(e–f). Then

(1) τbraid◦µbraid(Σ̇β̃)=τlift◦µlift(Σ̇β̃).

(2) µlift is a sequence of quasi-admissible mutations of Σ̇
\C
β̃

.

We delay the proof of Proposition 6.4 to the end of the section. Proposition 5.8 and part (2) of
Proposition 6.4 together imply the following result.

Corollary 6.5. We have ι∗(µliftΣ̇
\C
β̃

)∼µfold(ι∗Σ̇
\C
β̃

).

Proof of (Q) for long braid moves. We have a string of quasi-equivalences:

ι∗(µliftΣ̇
\C
β̃

)∼µfold(ι∗Σ̇
\C
β̃

)∼µfoldΣ
\C
β ,

where the first quasi-equivalence is Corollary 6.5 and the second follows from Proposition 6.3 and
Lemma 3.9. On the other hand,

ι∗(µliftΣ̇
\C
β̃

)= ι∗(τ−1
lift ◦φ̃∗Σ̇

\C′

β̃′
)=π−1

fold◦ι∗(φ̃∗Σ̇
\C′

β̃′
)=τ−1

fold◦φ∗(ι∗Σ̇
\C′

β̃′
)∼τ−1

fold◦φ∗Σ
\C′
β′ ,

where the first equality holds by Proposition 6.4 and (6.2), the second holds by direct computa-
tion (cf. Table 1(c–f)), the third holds by Lemma 6.1, and the final quasi-equivalence follows from
Proposition 6.3 and the fact that φ∗ preserves quasi-equivalence.

Summarizing, we have that µfoldΣ
\C
β is quasi-equivalent to (a relabeling of) φ∗Σ

\C′
β′ . Notice that

the cluster variables of µfoldΣ
\C
β , resp., φ∗Σ

\C′
β′ are equal to the cluster variables of µfoldΣβ, resp.,
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φ∗Σβ′ . By assumption (
◦
Rβ,Σβ) is a cluster variety, so Proposition 3.4 implies the cluster variables of

µfoldΣβ are irreducible elements of C[
◦
Rβ]. On the other hand, by Corollary 2.24, the cluster variables

in φ∗Σβ′ are irreducible elements of C[
◦
Rβ]. Thus, the cluster variables in µfoldΣβ and φ∗Σβ′ can differ

only by units and µfoldΣβ is quasi-equivalent to (a relabeling of) φ∗Σβ′ . �

Proof of Proposition 6.4. Recall that β̃= β̃1δ̃β̃2 and β̃′= β̃1δ̃
′β̃2, and that we index the crossings of δ̃

by 1,...,p̃. Let J :=Jβ\C be the set of indices which are mutated in µfold.

We show part (1). By [GSV08, Theorem 4], a seed in A(Σ̇β̃) is uniquely determined by its cluster,

so we need only check (1) at the level of cluster variables. This is easy to check for the cluster variables
{xc :c∈C} which are not touched by either mutation sequence.

Let Σ̇β̃=(ẋ,Q̇), and let Q̇res be the induced subquiver of Q̇ on J̇ :=λ−1
β (J). Let Q̇fr

res be the framing

of Q̇res; the extended exchange matrix of Q̇fr
res is thus of size 2|J̇ |×|J̇ | and the bottom |J̇ |×|J̇ | subma-

trix is the identity. We denote by Σ̇res the seed (ẏ,Q̇fr
res) for some cluster ẏ. By [FZ07, Theorem 3.7],

to show (1), it suffices to check that

(6.4) τbraid◦µbraid(Σ̇res)=τlift◦µlift(Σ̇res).

The relevant cluster variables in µbraid(Σ̇β̃) and µfold(Σ̇) can then be obtained from those in (6.4) by

specialization determined by Q̇.
To check (6.4), recall the description of the orders of vanishing of the cluster variables in J̇ from the

proof of Proposition 6.3. This description only depends on which crossings in δ̃,δ̃′ are hollow, which
in turn is determined by which crossings in β̃2 are hollow. This implies that to compute Q̇res, we
may assume β̃2 is a type A3 braid word (in the B2/C2 case) or a type D4 braid word (in the G2 case)
consisting entirely of hollow crossings. Applying the algorithm from Section 7 (to the simply-laced

braids β̃,β̃′; cf. Remark 7.3), we get that Q̇res is as displayed in Table 2. Equation (6.4) may then be
verified by computer.

Part (2) is also established by direct computation in Q̇res. �

This completes the proof of Theorem 4.2 for long braid moves.

6.3. Finishing the proof. We now have shown Theorem 4.2 for all braid moves. Theorem 1.1 for
multiply-laced G follows by the argument in Section 4.9. Repeating the proof of Proposition 4.12, we
have the following.

Proposition 6.6. Suppose β,β′ are related by a braid move (B1)–(B4). The seeds Σβ,Σ
∗
β′ are muta-

tion equivalent (up to relabeling cluster variables).

Continuing Remark 4.11, we obtain the following.

Corollary 6.7. The seeds Σβ are really full rank for all β.

6.4. Curious Lefschetz property. We now briefly discuss the consequences of our results for the

cohomology H∗(
◦
Rβ,C); we refer to [LS22] and [GLSBS22, Section 10.1] for further details. Recall

from Proposition 2.5 that
◦
Rβ is a smooth, affine, complex algebraic variety of dimension d := d(β).

The mixed Hodge structure [Del71] of Hk(
◦
Rβ,C) endows the the cohomology group with a Deligne

splitting Hk(
◦
Rβ,C) =

⊕
p,qH

k,(p,q)(
◦
Rβ,C). Since

◦
Rβ is a sink-recurrent cluster variety of really full

rank, it follows from [LS22, Theorem 8.3] thatH∗(
◦
Rβ,C) is of mixed Tate type, i.e.,Hk,(p,q)(

◦
Rβ,C)=0

for p 6= q. The form ωβ, which coincides with the GSV form [GSV10] in view of (3.1), defines an

element [ωβ] ∈ H2,(2,2)(
◦
Rβ,C). When the dimension d of

◦
Rβ is even, we say that

◦
Rβ satisfies the

curious Lefschetz property with respect to [ωβ] if the cup product induces isomorphisms

[ωβ]d−p :Hp+s,(p,p)(
◦
Rβ,C)

∼−→H2d−p+s,(2d−p,2d−p)(
◦
Rβ,C)
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B2/C2: G2:

δ→δ′ µfold τfold

ijij→jiji µ(4,3,4)

(
1 2 3 4
2 1 4 3

)
ijij→jiji µ4

(
1 2 4
2 1 3

)
ijij→jiji µ3

(
1 2 3
2 1 4

)
ijij→jiji id

(
1 2
4 1

)
ijij→jiji id

(
1 4
2 1

)
ijij→jiji id

(
4
1

)
ijij→jiji id

(
1
4

)
(a)

δ→δ′ µfold τfold

121212→212121 µ(6,3,4,6,5,6,3,4,5,6)

(
1 2 3 4 5 6
2 1 4 3 6 5

)
121212→212121 µ(3,4,5,3,4,5)

(
1 2 3 4 5
2 1 4 3 6

)
121212→212121 µ(6,3,4,6,3,4)

(
1 2 3 4 6
2 1 4 3 5

)
121212→212121 µ(4,3,4)

(
1 2 3 4
2 1 6 3

)
121212→212121 µ(6,3,6)

(
1 2 3 6
2 1 4 3

)
121212→212121 µ3

(
1 2 3
2 1 6

)
121212→212121 µ6

(
1 2 6
2 1 3

)
121212→212121 id

(
1 2
6 1

)
121212→212121 id

(
1 6
2 1

)
121212→212121 id

(
6
1

)
121212→212121 id

(
1
6

)
(b)

[p]\J̇β̃ µbraid τbraid

∅ µ(4,5,6,4)

(
1 2 3 4 5 6
3 1 2 5 4 6

)
{4,5} µ6

(
1 2 3 6
3 1 2 4

)
{6} µ(4,5)

(
1 2 3 4 5
3 1 2 6 5

)
{4,5,6} id

(
1 2 3
6 5 1

)
{3,4,5} id

(
1 2 6
2 3 1

)
{1,2,3,4,5} id

(
6
1

)
{3,4,5,6} id

(
1 2
6 5

)
(c)

[p]\J̇β̃ µbraid τbraid

∅ µ(8,9,5,6,7,8,11,10,9,5,12,6,10,8,5,11)

(
1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 1 9 6 5 7 11 12 8 10

)
{12} µ(8,5,6,7,8,11,9,5,6,10,8,5,11)

(
1 2 3 4 5 6 7 8 9 10 11
2 3 4 1 12 6 5 7 11 10 8

)
[9,11] µ(8,5,6,7,8,12,5,6,8,5)

(
1 2 3 4 5 6 7 8 12
2 3 4 1 9 6 5 7 8

)
[9,12] µ(6,7,5,6,8,5)

(
1 2 3 4 5 6 7 8
3 4 2 1 11 12 5 10

)
[8,11] µ(6,5,7,12,6,5)

(
1 2 3 4 5 6 7 12
2 3 4 1 6 7 5 8

)
[8,12] µ(5,6,7)

(
1 2 3 4 5 6 7
2 3 4 1 10 11 12

)
[5,11] µ12

(
1 2 3 4 12
2 3 4 1 5

)
[5,12] id

(
1 2 3 4
10 11 12 1

)
[4,11] id

(
1 2 3 12
2 3 4 1

)
[2,12] id

(
1
12

)
[1,11] id

(
12
1

)
(d)

[p]\J̇β̃ µlift τlift

∅ µ(6,4,5,6)

(
1 2 3 4 5 6
2 3 1 6 5 4

)
(e)

[p]\J̇β̃ µlift τlift

∅ µ(12,5,6,7,8,12,9,10,11,12,5,6,7,8,9,10,11,12)

(
1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 1 6 7 8 5 10 11 12 9

)
{12} µ(5,6,7,8,9,10,11,5,6,7,8,9,10,11)

(
1 2 3 4 5 6 7 8 9 10 11
2 3 4 1 6 7 8 5 10 11 12

)
[9,11] µ(12,5,6,7,8,12,5,6,7,8)

(
1 2 3 4 5 6 7 8 12
2 3 4 1 6 7 8 5 9

)
[9,12] µ(8,5,6,7,8)

(
1 2 3 4 5 6 7 8
2 3 4 1 10 11 12 5

)
[8,11] µ(5,6,7,12,5,6,7)

(
1 2 3 4 5 6 7 12
2 3 4 1 6 7 8 5

)
(f)

Table 1. The mutation sequences µfold, µbraid, µlift, and the relabelings τfold,
τbraid, τlift used in Section 6. Hollow crossings are underlined. We denote
µ(a1,...,ar) := µa1 ◦ ··· ◦ µar . For the case B2/C2, we denote i = {i′, i′′}, j = {j′},
δ̃ = i′i′′j′i′i′′j′, δ̃′ = j′i′i′′j′i′i′′; for G2, we denote 1 = {1̇, 3̇, 4̇}, 2 = {2̇},
δ̃ = 1̇3̇4̇2̇1̇3̇4̇2̇1̇3̇4̇2̇, δ̃′ = 2̇1̇3̇4̇2̇1̇3̇4̇2̇1̇3̇4̇. In (e) and (f), the cases where µlift and
µbraid coincide are omitted; we define τlift :=τbraid in those cases.
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Type B2/C2 G2

Q̇res
4

5

6

5

6

7

8

9

10

11

12

5

6

7

8

9

10

11

5

6

7

8 12

5

6

7

8

5

6

7

12

[p] \ J̇β̃ ∅ ∅ {12} [9, 11] [9, 12] [8, 11]

Table 2. The quivers Q̇res from Proposition 6.4 listed in the same order as in
Table 1(e–f). In the cases where µbraid =µlift, Q̇res has no arrows.

for all p and s. We also say that
◦
Rβ satisfies (the weaker) curious Poincaré symmetry if

dimHp+s,(p,p)(
◦
Rβ,C)=dimH2d−p+s,(2d−p,2d−p)(

◦
Rβ,C).

The following result is a consequence of the results of [LS22]; see [GLSBS22, Theorem 10.1].6

Theorem 6.8. Even-dimensional double braid varieties
◦
Rβ satisfy the curious Lefschetz property

with respect to [ωβ] and thus also curious Poincaré symmetry. Odd-dimensional
◦
Rβ satisfy curious

Poincaré symmetry.

Note that if d= d(β) is odd, one can always add an isolated vertex to the seed Σβ, and the corre-

sponding variety
◦
Rβ×C× will satisfy the curious Lefschetz property.

7. Combinatorial algorithm

The exchange matrices for our seeds Σβ are defined via Deodhar geometry. In particular, writing
ωβ in terms of dlogxe∧dlogxc requires knowing orders of vanishing along Deodhar hypersurfaces. In
this section, we give an algorithm to compute the order of vanishing of ∆c on Ve, which determines
our cluster algebras.

Let c ∈ [0,m]. The function h±c of Section 2.5 is an H-valued character on Tβ. We may thus

write h±c =
∏
e∈Jβγ

±
β,c,e(xe), where γ±β,c,e are cocharacters of H satisfying γ−β,c,e=uc ·γ+

β,c,e. By (2.16)

and (2.25), for all c∈ [0,m] and k∈I, we have
(7.1)

∆c,±k=(h±c )ωk =
∏
e∈Jβ

x
〈ωk,γ±β,c,e〉
e , and so ord

(β)
Ve

∆c,±k=〈ωk,γ±β,c,e〉 for all e∈Jβ, c∈ [0,m], k∈I.

Lemma 7.1. Let c∈ [0,m] and let e∈Jβ be such that e≥c.
(1) Suppose β′ is obtained from β by removing the first c−1 letters. Then γ±β,c,e=γ±β′,1,e−c+1.

(2) Suppose β′ is obtained from β by doing non-mutation moves (B1) and (B4), only involving
indices greater than c, and let e′ be the image of e under the resulting identification of cluster
seeds. Then we have γ±β,c,e=γ±β′,c,e′.

(3) Suppose β′ is obtained from β by removing solid crossings greater than e. Then γ±β,c,e=γ±β′,c,e.

Proof. Part (1) follows from Lemma 2.25.
For part (2), as explained in Sections 4.2 and 4.6, applying non-mutation moves (B1) and (B4)

results in a relabeling of the cluster variables. In particular, the pullbacks V ∗e′ and ∆∗c,±k coincide with

Ve and ∆c,±k, respectively. Thus, by (7.1), we get γ±β,c,e=γ±β′,c,e′
We prove (3). Suppose β has a solid crossing e′>e and assume that e′ is the largest solid crossing

in β. Similarly to Proposition 4.12, we may append a double braid word β0 to the left of β and β′ so

6While [LS22] work in the skew-symmetric setting, the curious Lefschetz theorem therein generalizes to the
skew-symmetrizable case.
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that e∈ Jmut
β ; by part (1), this does not affect γ±β,c,e or γ±β′,c,e′ . Applying non-mutation moves (B1)

and (B4) if necessary, we may assume that ie′ ∈I; by part (2), this preserves γ±β,c,e and γ±β′,c,e′ . Since

e′ is the largest solid crossing, we may apply moves (B1)–(B3) involving hollow indices e′+1,...,m
until we have ie′ = ie′+1; these moves do not affect γ±β,c,e or γ±β′,c,e′ by Remark 4.5. From now on, we
assume ie′= ie′+1∈I.

Let β′′ be obtained from β by removing the letter ie′ from β. Let W ⊂
◦
Rβ be the open subset

obtained by removing the Deodhar hypersurface Ve′ , if e′ is mutable; otherwise, let W :=
◦
Rβ. The

projection π :W→
◦
Rβ′′ given by forgetting the flags (Xe′ ,Ye′) is a fiber bundle with fiber C×. We have

π∗(∆β′′
c )=∆β

c and π maps V β
e ∩W surjectively onto V β′′

e . (Here we use the superscript to refer to the

braid variety on which ∆c and Ve are defined.) Since both V β
e ⊂

◦
Rβ and V β′′

e ⊂
◦
Rβ′′ are hypersurfaces,

it follows that the order of vanishing of ∆β
c on V β

e is equal to that of ∆β′′
c on V β′′

e . Repeating this
argument, we obtain (3). �

Using Lemma 7.1, we may assume that c = 1, e = m− 1 and β = (−b∗rev)akk, where a,b are
words in I, and (−b∗rev) is obtained by reversing b and applying the map i 7→−i∗ to each letter, and
k= ie= im∈I. Define

γ(a,k,b) :=γ+
(−b∗rev)akk,1,m−1,

and let a and b denote the Demazure product of a and b, respectively. Recall also from Section 2.3
that ∗ denotes Demazure product.

Proposition 7.2. Suppose that Theorems 1.1 and 4.2 hold for G. Then the cocharacter γ(a,k,b)
satisfies, and is recursively defined by the following properties.

I) We have γ(a,k,b)=0 if a=w◦ or b=w◦.
II) The cocharacter γ(a,k,b)=γ(a,k,b) only depends on the Demazure products a,b.

III) We have γ(a,k,∅)=aα∨k if ask>a and γ(a,k,∅)=0 if ask<a.
IV) Suppose that a,b are reduced. We let a′= ia and b = b′j, where the Demazure products satisfy

a′=sia>a and b=b′sj>b
′.

(1) If a′∗sk∗b>a∗sk∗b, then γ(a,k,b)=si ·γ(a′,k,b).
(2) If a∗sk∗b>a∗sk∗b′, then γ(a,k,b)=γ(a,k,b′).
(3) If w :=a′∗sk∗b=a∗sk∗b=a∗sk∗b′, write α∨=α∨i and β∨=−w−1 ·α∨j .

(3a) Suppose that α∨ 6= β∨. Then γ(a′,k,b) = γ(a,k,b′)+xα∨+yβ∨ for x,y ∈Z, and we
have γ(a,k,b)=γ(a,k,b′)+yβ∨.

(3b) Suppose that α∨=α∨i =β∨. Then γ(a,k,b)−γ(a′,k,b′)∈Zα∨i , and

〈ωi,γ(a,k,b)〉=−〈ωi,γ(a′,k,b′)〉+min

〈ωi,γ(a′,k,b)〉+〈ωi,γ(a,k,b′)〉,−
∑
l 6=i
ail〈ωl,γ(a′,k,b′)〉

.
Proof. We first argue that the stated properties determine γ(a,k,b). By I) and III), we know γ(a,k,b)
when a=w◦ or b= id. If a 6=w◦ and b 6= id, property IV) allows us to express γ(a,k,b) in terms of
γ(a′,k,b),γ(a,k,b′),γ(a′,k,b′) where a′>a and b′< b. Thus, all values of γ(a,k,b) are determined.
We now prove I)–IV).

Suppose that a=w◦ or b=w◦. Then a generic point (X•,Y•) in Ve satisfies Y0
w◦=⇒X0. It follows

that ∆1 does not vanish on Ve, establishing I).
We show II). It is clear that if ask < a then γ(a,k,b) = 0. Suppose that ask > a. We apply the

moves β
(B4)−−−→ (−b∗rev)ak(−k∗) (B1)−−−→ (−b∗rev)a(−k∗)k (B1)−−−→··· (B1)−−−→ (−b∗rev)(−k∗)ak. Since ask>a,

these are non-mutation moves, and thus part (2) of Lemma 7.1 applies. We may now remove the solid
crossings from a using part (3) of Lemma 7.1, and then reverse the procedure to put β back into its
original form with solid crossings removed from a.
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We prove III). If ask<a, we have already shown that γ(a,k,∅)=0. Assume ask>a. When a=id,
the result follows from Proposition 2.20. For a 6= id, we apply induction, II), and the hollow case of
Lemma 2.8.

We prove IV). For (1), adding the letter i in front of (−b∗rev)akk produces a new hollow crossing,
and the claim follows from Lemmas 2.8 and 7.1. Similarly, for (2), the letter −j∗ is a hollow crossing
in (−b∗rev)akk. Case (3) holds if both i and−j∗ are solid crossings in the word i(−j∗)(−(b′)∗rev)akk.
If swapping the order of i and −j∗ is a non-mutation move then we are in Case (3a), and the claim
follows from Lemma 2.8 and the linear independence of α∨ and β∨. If swapping the order of i and
−j∗ is a mutation, then we are in Case (3b), and the claim follows from (4.12) and the assumption
that Theorems 1.1 and 4.2 have been shown for G. �

The algorithm has been implemented at [Gal23], where some examples can be found.

Remark 7.3. The logical dependencies in our proof are summarized as follows. In Section 4, we give
a complete proof of Theorems 1.1 and 4.2 for the case when G is simply-laced. Thus, Proposition 7.2
applies in this case. The proof for the case when G is multiply-laced is given in Section 6; it depends
on Proposition 7.2, but only invokes it for the simply-laced group Ġ.

The following result follows from our algorithm, but we have been unable to show it directly from
Deodhar geometry.

Corollary 7.4. Let ι :
◦
Rβ ↪→

◦
Rβ̃ and λβ : [m̃]→ [m] be as in Sections 5.2 and 6. Then for each e∈Jβ

and e′∈λ−1
β (e), we have ι∗(ẋe′)=xe.

Proof. With notation as in the proof of Proposition 6.3, it suffices to show that ordVe∆c,k=ordV ′
e′

∆′c,k′

for c≤e, k∈I, and k′∈k. This follows from applying Proposition 7.2 to
◦
Rβ and

◦
Rβ̃ separately. �
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