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Abstract. We introduce 3-dimensional generalizations of Postnikov’s plabic graphs and
use them to establish cluster structures for type A braid varieties. Our results include
known cluster structures on open positroid varieties and double Bruhat cells, and establish
new cluster structures for type A open Richardson varieties.
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1. Introduction

Braid varieties
◦
Ru,β are smooth, affine, complex algebraic varieties associated to a permu-

tation u and a braid word β, that is, a word representing an element of the positive braid
monoid. The purpose of this work is to construct a cluster algebra structure [FZ02] on the
coordinate ring of a braid variety.

Theorem 1.1. The coordinate ring C[
◦
Ru,β] of a braid variety is a cluster algebra.
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The braid varieties we consider were studied, rather recently, in [Mel19, CGGS20], gen-
eralizing varieties considered previously in [Deo85, MR04, WY07]. Theorem 1.1 resolves
conjectures of [Lec16, CGGS21].

Certain special cases of braid varieties, namely open Richardson varieties and open positroid
varieties, have played a key role in the combinatorial geometry of flag varieties and Grassman-

nians. Open Richardson varieties
◦
Ru,w are subvarieties of the variety SLn /B+ of complete

flags in Cn, arising in the study of total positivity and Poisson geometry [Deo85, Lus98,
MR04, Pos06, BGY06, KLS13]. An explicit cluster structure for open Richardson varieties
was conjectured by Leclerc [Lec16]. Ménard [Mé22] gave an alternative conjectural cluster
structure, which was proved by Cao and Keller [CK22] to be an upper cluster structure;
Ménard’s and Leclerc’s cluster structures are expected to coincide. Another upper cluster
structure was constructed by Ingermanson [Ing19]. The cluster structure of Theorem 1.1, in
the case of open Richardson varieties, agrees with that of Ingermanson. It is related to the
cluster structure of Leclerc [Lec16] by the twist automorphism [GL22b, SSB].

We also prove that the cluster varieties in Theorem 1.1 are locally acyclic [Mul13]; in
the case of open Richardson varieties we use this to establish a variant of a conjecture of
Lam and Speyer [LS16]. In particular, the cohomology of braid varieties satisfies the curious
Lefschetz phenomenon (Theorem 10.1).

Theorem 1.1 generalizes the (type A) results of [FZ99, GY20] on double Bruhat cells
and [SW21] on double Bott–Samelson cells, and also the results of Ingermanson [Ing19] and
Cao and Keller [CK22], who found upper cluster structures on open Richardson varieties
(see also [Mé22]). Furthermore, Theorem 1.1 generalizes the main result of [GL19] (see
also [Sco06, MS16, SSBW19]), where the same statement was proved for open positroid
varieties [KLS13], which are special cases of open Richardson varieties. Positroid varieties
are parametrized by plabic graphs [Pos06], whose planar dual quivers describe the cluster
algebra structure on the associated open positroid varieties.

Ever since the completion of [GL19], it has been our hope that constructing a cluster struc-
ture for open Richardson varieties would lead to a meaningful generalization of Postnikov’s
plabic graphs; indeed, discovering such a generalization turned out to be a crucial step in
our proof of Theorem 1.1. We associate a 3D plabic graph to each pair (u, β) consisting of
a permutation u and a (double) braid word β, and use the combinatorics of this graph to
construct our cluster structure. The reader is invited to look forward at the examples in
Figures 1–5.

An important geometric ingredient in our approach is the study of the Deodhar geometry
of braid varieties, originally used by Deodhar [Deo85] in the flag variety setting. We define an

open Deodhar torus Tu,β ⊂
◦
Ru,β, and our cluster variables are interpreted as characters of Tu,β

that have certain orders of vanishing along the Deodhar hypersurfaces in the complement of
the Deodhar torus. We expect this geometric approach to have applications to other settings
where cluster structures are expected to make an appearance.

Our work has a number of applications. Our cluster structure implies, via [LS16], a curious
Lefschetz phenomenon for the cohomology of braid varieties. Our approach is closely related
to the combinatorics of braid Richardson links that are associated to a braid variety; in
particular, we relate certain quiver point counts to the HOMFLY polynomial of these links.

We learned at the final stages of completing this manuscript that a cluster structure
for braid varieties was independently announced in a recent preprint [CGG+22]. It would
be interesting to investigate the relation between our 3D plabic graphs and the approach
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Figure 1. A 3D plabic graph Gu,w.

of [CGG+22]. The results of [CGG+22] apply more generally to braid varieties of arbitrary
Lie type, while in the present paper we focus on varieties of type A. Our results and methods
will be extended to include braid varieties of arbitrary type in a separate paper [GLSBS].

Overview. In Section 2, we give a synopsis of our main results in the setting of open
Richardson varieties. In the rest of the paper we work in the setting of braid varieties. We

define 3D plabic graphs and the associated quivers Q̃u,β in Section 3. Next, we develop the

combinatorics of 3D plabic graphs and show that the quivers Q̃u,β are invariant under braid
moves on the word β, naturally extending square moves from Postnikov’s plabic graphs to
3D plabic graphs; see Section 4. We discuss cluster algebras associated to 3D plabic graphs
in Section 5 and show that they are locally acyclic in the sense of [Mul13]. In Sections 6

and 7, we study the Deodhar geometry of
◦
Ru,β and construct a seed in C(

◦
Ru,β) for each 3D

plabic graph. We then show that the seeds are related by mutation in Section 8. Finally, in
Section 9, we prove Theorem 7.14 by induction on the length of β. We conclude with some
applications of our approach in Section 10.

Acknowledgments. T.L. and D.E.S. thank our students Ray Karpman and Gracie Inger-
manson for helping us understand the relationship between Deodhar’s positive subexpres-
sions and Postnikov’s combinatorics and for the other ideas discussed in Section 2.6. M.S.B.
thanks Daping Weng for illuminating conversations on [SW21]. We also appreciate many
conversations with Allen Knutson about Richardson and Bott–Samelson varieties, and De-
odhar tori. We thank Roger Casals, Eugene Gorsky, and Anton Mellit for conversations
related to this project. We also thank the authors of [CGG+22] for sharing their exciting
results with us.

2. Open Richardson varieties

In this section, we give a more detailed explanation of Theorem 1.1 in the case of open
Richardson varieties.

2.1. Open Richardson varieties. Let G = SLn, and let B+, B− be the opposite Borel
subgroups of upper and lower triangular matrices, respectively. For two permutations u,w ∈
Sn such that u ≤ w in the Bruhat order, the open Richardson variety

◦
Ru,w is defined as

◦
Ru,w := (B−uB+ ∩B+wB+)/B+.
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Figure 2. Propagation rules (right to left) for the relative cycles in Gu,w.
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Figure 3. Applying propagation rules to find one relative cycle Cc of Gu,w.

To each pair u ≤ w and to each reduced word w for w we associate an ice quiver Q̃u,w

(Section 2.3). Let A(Q̃u,w) be the associated cluster algebra; see Section 5.1 for background.

Theorem 2.1. For all u ≤ w in Sn, we have an isomorphism

C[
◦
Ru,w] ∼= A(Q̃u,w).

Moreover, the cluster algebra A(Q̃u,w) is locally acyclic and really full rank.

The cluster algebra terminology in Theorem 2.1 will be introduced in Section 5.1. We

now describe the 3D plabic graph Gu,w, the quiver Q̃u,w, and the associated cluster algebra

A(Q̃u,w).

2.2. 3D plabic graphs. Let w = (i1, i2, . . . , im) be a reduced word for w. Consider the
unique rightmost subexpression u for u inside w, and let Ju,w ⊂ [m] := {1, 2, . . . ,m} be the
set of indices not used in u. The 3D plabic graph Gu,w is obtained from the wiring diagram
for w by replacing all crossings in [m] \ Ju,w by overcrossings and replacing each crossing
c ∈ Ju,w by a black-white bridge edge bc; see Figure 1. We place a marked point on each of
the n leftmost boundary vertices of Gu,w, and denote by M the set of these marked points.

The number of bridges in Gu,w is |Ju,w| = `(w) − `(u), which is the dimension of
◦
Ru,w.

To each index c ∈ Ju,w we will associate an (oriented) relative cycle Cc in Gu,w, which by
definition is either a cycle in Gu,w or a union of oriented paths in Gu,w with endpoints in M.

Each relative cycle Cc will naturally bound a disk Dc.
1 For instance, in Figure 3, the

vertical sections of Dc are shown in wavy pink lines. We indicate the relative position of Dc

in R3 with respect to the edges of Gu,w by over/under-crossings. We will compute Dc, and
therefore its boundary Cc, starting from the bridge bc and proceeding to the left using the
propagation rules in Figure 2. We choose the counterclockwise orientation of Cc, so that as

1More precisely, when Cc is a cycle, ∂Dc = Cc, and when Cc is a union of paths with marked endpoints,
∂Dc is the union of Cc together with several straight line segments connecting pairs of marked points.
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∆12,12(z) = x2

∆1,1(z) = x3

∆1234,1234(z) = x4

∆123,124(z) = x5x8
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∆1,4(z) = 1
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∆1234,2345(z) = 1

Figure 4. Factorization of chamber minors into cluster variables.

one traverses Cc, the disk Dc is to the left. See Section 3.4 for a description of relative cycles
in the case of double braid varieties.

2.3. The quiver. A quiver Q is a directed graph without directed cycles of length 1 and 2.

An ice quiver Q̃ is a quiver whose vertex set Ṽ = V (Q̃) is partitioned into frozen and mutable

vertices: Ṽ = V fro t V mut. The arrows between pairs of frozen vertices are automatically
omitted.

The procedure in Section 2.2 yields a bicolored graph Gu,w decorated with a family

(Cc)c∈Ju,w of relative cycles. To this data, we associate an ice quiver Q̃u,w. Our construction

will rely on the results of [FG09, GK13]. The vertex set V (Q̃u,w) := Ju,w is in bijection with
the set of relative cycles. If a relative cycle Cc is actually a cycle in Gu,w then c is a mutable

vertex of Q̃u,w; otherwise, if Cc is a union of paths with endpoints in M, c is a frozen vertex

of Q̃u,w.

To compute the arrows of Q̃u,w, we consider Gu,w as a ribbon graph, with counterclockwise
half-edge orientations around white vertices and clockwise half-edge orientations around
black vertices. Let Su,w be the surface with boundary obtained by replacing every edge of
Gu,w by a thin ribbon and gluing the ribbons together according to the local orientations at
the vertices of Gu,w. See Figure 6(d) for an example of Su,w. The n marked points of Gu,w

give rise to n marked points on ∂Su,w, the set of which is also denoted by M.
We view each relative cycle Cc as an element of the relative homology Λu,w := H1(Su,w,M).

It turns out that each mutable relative cycle can be also viewed as an element of the dual
lattice Λ∗u,w; see Section 3.3. The (signed) number of arrows between two vertices c, d ∈ Ju,w
in Q̃u,w, where d is mutable, is defined to be the (signed) intersection number 〈Cc, Cd〉 of
the relative cycles Cc and Cd. These intersection numbers can be computed explicitly using
simple pictorial rules; see Algorithm 3.8.

2.4. The seed. To each c ∈ Ju,w we associate a cluster variable xc ∈ C[
◦
Ru,w]. Let Chc be

the chamber (i.e., a connected component of the complement of Gu,w in the plane) located
immediately to the left of the bridge bc. To this data, one can associate a regular function

on
◦
Ru,w called a chamber minor ∆c ∈ C[

◦
Ru,w]. Variants of these functions appear in [MR04,

Lec16, Ing19].

Specifically, given an element gB+ ∈
◦
Ru,w, one can find a unique matrix z ∈ B+ such that

gB+ = zwB+ and ∆u[i],w[i](z) = 1 for all i = 1, 2, . . . , n. Here we write v[i] := {v(1), . . . , v(i)}
for v ∈ Sn, and ∆A,B denotes the matrix minor with row set A and column set B. The wiring
diagram of w is obtained from Gu,w by replacing every bridge with a crossing, and the wiring



6 PAVEL GALASHIN, THOMAS LAM, MELISSA SHERMAN-BENNETT, AND DAVID SPEYER

diagram of u is obtained by erasing all bridges from Gu,w. Given any chamber Ch, let A be
the set of left endpoints of u-strands (i.e., the strands in the wiring diagram of u) passing
below Ch, and let B be the set of left endpoints of w-strands passing below Ch. The
chamber minor for Ch is then given by ∆A,B(z).

For d ∈ Ju,w, we say that Chc is inside Cd if it is contained inside the projection of the disk
Dd to the plane. Then the cluster variables (xc)c∈Ju,w are uniquely defined by the invertible
monomial transformation

(2.1) ∆c =
∏

d∈Ju,w: Chc is inside Cd

xd.

See Figure 4 for an example when w = s3s2s1s4s3s2s3s4 and u = s3, and see Section 6.6.1
for further details.

The cluster {xc}c∈Ju,w together with the quiver Q̃u,w is a seed Σu,w in C(
◦
Ru,w). To prove

Theorem 2.1, we show that C[
◦
Ru,w] = A(Σu,w).

2.5. Deodhar geometry. In [Deo85], Deodhar constructed a stratification of
◦
Ru,w for each

reduced word w of w. The strata are of the form Ca × (C∗)b. The dense open stratum in

Deodhar’s stratification is called the Deodhar torus, and denoted Tu,w ⊂
◦
Ru,w. The Deodhar

torus is the initial cluster torus in our cluster structure. We show in Proposition 7.4 that
the chamber minors {∆c}c∈Ju,w are a basis of characters for Tu,w.

We show that the cluster variables {xd}d∈Ju,w are certain distinguished characters on Tu,w.

Namely, the complement
◦
Ru,w \ Tu,w is a union of irreducible components called (mutable)

Deodhar hypersurfaces Vd. We deduce from (2.1) that the mutable cluster variable xd is
the unique character of Tu,w which vanishes to order one along Vd and has no zeroes along
other Deodhar hypersurfaces. Frozen Deodhar hypersurfaces and frozen cluster variables are
constructed using a slightly different geometric approach.

2.6. Comparison to known cluster structures. Our construction simultaneously in-
cludes several known cluster structures.

When w is a k-Grassmannian permutation, the open Richardson variety
◦
Ru,w is an open

positroid variety in the sense of [Pos06, KLS13]. In this case, Karpman [Kar17] showed
that the graph Gu,w is one of Postnikov’s reduced plabic graphs [Pos06] with n extra leaves
attached. In particular, in this case Gu,w is planar and each cycle Cc bounds a single face of
Gu,w, which is not usually true for general w ∈ Sn. In this case, the first two authors [GL19]
showed that the open positroid variety is a cluster variety, with quiver coming from the

plabic graph; this gives the quiver Q̃u,w.
Many of our ideas appeared in the unpublished Ph.D. dissertation of Ingermanson [Ing19],

which constructs an upper cluster structure on
◦
Ru,w. The fourth author was Ingermanson’s

advisor and is grateful for the ideas he learned from her. We summarize the constructions in
our paper that appear in [Ing19]. Ingermanson writes down the same monomial transforma-
tion as (2.1), but defines it via a much more involved recursion. Ingermanson constructs a
bridge diagram (in the case that w is a particular reduced word called the “unipeak word”)
which is isomorphic to our graph Gu,w but is defined as an abstract graph rather than em-

bedded in R3. Ingermanson’s quiver is identical to our Q̃u,w, but it is described in a very
different way, along the lines of Section 3.7.
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2.7. Braid Richardson varieties. Open Richardson varieties generalize to braid Richard-
son varieties. We say that two flags B1, B2 ∈ G/B+ are in relative position w ∈ Sn if there

exists a matrix g ∈ G such that (gB1, gB2) = (B+, wB+). In this case, we write B1
w−→ B2.

Consider a (not necessarily reduced) word β = (i1, i2, . . . , im) ∈ [n − 1]m and let u ∈ Sn.
Following the nomenclature of [GLTW22], define the braid Richardson variety

(2.2)
◦
Ru,β =

{
(B1, B2, . . . , Bm) ∈ (G/B+)m | B+

si1−→ B1

si2−→ · · · sim−−→ Bm
w0u←−− B−

}
.

This variety is nonempty whenever u ≤ β in the sense of Definition 3.1. In the case u = w0,
the definition (2.2) is the same as the definition of the braid variety X(β) considered in
[CGG+22], and is isomorphic to the braid variety X(β, w0) in [CGGS20]. We shall show
that braid Richardson varieties are isomorphic to the braid varieties we study in Section 6.

When β is a reduced word for some w ∈ Sn then using a variant of Lemma 6.2(2–3), we see

that
◦
Ru,β is isomorphic to the space

{
B ∈ G/B+ | B+

w−→ B
w0u←−− B−

}
which can be identified

with the Richardson variety
◦
Ru,w ⊂ G/B+. Thus, braid Richardson varieties generalize open

Richardson varieties. Theorem 2.1 extends to the setting of braid Richardson varieties.
In Section 3.1, we describe our construction in the most general setting of double braid

varieties, and define a 3D plabic graph Gu,β and a quiver Q̃u,β for a pair (u, β) consisting of a
permutation u and a double braid word β (Section 3.1). If β is a double braid word and u = id,
then Gu,β is again planar. In this case, if we impose that the double word β is reduced, we
recover the classical cluster structure on type A double Bruhat cells [FZ99, BFZ05, GY20].
If we allow β to be non-reduced, then we recover the type A results of [SW21] on double
Bott–Samelson varieties. We note that the fact that our graphs are non-planar indicates that
our construction gives a non-trivial 3-dimensional extension of the combinatorics of [FZ99,
Pos06, SW21].

3. Double braid quivers

The goal of this section is to define 3D plabic graphs, conjugate surfaces, relative cycles,
and the associated quivers in the extended generality of double braid words.

3.1. Double braid words. Let I := [n−1]. A double braid word is a word β = (i1, i2, . . . , im) ∈
(±I)m in the alphabet

±I := {−1,−2, . . . ,−(n− 1)} t {1, 2, . . . , n− 1}.
We denote the set of double braid words by (±I)m. We will usually abbreviate β =
(i1, i2, . . . , im) as β = i1i2 . . . im. For β ∈ (±I)m, we write `(β) := m. The goal of this

section is to associate a quiver Q̃u,β to a pair (u, β), where u ∈ Sn and β ∈ (±I)m.
The word β ∈ (±I)m should be considered as a shuffle of two positive braid words in the

commuting alphabets I,−I. We emphasize that the letter −i does not correspond to σ−1
i ,

the inverse of the braid group generator σi. We call elements of I red and elements of −I
blue.

For i ∈ ±I, let

s+
i :=

{
si, if i > 0,

id, if i < 0,
s−i :=

{
id, if i > 0,

s−i, if i < 0.
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We use the convention that the positive indices act on the right while the negative indices
act on the left; for a permutation u ∈ Sn and i ∈ ±I, we write this action as u 7→ s−i us

+
i .

For a double braid word β, its Demazure product is defined by

π(β) := s−im ∗ s−im−1
∗ · · · ∗ s−i1 ∗ s+

i1
∗ s+

i2
∗ · · · ∗ s+

im
∈ Sn,

where ∗ denotes the standard Demazure product on Sn.

Definition 3.1. For u ∈ Sn and a double braid word β, we write u ≤ β if u ≤ π(β) in the
Bruhat order on Sn.

Let β = (i1, i2, . . . , im) ∈ (±I)m and u ∈ Sn. A u-subexpression of β is a sequence
u = (u(0), u(1), . . . , u(m)) ∈ Sm+1

n such that u(0) = id, u(m) = u, and such that for each
c ∈ [m], we have either u(c) = u(c−1) or u(c) = s−icu(c−1)s

+
ic

. It is clear that β contains a
u-subexpression if and only if u ≤ β.

Suppose that u ≤ β. Out of all u-subexpressions of β, there exists a unique “rightmost”
one, called the u-positive distinguished subexpression (u-PDS). It can be computed explicitly
using the following operation which we call Demazure quotient : for u ∈ Sn and i ∈ I, set

si B u =

{
siu, if siu < u,

u, otherwise,
and u C si =

{
usi, if usi < u,

u, otherwise.

By convention, we set id B u = u = u C id. The u-PDS u = (u(0), u(1), . . . , u(m)) is computed
iteratively starting from u(m) = u. For c = m,m− 1, . . . , 1, we set

(3.1) u(c−1) := s−ic B u(c) C s+
ic
.

Since u ≤ β, we have u(0) = id. We set Ju,β := {c ∈ [m] | u(c) = u(c−1)}. We refer to the
indices in Ju,β as solid crossings and to the indices in [m] \ Ju,β as hollow crossings. The
indices in [m] \ Ju,β form a reduced word for u, i.e., we have |Ju,β| = `(β)− `(u).

Remark 3.2. When β ∈ Im is a reduced word for a permutation and u ≤ β, the sequence
(u(0), . . . , u(m)) is a positive distinguished subexpression in the sense of [MR04, Definition 3.4].
The terminology of “solid” and “hollow” crossings is drawn from [MR04], who draw wiring
diagrams in this way. When the positive and negative subwords of β are both reduced
and u ≤ β, (u(0), . . . , u(m)) is a positive double distinguished subexpression in the sense
of [WY07].

For the rest of this section, we fix a pair (u, β) ∈ Sn × (±I)m satisfying u ≤ β, and let u
be the u-PDS of β.

Remark 3.3. All our constructions (including quivers, 3D plabic graphs, cluster algebra
structures, and braid varieties) will be invariant under the following operation of appending
hollow crossings on the right: if i ∈ ±I is such that u < u′ := s−i us

+
i then we are allowed

to replace (u, β) with (u′, βi). In particular, starting with any pair (u, β) satisfying u ≤ β,
we can append hollow crossings to obtain a pair (w0, β

′) for some double braid word β′ ∈
(±I)m+`(w0)−`(u).
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1 1

2

2

3

3

1 1

2

2

3

3

Γ(u(2))
2←−

1 1

2

2

3

3

1 1

2

2

3

3

Γ(u(3))
1←−

1 1

2

2

3

3

1 1

2

2

3

3

Γ(u(4))
−1←−−

1 1

2

2

3

3

1 1

2

2

3

3

Γ(u(5))

C5

C4

C2

C1

(c) relative cycles in Gu,β

Figure 5. A 3D plabic graph Gu,β for u = s2 and β = (−2, 1, 2, 1,−1); see
Example 3.10.

3.2. 3D plabic graphs. We view permutations z ∈ Sn as bijections [n] → [n], with mul-
tiplication given by composition. Thus, if z = xy then we have z(i) = x(y(i)) for i ∈ [n].
The permutation diagram Γ(z) ⊂ Z2 of z ∈ Sn is the set of dots (i, z(i)) for i ∈ [n]. We use
Cartesian coordinates for permutation diagrams.2 Thus, the dot (i, j) is located in column i
and row j, with the dot (1, 1) located in the bottom-left corner. We let � be the partial
order on Z2 ⊂ R2 given by (x, y) � (x′, y′) whenever x ≤ x′ and y ≤ y′.

2The reader who likes permutation matrices should therefore flip our permutation diagrams upside down,
and should also remember that the convention for matrices is to list the vertical coordinate first and the
horizontal coordinate second.
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1

2

3

1

2

3

1

2

3

(a) πred(Gu,β) (b) πblue(Gu,β) (c) πred(Gu,β)

M1

M2

M3 C1

C2

C4

C5

(d) πred(Su,β) (e) πred(Cc), c ∈ Ju,β

Figure 6. Projections of objects associated to 3D plabic graphs (cf. Figure 5
and Example 3.10).

We consider Z3 with coordinates (i, j, t), where the third coordinate t is referred to as the
time. For each c = 0, 1, . . . ,m, place the permutation diagram Γ(u(c)) in the t = c plane.

We now define the 3D plabic graph Gu,β; see Example 3.10 and Figure 5(a). We first give
an informal description; see below for an explicit description in coordinates in Z3.

Definition 3.4. Start by drawing n strands in R3 ⊃ Z3 whose time coordinate is monotone
increasing, so that for c = 0, 1, . . . ,m, each of the n dots of Γ(u(c)) belongs to exactly one
strand. For each c ∈ [m], the permutation diagrams Γ(u(c−1)) and Γ(u(c)) either are identical
or differ by a row (if ic > 0) or by a column (if ic < 0) transposition. The strands of Gu,β

connect each dot of Γ(u(c−1)) to the corresponding dot of Γ(u(c)). In addition, for each solid
crossing c ∈ Ju,β, we add a bridge edge bc at time t = c− 1

2
between the two strands S1 ≺ S2

participating in the solid crossing, where the partial order � is extended from the dots of
Γ(u(c−1)) = Γ(u(c)) to the strands passing through them. If ic > 0 (resp., ic < 0), the strands
S1, S2 are located in adjacent rows (resp., columns), and the bridge bc is black at S1 and
white at S2 (resp., white at S1 and black at S2). The vertex of bc on S1 (resp., on S2) is
called the start (resp., the end) of bc.

For 0 < c < m, we do not view the dots in Γ(u(c)) as vertices of Gu,β. The dots in Γ(u(0))
are viewed as degree 1 marked boundary vertices of Gu,β. The dots in Γ(u(m)) are viewed as

unmarked degree 1 vertices of Gu,β. We let Gu,β be obtained from Gu,β by deleting these n
vertices and the n edges incident to them; see Figure 6(c).

It is convenient to project 3D plabic graphs to the plane. There are two natural choices
for such projections. The red projection of Gu,β is its image under the map πred : R3 → R2,
(i, j, t) 7→ (t, j). Similarly, the blue projection of Gu,β is obtained by applying the map
πblue : R3 → R2, (i, j, t) 7→ (t, i). We will mostly work with the red projection πred(Gu,β); see
Figures 6 and 7. We sometimes mention the faces of πred(Gu,β) and πblue(Gu,β); by this we
mean connected components of the complement.

We now give a formal description of Gu,β. Suppose first that c ∈ Ju,β is a solid crossing.
Then u(c−1) = u(c), and we connect each dot (i, j, c−1) in Γ(u(c−1)) to the corresponding dot
(i, j, c) of Γ(u(c)), where j = u(c−1)(i) = u(c)(i). Suppose now that c ∈ [m] \ Ju,β is a hollow
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Gu,β

Γ(u(c−1))

j

j + 1

Γ(u(c))
j←− Γ(u(c−1))

j

j + 1

Γ(u(c))
j←− Γ(u(c−1)) Γ(u(c))

i i+ 1

−i←− Γ(u(c−1)) Γ(u(c))

i i+ 1

−i←−

πred(Gu,β)
j

j + 1 j + 1

j

j + 1 j + 1

u(c)(i)

u(c)(i+ 1) u(c)(i+ 1)

sj , j > 0, solid sj , j > 0, hollow s−i, i > 0, solid s−i, i > 0, hollow

Figure 7. Applying the red projection to a 3D plabic graph.

crossing. If ic > 0, then Γ(u(c−1)) and Γ(u(c)) differ by a row transposition, and we connect
the dots accordingly. Specifically, letting j := ic, we connect:

• (i, j, c− 1) ∈ Γ(u(c−1)) to (i, j + 1, c) ∈ Γ(u(c)),
• (i′, j + 1, c− 1) ∈ Γ(u(c−1)) to (i′, j, c) ∈ Γ(u(c)), and
• (i′′, j′′, c− 1) ∈ Γ(u(c−1)) to (i′′, j′′, c) ∈ Γ(u(c)) for j′′ 6= j, j + 1.

Similarly, if ic < 0, then Γ(u(c−1)) and Γ(u(c)) differ by a column transposition. Letting
i := |ic|, we connect:

• (i, j, c− 1) ∈ Γ(u(c−1)) to (i+ 1, j, c) ∈ Γ(u(c)),
• (i+ 1, j′, c− 1) ∈ Γ(u(c−1)) to (i, j′, c) ∈ Γ(u(c)), and
• (i′′, j′′, c− 1) ∈ Γ(u(c−1)) to (i′′, j′′, c) ∈ Γ(u(c)) for i′′ 6= i, i+ 1.

We add |Ju,β|-many bridges to Gu,β. Consider a solid crossing c ∈ Ju,β. Suppose first that
ic > 0 and let j := ic. Then Gu,β contains strands connecting the dots (i, j, c− 1) to (i, j, c)
and (i′, j + 1, c − 1) to (i′, j + 1, c), for some i, i′ ∈ [n]. In order for c to be solid, we must
have i < i′. We put a black vertex on the segment connecting (i, j, c − 1) to (i, j, c), and a
white vertex on the segment connecting (i′, j + 1, c − 1) to (i′, j + 1, c), and connect these
two vertices by an edge, which we call a bridge and denote bc. Suppose now that ic < 0
and let i := |ic|. Then Gu,β contains strands connecting the dots (i, j, c − 1) to (i, j, c) and
(i + 1, j′, c − 1) to (i + 1, j′, c), for some j, j′ ∈ [n], and again we must have j < j′. We
put a black vertex on the segment connecting (i, j, c − 1) to (i, j, c), and a white vertex on
the segment connecting (i + 1, j′, c− 1) to (i + 1, j′, c), and connect these two vertices by a
bridge bc.

3.3. Conjugate surfaces. Continuing Section 2.3, we endow the graph Gu,β with the struc-
ture of a marked ribbon graph in the language of [FG06, Section 3]. A ribbon graph is a graph
together with a choice, for each vertex v, of a cyclic orientation on the half-edges emanating
from v. Taking the red projection of Gu,β, we choose the counterclockwise (resp., clockwise)
orientation for each white (resp., black) vertex of Gu,β. The marked degree 1 vertices of Gu,β

are the n dots in Γ(u(0)).
3

3In [FG06], all degree 1 vertices of a ribbon graph are considered automatically marked, but we do not
mark the n dots in Γ(u(m)). Removing the dots in Γ(u(m)) yields the graph Gu,β , which is truly a marked

ribbon graph in the language of [FG06].



12 PAVEL GALASHIN, THOMAS LAM, MELISSA SHERMAN-BENNETT, AND DAVID SPEYER

j
j + 1 j←− j

j + 1 j←−

i i+ 1

−i←−

i i+ 1 i i+ 1

−i←−

i i+ 1

j
j + 1 j←− j

j + 1 j←−

i i+ 1

−i←−

i i+ 1 i i+ 1

−i←−

i i+ 1

Figure 8. Propagation rules for monotone curves; see Section 3.4. In any
case not depicted here, the monotone curve is unchanged by the action of a
solid crossing.

Remark 3.5. From now on, we view Gu,β as a ribbon graph, not as a bicolored graph.
When projecting a ribbon graph Gu,β to the plane, we choose the color of each vertex to be
white (resp., black) if its local half-edge orientation is counterclockwise (resp., clockwise).
Thus, for example, we can change the color of a given vertex q by altering the drawing of G;
see Figure 9(left). In this case, we label the resulting vertex by q̄, emphasizing that q and q̄
represent the same vertex of G.

We let Su,β = S(Gu,β) be the marked surface with boundary associated to Gu,β in a
standard way: we replace every edge of Gu,β by a thin rectangle, every vertex of Gu,β by a
disk, and glue the rectangles to the boundaries of the disks according to the local orientation
around each vertex. Thus, ∂Su,β has several connected components, and we stress that we
do not glue disks to them. The surface Su,β can be drawn using the red projection of Gu,β

as shown in Figure 6(d). In particular, Su,β is orientable, with black and white vertices in
the red projection of Gu,β corresponding to the different sides of Su,β.

We apply a similar construction to Gu,β, and it is clear that the resulting surface S(Gu,β)
is homeomorphic to Su,β.

Let M be the set of marked points on ∂Su,β; thus, |M| = n. Let Λu,β := H1(Su,β,M). (All
relative homology groups we consider are with integer coefficients.) The elements of Λu,β,
called relative cycles, are represented by Z-linear combinations of arcs, where an arc is either
an oriented closed curve embedded into the interior of Su,β or an oriented curve embedded
into Su,β with both endpoints marked. Let Λ∗u,β := H1(Su,β \M, ∂Su,β \M). We have an
intersection form on (Su,β,M) which gives rise to a perfect pairing

(3.2) 〈·, ·〉 : Λu,β ⊗ Λ∗u,β → Z;

see e.g. [CW22, Proposition 3.48] or [Mel19, Section 6.1]. For C ∈ Λu,β, C ′ ∈ Λ∗u,β, the
intersection number 〈C,C ′〉 is the integer obtained by counting signed intersection points
between two generic relative cycles representing C and C ′.

Remark 3.6. An oriented cycle in Gu,β can be naturally lifted to an element of Λu,β as well
as to an element of Λ∗u,β. On the other hand, an oriented path with both endpoints marked
can only be naturally lifted to an element of Λu,β.

3.4. Relative cycles. Fix a solid crossing c ∈ Ju,β. Our goal is to associate to it a relative
cycle Cc ∈ Λu,β. As in Section 2.2, we will obtain Cc as the boundary of a certain 2-
dimensional disk Dc inside R3.



BRAID VARIETY CLUSTER STRUCTURES, I: 3D PLABIC GRAPHS 13

A monotone curve inside a permutation diagram Γ(z) ⊂ R2 is a curve γ : [0, 1] → R2

whose endpoints are dots in Γ(z), with no other dots of Γ(z) on γ, and such that both
coordinates of γ are strictly monotone increasing. Recall that we write (x, y) � (x′, y′) if
x ≤ x′ and y ≤ y′. Write (x, y) ≺ (x′, y′) if (x, y) � (x′, y′) and (x, y) 6= (x′, y′). Thus,
γ(0) ≺ γ(1). A monotone multicurve is a collection γ = (γ1, γ2, . . . , γk) of monotone curves
inside Γ(z) such that

γ1(0) ≺ γ1(1) ≺ γ2(0) ≺ γ2(1) ≺ · · · ≺ γk(0) ≺ γk(1).

The intersection of the disk Dc with each plane t = r, 0 ≤ r ≤ c− 1, will be a monotone
multicurve inside Γ(u(r)) denoted γ(c,r). For r = c− 1, γ(c,c−1) consists of a single monotone
curve connecting the two dots on the strands which are connected by bc. We then compute
γ(c,r) iteratively for r = c− 2, . . . , 1, 0, using the following propagation rules. When passing
from γ(c,r) to γ(c,r−1) for a solid crossing r, each monotone curve γ in γ(c,r) either is preserved
or gets cut. The cutting moves are shown in Figure 8, and all other curves not shown in
Figure 8 are preserved. When the crossing r is hollow, each monotone curve γ changes
“smoothly” so that a dot d of Γ(u(r)) is above (resp., below) γ if and only if the dot d′ of
Γ(u(r−1)) that is on the same strand as d is above (resp., below) the image of γ in Γ(u(r−1));
see e.g. Figure 5(b).

To give a coordinate description in the case of a solid crossing, let r ∈ Ju,β be such that
ir > 0 and let j := ir. Let d := (i, j) and d′ := (i′, j + 1) be the dots in Γ(u(r)) = Γ(u(r−1)),
for some i, i′ ∈ [n]. Then the curve γ gets cut if and only if it passes weakly above d and
weakly below d′. Assume now that ir < 0 and let i := |ir|. Let d := (i, j) and d′ := (i+ 1, j′)
be the dots in Γ(u(r)) = Γ(u(r−1)), for some j, j′ ∈ [n]. Then γ gets cut if and only if it
passes weakly to the right of d and weakly to the left of d′. In both cases, the cutting move
consists of removing the part of γ passing between d and d′. (In particular, if neither d nor
d′ was an endpoint of γ then we split γ into two monotone curves γ′, γ′′ satisfying γ′(1) = d
and γ′′(0) = d′. On the other hand, if both d and d′ were endpoints of γ then the whole of
γ disappears.)

Definition 3.7. If γ(c,0) is empty, then we declare c to be mutable, otherwise, we declare c to
be frozen. We let J fro

u,β and Jmut
u,β denote the sets of frozen and mutable indices, respectively.

Thus, we have a decomposition Ju,β = J fro
u,β t Jmut

u,β .

If c is mutable, we obtain a disk Dc inside R3 whose boundary ∂Dc is a cycle Cc in Gu,β

that does not pass through any marked points. If c is frozen, we treat γ(c,0) as part of the
boundary of the disk Dc, and denote the rest of ∂Dc by Cc := ∂Dc \ γ(c,0). In both cases,
∂Dc passes through the bridge bc, and we orient ∂Dc so that it is directed from the start to
the end of bc; cf. Definition 3.4. This induces an orientation on each arc in Cc, and therefore
we obtain a relative cycle Cc ∈ Λu,β. See Figures 5(c) and 6(e).

3.5. The quiver. Our goal is to associate an ice quiver Q̃u,β to the pair (u, β).

The vertex set of Q̃u,β is Ṽ := Ju,β, with frozen vertices V fro := J fro
u,β and mutable vertices

V mut := Jmut
u,β (cf. Definition 3.7). Let c ∈ Ṽ and d ∈ V mut, and consider the corresponding

relative cycles Cc, Cd. By Remark 3.6, we may view Cd as an element of Λ∗u,β. The cluster

exchange matrix B̃(Q̃u,β) = (b̃c,d)c∈Ṽ ,d∈V mut of Q̃u,β is given by

(3.3) b̃c,d = #{arrows c→ d in Q̃} −#{arrows d→ c in Q̃} := 〈Cc, Cd〉.
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p

q

=

p

q̄

(M1)←−−→ (M2)←−−→
CC ′

〈C,C ′〉 = +1

Figure 9. Left: switching the color of a vertex. Middle: contraction-
uncontraction move (M1) and square move (M2). Right: sign convention
for the intersection form of Su,β.

C1

C4

=
C1

C4

C2

C4
=

C2

C4

C2

C5

=
C2

C5

〈C1, C4〉 = +1 〈C2, C4〉 = −1 〈C2, C5〉 = −1
C4

C5

=
C4

C5 Q̃u,β =

1

2 4

5

〈C4, C5〉 = 0

Figure 10. Computing the quiver Q̃u,β corresponding to Figures 5 and 6
and Example 3.10; see Algorithm 3.8.

In other words, the (signed) number of arrows from c to d in Q̃u,β is given by the intersection
number 〈Cc, Cd〉. We give an explicit algorithm for computing intersection numbers.

Algorithm 3.8. The intersection form 〈C,C ′〉 of the surface Su,β = S(Gu,β) may be com-
puted as follows. See Figure 10 and the top row of Figure 13(right) for examples.

• Viewing C,C ′ as subgraphs of Gu,β, decompose C ∩ C ′ into a union of disjoint paths.
• For each of these paths P , we will have a contribution 〈C,C ′〉|P ∈ {−1, 0, 1}; the inter-

section number 〈C,C ′〉 will be the sum of 〈C,C ′〉|P over the components P of C ∩ C ′.
• Let P = (p0, p1, . . . , pr) be one of the paths. The contribution 〈C,C ′〉|P will depend only

on which neighbors of p0 and pr are visited by C and C ′, and in which order.
• Draw P in the plane with all vertices black (cf. Remark 3.5) and perturb C,C ′ slightly

so that they have either zero or one intersection point.
• If C,C ′ have zero intersection points, we have 〈C,C ′〉|P = 0.
• If C,C ′ have one intersection point p, we have 〈C,C ′〉|P = +1 if the tangent vectors of

(C,C ′) at p form a positively oriented basis of the plane and 〈C,C ′〉|P = −1 otherwise;
see Figure 9(right).

Remark 3.9. As we pointed out in Section 3.3, the surface Su,β is orientable. It follows
that we have 〈Cd, Cd〉 = 0 for all mutable d ∈ Ju,β.

Example 3.10. Let u := s2 ∈ S3 and β := (−2, 1, 2, 1,−1). Thus, Ju,β = {1, 2, 4, 5}. The
graph Gu,β is given in Figure 5(a), and its red and blue projections are shown in Figure 6(a,b),
respectively. The monotone (multi)curves are computed in Figure 5(b) using the propagation
rules from Figure 8. The relative cycles (Cc)c∈Ju,β are shown in Figures 5(c) and 6(e), and
the surface Su,β is shown in Figure 6(d). In Figure 10, we use this data to compute the

intersection numbers 〈Cc, Cd〉 and the quiver Q̃u,β via Algorithm 3.8. The frozen vertices of

Q̃u,β are boxed in Figure 10.
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Remark 3.11. The simplified propagation rules shown in Figure 2 are obtained from the
rules in Figure 8 by applying the red projection. It is therefore important to distinguish
between over/under-crossings when applying the rules in Figure 2 to the red projection of a
3D plabic graph in Figure 3. However, the ribbon graph Gu,β and the associated surface Su,β
are most naturally considered as abstract objects without a fixed choice of an embedding in
R3. Thus, in the rest of our figures, e.g., when drawing the boundary of Su,β in Figure 6(d)
or the graphs in Figures 23–25, the over/under-crossings are irrelevant, and are chosen
arbitrarily.

Definition 3.12. Given an ice quiver Q̃ and a mutable vertex d ∈ V mut, one can mutate

Q̃ in direction d to obtain another quiver Q̃′ = µd(Q̃), the mutation of Q̃ at d. Mutation
preserves the sets of mutable and frozen vertices, and changes the arrows as follows:

• for each directed path c→ d→ e in Q̃ of length 2, add an arrow c→ e to Q̃′;

• reverse all arrows in Q̃ incident to d;
• remove all directed 2-cycles in the resulting directed graph, one at a time.

This operation may create arrows between pairs of frozen vertices; such pairs are omitted.

Recall that the quiver Q̃u,β is obtained from the collection (Cc)c∈Ju,β of relative cycles in
Λu,β via (3.3). Following [GK13, Section 4.1.2] and [FG09, Section 1.2], we explain how

for each d ∈ Jmut
u,β , the quiver µd(Q̃u,β) is obtained in the same way via (3.3) from another

collection (µd(Cc))c∈Ju,β of relative cycles in Λu,β. Namely, we set

(3.4) µd(Cc) :=

{
Cc + max (〈Cc, Cd〉, 0)Cd, if c 6= d,

−Cd, if c = d.

Since d is mutable, we see that for each mutable c, the relative cycle µd(Cc) is still naturally
an element of both Λu,β and Λ∗u,β.

Lemma 3.13 ([FG09, Lemma 1.7]). The exchange matrix of µd(Q̃u,β) is given via (3.3) by
the intersection numbers of the relative cycles (µd(Cc))c∈Ju,β .

Remark 3.14. We will show in Section 5.3 that (Cc)c∈Ju,β is a Z-basis of Λu,β. It follows
that (µd(Cc))c∈Ju,β is a Z-basis of Λu,β as well.

3.6. Distinguished subexpressions. The goal of this section is to explain how the propa-
gation rules for monotone curves from Section 3.4 reflect the combinatorics of almost positive
subexpressions. These results will be used in Section 7 for comparison to geometry.

Let β ∈ (±I)m be a double braid word and u ≤ β. A u-subexpression u of β is called
distinguished if u(c) ≤ s−icu(c−1)s

+
ic

for each c ∈ [m]. This notion originated in the study of
the geometry of open Richardson varieties [Deo85, MR04, WY07].

Definition 3.15. Let d ∈ Ju,β. Let v
〈d〉
(m) := u, and for c = m,m− 1, . . . , 1, define

v
〈d〉
(c−1) :=

{
s−id ∗ v

〈d〉
(d) ∗ s+

id
, if c = d,

s−ic B v
〈d〉
(c) C s+

ic
, otherwise.

We call the sequence (v
〈d〉
(0) , . . . v

〈d〉
(m)) the (u, d)-almost positive sequence ((u, d)-APS ).
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γ γ

L

U

γ inside Γ(z) ∈ Γ(z), ∈ Γ(z′)
for z′ = σ(γ, z)

Figure 11. Recovering the almost positive subexpression from the corre-
sponding monotone curve.

j
j + 1 j←− j

j + 1 j←−

i i+ 1

−i←−

i i+ 1 i i+ 1

−i←−

i i+ 1

j
j + 1 j←− j

j + 1 j←−

i i+ 1

−i←−

i i+ 1 i i+ 1

−i←−

i i+ 1

Figure 12. Propagation rules (Figure 8) shown together with the corre-
sponding almost positive subexpressions.

In other words, the u-PDS is obtained by starting with u and taking successive Demazure
quotients according to the letters of β. The (u, d)-APS is obtained by taking Demazure
quotients up to crossing d; then making a “mistake” at crossing d and taking Demazure
product rather than Demazure quotient; then continuing to take Demazure quotients.

Consider a monotone curve γ inside a permutation diagram Γ(z) for z ∈ Sn. Take the
smallest skew shape λ/µ containing γ whose inner corners are at the dots of Γ(z), and let L
and U be its lower and upper boundaries, respectively; see Figure 11. Let Dγ be the set of
dots of Γ(z) contained in U∪L. Let D′γ be the set of outer corners of λ/µ, i.e., the set of lattice
points where L turns left or U turns right. We define z′ := σ(γ, z) ∈ Sn to be the permutation
such that Γ(z′) is obtained from Γ(z) by replacing the dots in Dγ with the dots in D′γ. Given
a monotone multicurve γ = (γ1, γ2, . . . , γk), we let σ(γ, z) := σ(γ1, σ(γ2, . . . , σ(γk, z) . . . )).
The following result explains the relation between monotone curves and almost positive
subexpressions.

Proposition 3.16. Let d ∈ Ju,β. Then for all c ≤ d− 1, we have

(3.5) v
〈d〉
(c) = σ(γd,c, u(c)).

Proof. For c = d − 1, the permutations v
〈d〉
(c) and u(c) differ by a single transposition which

corresponds to creating the monotone curve γ(d,d−1). For c = d− 2, . . . , 0, we check (3.5) by
induction, since the propagation rules of Figure 8 turn out to exactly reflect the application

of Demazure quotient to pairs (u(c), v
〈d〉
(c) ); see Figure 12. �

Corollary 3.17. A solid index d ∈ Ju,β is mutable if and only if v
〈d〉
(0) = id.
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∅
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∅
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∅
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c ⇔ d c d c ⇒ d

Figure 13. The half-arrow description of Q̃u,β; see Section 3.7.

3.7. Half-arrow description of Q̃u,β. We give an alternative description of Q̃u,β that will
be useful in Proposition 7.17. For each red crossing c ∈ Ju,β, ic > 0, consider the four
faces A,B,C,D around the red projection of the bridge bc as shown in Figure 13(left).
To each face X ∈ {A,B,C,D} we associate a collection ∇+(X) of indices d ∈ Ju,β such
that X is inside the red projection of the disk Dd; cf. (2.1). Then for each pair (X, Y ) =
(A,B), (B,D), (D,A), (C,B), (B,D), (D,C) (note that (B,D) is listed twice), we draw a
half-arrow from each element of ∇+(X) to each element of ∇+(Y ). Similarly, for each blue
crossing c ∈ Ju,β, ic < 0, we consider the four faces A,B,C,D in the blue projection, and
then for each (X, Y ) = (A,B), (B,D), (D,A), (C,B), (B,D), (D,C), we draw a half-arrow
from each element of ∇−(Y ) to each element of ∇−(X). Here, ∇−(X) is the set of indices
d ∈ Ju,β such that X is inside the blue projection of Db. We obtain a collection of half-arrows
between the elements of Ju,β.

Proposition 3.18. For c, d ∈ Ju,β, the difference between the number of half-arrows c→ d
and the number of half-arrows d→ c equals 2〈Cc, Cd〉.
In other words, by (3.3), the quiver Q̃u,β is obtained by just summing up the signed half-arrow
contributions and dividing the result by 2.

Proof. The above half-arrow description can be replaced by the following local description.
Consider a vertex p of Gu,β, and draw the neighborhood of Su,β around p so that p is black.
Label the faces around p by A,B,C in counterclockwise order. For X ∈ {A,B,C}, let
∇p(X) denote the set of indices c ∈ Ju,β such that Cc passes through p with X to the left of
Cc. Then for each (X, Y ) = (A,B), (B,C), (C,A), draw a half-arrow from each element of
∇p(X) to each element of ∇p(Y ).

Consider two relative cycles Cc, Cd, for c, d ∈ Ju,β. Recall from Algorithm 3.8 that the
intersection number 〈Cc, Cd〉 may be computed as a sum of local contributions 〈Cc, Cd〉|P
from maximal by inclusion paths in Cc ∩Cd. Such contributions are shown in the top row of
Figure 13(right). On the other hand, as shown in the bottom row of Figure 13(right), the
(signed) contribution to the number of half-arrows c → d is ±1 for p0 and pr (and zero for
each of p1, . . . , pr−1) so that the combined half-arrow contribution from p0 and pr is exactly
2〈Cc, Cd〉|P . Summing over all such paths P , the result follows. �
3.8. Postnikov’s plabic graphs. We explain how our 3D plabic graphs generalize the
plabic graphs of [Pos06]. A permutation w ∈ Sn is called k-Grassmannian if w(1) < · · · <
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Gu,w Gu,w

Figure 14. Left: converting a Le-diagram Γ into a plabic graph G(Γ). Right:
the graphs Gu,w and Gu,w for (u,w) corresponding to Γ.

w(n − k) and w(n − k + 1) < · · · < w(n). We denote by S
(k)
n the set of k-Grassmannian

permutations. Thus, any reduced word for w ∈ S(k)
n ends with sn−k, and all reduced words for

w are related by commutation moves. It is well known that k-Grassmannian permutations
are in bijection with Young diagrams that fit inside a k× (n− k) rectangle. We draw Young
diagrams in English notation. A Le-diagram is a way of placing a dot in some of the boxes of
λ so that whenever a box of λ has a dot above it in the same column and to the left of it in
the same row, it must also contain a dot. For each dot, we draw horizontal and vertical line
segments connecting it to the southeastern boundary of λ. An example of a Le-diagram Γ
is shown in Figure 14(left). One can convert a Le-diagram Γ into a plabic graph G(Γ) using

the local rule . The graph G(Γ) is drawn in a disk which we identify with

the Young diagram λ. Thus, G(Γ) has n boundary vertices on the southeastern boundary of
λ, and it has a unique northwestern boundary face which we denote F0. Rotating Γ by 135◦

clockwise, replacing all empty boxes with crossings, and all dots with black-white bridges,
we obtain a graph Gu,w, where w is a reduced word for w and u ≤ w in the Bruhat order
on Sn; see Figure 14.

Proposition 3.19. Let Γ be a Le-diagram and let u ≤ w be the corresponding pair of
permutations. Then we have

G(Γ) = Gu,w.

Moreover, each relative cycle Cc of Gu,w traverses the boundary of a face of G(Γ) in the
counterclockwise direction, and this gives a bijection between the relative cycles (Cc)c∈Ju,w
and all faces of G(Γ) except F0.

Proof. It follows from the definition of a Le-diagram that once a strand in Gu,w participates
in a hollow crossing, it never participates in a solid crossing to the right of that hollow
crossing. In particular, all hollow crossings disappear when we pass from Gu,w to Gu,w,
and thus it follows that G(Γ) = Gu,w; see also [Kar16, Figure 5] and [GL19, Figure 7]. An
example is given in Figure 14(right).

To compute the relative cycles in Gu,w, we may use the propagation rules in Figure 2.
From here, the statement that the relative cycles correspond to the faces of G(Γ) follows
immediately. �
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(M2)←−−→
q

r s

p

= r̄

q

p̄

s

Figure 15. Applying a square move (M2) to Gu,β preserves the surface Su,β
but changes the embedding of Gu,β in Su,β. See also [GK13, Figure 20].

=
(M1)←−−→ =

Gu,β Gu,β′

Figure 16. Representing the square move (M2) as a composition of two
contraction-uncontraction moves (M1).

4. Invariance under moves

In this section, we show that the mutation class of the quiver Q̃u,β defined above is invariant
under applying double braid moves to β.

4.1. Moves for 3D plabic graphs. Just as in Postnikov’s theory [Pos06], our two main
moves for 3D plabic graphs are the contraction-uncontraction move (M1) and the square
move (M2), shown in Figure 9(middle). The move (M1) can be performed on any edge
e = {p, q} of a 3D plabic graph G. Specifically, we draw G in the plane so that p and q are of
the same color, and then we apply the usual contraction-uncontraction move, producing two
other vertices of the same color as p and q. The move (M2) can be performed on any 4-cycle
(p, q, r, s) in G, as shown in Figure 15. The moves (M1)–(M2) preserve the conjugate surface
S = S(G) but change the embedding of G inside of S. In particular, it will be important
later that as one applies the various double braid moves to the double braid word β, the
surface Su,β stays unchanged throughout the process.

Remark 4.1. Surprisingly, the square move (M2) can be obtained by performing two
contraction-uncontraction moves (M1) on G; see Figure 16. We still distinguish (M2) as a
separate transformation, for the following reason. We have associated three kinds of objects
to a pair (u, β): a 3D plabic graph Gu,β, a marked surface Su,β, and a collection (Cc)c∈Ju,β
of relative cycles in Su,β. While Gu,β determines Su,β, neither Gu,β nor Su,β determines
(Cc)c∈Ju,β . Thus, if one applies moves (M1)–(M2) to Gu,β, one has to specify additional rules
for how the tuple (Cc)c∈Ju,β changes. These rules are given in Theorem 4.3 below: the tuple
(Cc)c∈Ju,β changes according to (3.4) when we apply mutation braid moves corresponding
to (M2), and is preserved when we apply non-mutation braid moves corresponding to other
sequences of moves (M1).
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Figure 17. Applying braid moves from part (1) of Theorem 4.3 results in
applying a square move to Gu,β.

4.2. Moves for double braid words. Two double braid words are (double braid) equivalent
if they are related by a sequence of the following double braid moves:

(B1) ij ↔ ji if i, j ∈ ±I have different signs;
(B2) ij ↔ ji if i, j ∈ ±I have the same sign and |i− j| > 1;
(B3) iji↔ jij if i, j ∈ ±I have the same sign and |i− j| = 1.

Definition 4.2. We say that a double braid move is fully solid if all of the indices involved
are solid. Suppose that id−1 = −j and id = i for some i, j ∈ I and 2 ≤ d ≤ m. Then
we say that the move (B1) swapping these two indices is special if u(d−1)si = sju(d−1), and
solid-special if it is special and fully solid. Motivated by the following theorem, we call (B1)
(solid-special) and (B3) (fully solid) mutation moves. All other braid moves are non-mutation
moves.

Theorem 4.3. The mutation type of Q̃u,β is invariant under double braid moves (B1)–(B3)
on β. More precisely:

(1) Under mutation moves, the quiver Q̃u,β changes by a mutation. The relative cycles
(Cc)c∈Ju,β change according to (3.4). The graph Gu,β changes by a square move (M2).

(2) Under non-mutation moves, the quiver Q̃u,β and the relative cycles (Cc)c∈Ju,β are un-
changed, up to relabeling. The graph Gu,β changes by a sequence of contraction-uncontraction
moves (M1).

In both cases, the surface Su,β is unchanged.

We prove Theorem 4.3 in the next two subsections. Throughout, we let β and β′ be two
braids related by one of the moves in Theorem 4.3. We denote the 3D plabic graphs by Gu,β

and Gu,β′ , the surfaces by Su,β and Su,β′ , and the relative cycles by (Cc)c∈Ju,β and (C ′c)c∈Ju,β′ ,
respectively.

4.3. Mutation moves. We prove part (1) of Theorem 4.3. Assume that we are applying
a mutation move involving either the indices id−1, id or id−2, id−1, id for some d ∈ Ju,β. By
Lemma 3.13, it suffices to show that the relative cycles change according to (3.4), i.e., that
C ′c = µd(Cc) for all c ∈ Ju,β.

4.3.1. Applying (B1) (solid-special). We would like to swap two solid crossings id−1 = −i
and id = j (with i, j ∈ I) such that u(d−1)si = sju(d−1). Since d − 1, d are both solid, we
have u(d−2) = u(d−1) = u(d). In addition, using u(d)si = sju(d), we find that u(d)(i) = j
and u(d)(i + 1) = j + 1. The graph Gu,β therefore contains a 4-cycle spanned by the pair
(bd−1, bd) of bridges of opposite color; see Figure 17(left). It follows that the graph Gu,β′ is
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Figure 18. An example of computing the signature rq → rspq of a relative
cycle Cc under the move (B1) (solid-special).

obtained from Gu,β by applying a square move (M2). In particular, we have Su,β = Su,β′ ;
see Figure 15.

We will show that C ′c = µd(Cc) by classifying all possible cases of how a relative cycle Cc
can look around the square psrq. This amounts to classifying the behavior of the monotone
multicurves γ(c,d),γ(c,d−1),γ(c,d−2) around the dots d := (i, j) and d′ := (i+1, j+1) of Γ(u(d)).
Note that, with the exception of the relative cycles Cd and Cd−1, the monotone multicurve
γ(c,d) determines γ(c,d−1) and γ(c,d−2). Moreover, it suffices to consider the behavior of each
monotone curve of γ(c,d) separately; cf. Remark 4.4 below.

For a relative cycle Cc in Gu,β, its signature is the ordered list of vertices of the square
psrq that Cc passes through. For example, let us consider a monotone curve γ inside Γ(u(d))
passing below d and above d′, as in Figure 18. Using the rules in Figure 8, we propagate
γ to Γ(u(d−1)) and Γ(u(d−2)), and find that the relevant part of Cc passes first through r
and then through q in Gu,β. Therefore, the signature of this relative cycle is rq. Repeating
the same procedure for the graph Gu,β′ , we find that the signature of Cc in Gu,β′ is rspq;
see Figure 18(left). As shown in Figure 18(right), the cycle with signature rq in Gu,β is
homotopic to the cycle with signature rspq in Gu,β′ when we view them as cycles in the
ambient surface Su,β = Su,β′ .

In Figure 19, we list all possible relative cycles that pass through at least one vertex of the
square psrq, given together with their monotone curves γ inside Γ(u(d)) and the signatures
in Gu,β and Gu,β′ . For example, Cd is shown in Figure 19(a), and the curve γ from Figure 18
is shown in Figure 19(d).

We will want to understand how Cc and C ′c relate, not as drawn in the planar projections in
Figure 19, but as drawn on the surface Su,β = Su,β′ . Comparing the signatures to Figure 15,
we see that for all c ∈ Ju,β, the following are equivalent:
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Figure 19. The possible relative cycles and their signatures for the proof in
Section 4.3.1.
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Figure 20. The possible signatures for the proof in Section 4.3.2.

• Cc 6= C ′c (as elements of Λu,β = Λu,β′);
• either c = d or 〈Cc, Cd〉 > 0 (in which case 〈Cc, Cd〉 = 1);
• Cc is shown in Figure 19(a,b,c).

Note that Cd is represented in the notation of Figure 15 as the cycle passing through the
vertices of the square psrq. Thus, in order to have 〈Cc, Cd〉 > 0, when Cc is drawn in
Figure 15(far left), it needs to start inside psrq and end outside of psrq. This happens
precisely when Cc is one of the relative cycles shown in Figure 19(b,c). We see that indeed
in all cases, we have C ′c = µd(Cc).

Remark 4.4. In general, Cc is represented by a monotone multicurve inside Γ(u(d)), and
thus, for example, the two monotone curves shown in Figure 19(f) could be parts of a single
monotone multicurve. However, this does not affect our analysis because the intersection
number 〈Cc, Cd〉 is additive over all intersection points in Cc ∩ Cd.

4.3.2. Applying (B3) (fully solid). We proceed using a similar strategy. Suppose that id−2 =
j, id−1 = j + 1, and id = j for some j ∈ I, with all three indices solid. The 3D plabic graphs
Gu,β and Gu,β′ are shown in Figure 17(right). In particular, after applying a contraction-
uncontraction move (M1) to the vertices p1, p2 of Gu,β and to the vertices r1, r2 of Gu,β′ , we
obtain two graphs which differ by a square move (M2), where the square has vertices psrq.
Abusing notation, we denote these two graphs again by Gu,β and Gu,β′ .
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Figure 21. Labeling the faces when applying the square move.

Let us now classify the relative cycles. There are a total of 26 options for how a mono-
tone curve can look like inside Γ(u(d)). In addition, there are 3 more relative cycles Cd,
Cd−1, Cd−2 which do not correspond to any monotone curves in Γ(u(d)), shown in orange in
Figure 20(a,c,d). Out of these 29 options, 8 relative cycles shown in Figure 20(i,j) do not
pass through any of the vertices of the square psrq (after applying the above contraction-
uncontraction moves). The remaining 21 relative cycles, together with their signatures in
Gu,β and Gu,β′ , are shown in Figure 20(a–h).

Comparing the signatures to Figure 15, we see that for all c ∈ Ju,β, the following are
equivalent:

• Cc 6= C ′c;
• either c = d or 〈Cc, Cd〉 > 0 (in which case 〈Cc, Cd〉 = 1);
• Cc is shown in Figure 20(a,b,c).

We again get that C ′c = µd(Cc) in each case. This completes the proof of part (1) of
Theorem 4.3.

4.3.3. Chamber minors. Suppose we are applying one of the mutation moves from part (1)
of Theorem 4.3 at Cd for some d ∈ Jmut

u,β . Then (after possibly applying moves (M1) from
Section 4.3.2), the graph Gu,β contains a square psrq. Let G be the portion of the red
projection of Gu,β located in the small neighborhood of psrq; thus, G is planar. Let F be
the face of G inside this square, and let A,B,C,D be the four faces adjacent to the square
in clockwise order; see Figure 21. (We only consider A,B,C,D in a small neighborhood of
the square.) For c ∈ Ju,β and a face E ∈ {F,A,B,C,D}, we will write ordc(E) = 1 if E is
inside Cc and ordc(E) = 0 otherwise. As in Section 2.4, we say that E is inside Cc if E is
contained inside the red projection of the disk Dc, or in other words, if E is to the left of
the curve representing the red projection of Cc. We define ord′c(E) similarly using the graph
Gu,β′ and the cycles C ′c in it. It follows from part (1) of Theorem 4.3 that the difference
Cc − C ′c in Λu,β is always a multiple of Cd. Thus, we have ord′c(E) = ordc(E) for E 6= F .
(Alternatively, this can be seen directly from Figures 19 and 20.) The following result will
be used in the proof of Proposition 8.11.

Lemma 4.5. For all c ∈ Ju,β \ {d}, we have

(4.1) ordc(F ) + ord′c(F ) = min(ordc(A) + ordc(C), ordc(B) + ordc(D)).

Proof. Follows by inspection from Figures 19 and 20. For example, if Cc is given in Fig-
ure 19(d) then (4.1) becomes 1 + 0 = min(0 + 1, 1 + 1). Similarly, if both monotone curves
in Figure 19(f) are parts of the same monotone multicurve corresponding to Cc then (4.1)
becomes 0 + 0 = min(0 + 0, 1 + 1). �

4.4. Non-mutation moves. We prove part (2) of Theorem 4.3. The following result will be
convenient to show equalities of the form C ′c′ = Cc without classifying all possible monotone
curves as we did in Section 4.3.
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Gu,β

Gu,β′

Figure 22. Applying move (B3) (not fully solid).

(M1)←−−→

Gu,β Gu,β′

=
(M1)←−−→ =

Gu,β Gu,β′

Figure 23. Representing the move (B1) (not special) by the moves from
Figure 9.

Lemma 4.6. Suppose that the double braids β, β′ are related by one of the moves (B1)–(B3)
involving the indices in some interval (l, r] ⊂ [m] of length 2 or 3. Suppose in addition that
the portion Gu,β|[l,r] of Gu,β between Γ(u(l)) and Γ(u(r)) has no cycles, and that Gu,β′ |[l,r] is
obtained from Gu,β|[l,r] via a sequence of contraction-uncontraction moves (M1). Then, for
all c ∈ Ju,β \ (l, r], we have Cc = C ′c.

Proof. By Proposition 3.16, the monotone multicurves of Cc inside Γ(u(l)) and Γ(u(r)) are
determined by the combinatorics of almost positive subexpressions, specifically, by the pairs

(u(l), v
〈l〉
(c)) and (u(r), v

〈r〉
(c)). One can check (cf. Figure 22) that these pairs are invariant

under applying the moves (B1)–(B3) on the interval (l, r]. Thus, we see that the monotone
multicurves of Cc inside Γ(u(l)) and Γ(u(r)) are preserved under the double braid move.
Thus, the locations where Cc enters and exits Gu,β|[l,r] remain unchanged as we apply the
move. Since Gu,β|[l,r] has no cycles, the restriction of Cc to Gu,β|[l,r] is determined by these
locations. It is then clear that as we apply the moves (M1) to Gu,β|[l,r], the relative cycle Cc
is preserved. �

In order to prove part (2) of Theorem 4.3, it suffices to find a relabeling bijection Ju,β
∼−→

Ju,β′ , c 7→ c′, such that C ′c′ = Cc for all c ∈ Ju,β.

4.4.1. Applying (B1) (special, not fully solid). Just as in Section 4.3.1, we assume that we
have two crossings id−1 = −i and id = j (with i, j ∈ I) such that u(d−1)si = sju(d−1), but now
at least one of the two crossings is hollow. In this case, we must have that d is hollow and
d − 1 is solid. Indeed, recall from (3.1) that u(d−1) = u(d) C sj and u(d−2) = si B u(d−1). If
u(d−1) = u(d)sj < u(d) then d is hollow, and then siu(d−1) = u(d−1)sj = u(d) > u(d−1), so d− 1
must be solid. Otherwise, we have u(d−1) = u(d) < u(d)sj, and then siu(d−1) = u(d−1)sj >
u(d−1), so both d and d− 1 are solid, a contradiction.
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=
(M1)←−−→ =

Gu,β Gu,β′

Figure 24. Representing the move (B1) (special, not fully solid) by the moves
from Figure 9.

=
(M1)←−−→ =

(M1)←−−→ =

Gu,β Gu,β′

Figure 25. Representing the move (B3) (not fully solid) by the moves from
Figure 9.

After we swap −i and j in β, the crossing i′d = −i becomes hollow while i′d−1 = j becomes
solid. Thus, we have Ju,β = Ju,β′ . We take the relabeling bijection to be the identity map.
The graphs Gu,β and Gu,β′ are related by a single move (M1) shown in Figure 24, and their
restrictions to [d − 2, d] have no cycles. By Lemma 4.6, we get C ′c = Cc inside Λu,β = Λu,β′

for all c ∈ Ju,β.

4.4.2. Applying (B1) (not special). We take the relabeling bijection c 7→ c′ to be the transpo-
sition of d− 1 and d. If one or both of the crossings d− 1, d is hollow, we have Gu,β = Gu,β′ ,
and we check using Lemma 4.6 that Cc = C ′c′ for all c ∈ Ju,β. Assume now that both
crossings d− 1 and d are solid.

If the bridges bd−1, bd share two strands in common then the move (B1) is special, a
contradiction. If the bridges bd−1, bd share zero strands in common then Gu,β = Gu,β′ , and
we are done by Lemma 4.6. From now on, we assume that the bridges bd−1, bd share exactly
one strand in common.

There are two cases: either the start of one bridge is on the same strand as the end of the
other bridge, or the start (resp., the end) of one bridge is on the same strand as the start
(resp., the end) of the other bridge. In each case, Gu,β and Gu,β′ are related by a sequence
of moves (M1) shown in Figure 23. We are done by Lemma 4.6.

4.4.3. Applying (B2). We take the relabeling bijection c 7→ c′ to be the transposition of d−1
and d. We have Gu,β = Gu,β′ . We are done by Lemma 4.6.

4.4.4. Applying (B3) (not fully solid). Suppose that id−2 = j, id−1 = j + 1, and id = j for
some j ∈ I. In Γ(u(d−3)), the dots (i, j), (i′, j + 1), (i′′, j + 2) are located in ≺-increasing
order, i.e., we have i < i′ < i′′. The restriction of Γ(u(d)) to the rows j, j + 1, j + 2 and
columns i, i′, i′′, however, could be any permutation in S3. If this permutation is the identity,
then the crossings d− 2, d− 1, d are all solid, a contradiction. For each of the remaining five
permutations in S3, the corresponding graphs Gu,β and Gu,β′ are shown in Figure 22. Observe
that their restrictions to [d−3, d] have no cycles. In some cases, we have Gu,β = Gu,β′ . In the
remaining two cases (one of which is obtained from the other by a vertical flip), the sequence
of moves (M1) relating Gu,β to Gu,β′ is shown in Figure 25. In each of the five cases, there
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is a unique relabeling bijection Ju,β ∩ {d− 2, d− 1, d} ∼−→ Ju,β′ ∩ {d− 2, d− 1, d} preserving
the monotone multicurve inside Γ(u(d−3)); it is indicated by colored curves in Figure 22.
Extending the relabeling bijection by the identity map outside the interval {d− 2, d− 1, d},
we are done by Lemma 4.6. This finishes the proof of Theorem 4.3.

4.5. Color-switching moves. We introduce two more moves, which allow us to switch the
color of the first or the last letter of β. For i ∈ I = [n−1], let i∗ := n−i, so that siw0 = w0si∗ .

(B4) (assuming u = w0) β0i↔ β0(−i∗) for i ∈ ±I and β0 ∈ (±I)m−1.
(B5) iβ0 ↔ (−i)β0 for i ∈ ±I and β0 ∈ (±I)m−1;

Note that the assumption u = w0 in (B4) is not restrictive in view of Remark 3.3.

For an ice quiver Q̃, its mutable part is the induced subquiver of Q̃ with vertex set V mut,

where V mut is the set of mutable vertices of Q̃.

Proposition 4.7.

(1) Under the move (B4), Q̃u,β, Gu,β, Su,β, and (Cc)c∈Ju,β are unchanged.

(2) Under the move (B5), the mutable part Qu,β of Q̃u,β is unchanged.

Proof. First, let us consider the move (B4). Since u = w0, the index m must be hollow. There
are no relative cycles passing through the corresponding strands of Gu,β, since they only pass
through the graph Gu,β from Section 3.2. This verifies the first part of the proposition.

Now, consider the move (B5). Without loss of generality, assume that i := i1 > 0. Since

we only care about the mutable part of Q̃u,β, we may disregard all frozen indices, i.e., indices
c ∈ Ju,β such that the monotone multicurve γ(c,0) is nonempty. The index 1 is either hollow
or frozen. For any mutable index d ∈ Ju,β, if γ(d,1) is empty then the intersection number
〈Cc, Cd〉 clearly stays unchanged under (B5) for all c ∈ Ju,β. Let c ∈ Ju,β be a mutable index
such that the monotone multicurve γ(c,1) is nonempty (but γ(c,0) is empty). Then the index 1
must be solid (and therefore frozen). Using a contraction-uncontraction move similar to the
one in Figure 24, we see that the marked surface Su,β′ (where β′ is obtained by applying (B5)
to β) is obtained from Su,β by swapping the labels of the marked points i and i + 1. Since
this swap does not affect the part of Su,β to the right of Γ(u(0)), we see that for any two
mutable relative cycles Cc, Cd that pass through the bridge b1, their intersection number is
unchanged under (B5). This verifies the second part of the proposition. �

5. Cluster algebras associated to 3D plabic graphs

The goal of this section is to show that the cluster algebra defined by Q̃u,β is locally
acyclic [Mul13] and really full rank [LS16].

5.1. Background on cluster algebras. We briefly recall the definition of a cluster algebra
and related concepts.

Recall from Section 2.3 the definition of an ice quiver Q̃, with vertex set Ṽ = V mut t V fro.

We say that Q̃ is isolated if its mutable part has no arrows. For a set S ⊂ V mut, let Q̃[S]

denote the ice quiver obtained from Q̃ by further declaring all vertices in S to be frozen. We

write Q̃− S for the ice quiver obtained from Q̃ by removing the vertices in S.

The associated (extended) exchange matrix B̃(Q̃) = (bv,w)v∈Ṽ ,w∈V mut is defined by

bv,w = #{arrows v → w in Q̃} −#{arrows w → v in Q̃}



BRAID VARIETY CLUSTER STRUCTURES, I: 3D PLABIC GRAPHS 27

Definition 5.1. We say that Q̃ is really full rank if the rows of its exchange matrix span
Z|V mut| over Z.

Let F ∼= C(t1, . . . , tr) be isomorphic to the field of rational functions in r algebraically

independent variables. A seed in F is a pair Σ = (x, Q̃) where Q̃ is an ice quiver with r

vertices Ṽ = V mut t V fro and x = {xv}v∈Ṽ is a transcendence basis of F . The tuple x is the
cluster, its elements are cluster variables and xv is mutable if v ∈ V mut and frozen otherwise.

Given a seed (x, Q̃) in F and d ∈ V mut, one can mutate in direction d to obtain a new seed

µd(x, Q̃) = (x′, µd(Q̃)). The quiver of the mutated seed is the mutation of Q̃ in direction d
(see Definition 3.12). The cluster x′ = {x′v}v∈Ṽ of the new seed satisfies x′v = xv for v 6= d
and

x′d =

∏
v→d xv +

∏
d→v xv

xd
∈ F .

By repeatedly mutating, we generate (possibly infinitely) many seeds and cluster variables.

We denote by A(x, Q̃) the cluster algebra associated to the seed (x, Q̃). This is the C-
subalgebra of F generated by all cluster variables and the inverses of frozen variables. We

call A(x, Q̃) isolated (resp., really full rank) if Q̃ is.

We denote by U(x, Q̃) the upper cluster algebra associated to the seed (x, Q̃); see [BFZ05].
It is given by

U(x, Q̃) =
⋂

(x′,Q̃′)

C[(x′v)
±1 : v ∈ Ṽ ] ⊂ F ,

where the intersection is taken over all seeds (x′, Q̃′) which can be obtained from (x, Q̃) by
a sequence of mutations.

Note that we have isomorphisms A(x, Q̃) ∼= A(y, Q̃) and U(x, Q̃) ∼= U(y, Q̃) for any two

clusters x,y. Thus, we may occasionally write A(Q̃) and U(Q̃) if the particular choice of
initial cluster does not matter.

In general, we have A(x, Q̃) ⊆ U(x, Q̃), and the containment may be strict. However, we

have equality if A(x, Q̃) is locally acyclic, a property introduced by Muller [Mul13]. We need
a few definitions before defining local acyclicity; we follow the presentation of [Mul14].

Let A(x, Q̃) be a cluster algebra and let S ⊂ V mut. Then the cluster algebra A(x, Q̃[S])

obtained by freezing S is a cluster localization of A(x, Q̃) if

(5.1) A(x, Q̃[S]) = A(x, Q̃)[x−1
v : v ∈ S].

(In general, the left-hand side is contained in the right.) Lemma 4.3 of [Mul13] states that

if A(x, Q̃[S]) = U(x, Q̃[S]), then (5.1) automatically holds.
A collection of cluster localizations {Ai} of a cluster algebra A is a cover if for every prime

ideal P of A, there is some Ai such that AiP ( Ai. A cluster algebra is locally acyclic if it

has a cover by isolated cluster algebras. We say that Q̃ is locally acyclic if A(Q̃) is.
We will use the following facts about locally acyclic cluster algebras.

Proposition 5.2 ([Mul13, Proposition 3.10]). Let Q̃ be an ice quiver and let Q denote its

mutable part, as usual. Then A(Q̃) is locally acyclic if and only if A(Q) is locally acyclic.

Theorem 5.3 ([Mul13, Theorem 4.1]). If A(x, Q̃) is locally acyclic, then A(x, Q̃) = U(x, Q̃).
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One frequently studied class of locally acyclic quivers are Louise quivers [LS16]. We focus
instead on sink-recurrent quivers, defined below, which may not be Louise but are locally

acyclic. In the next subsection, we show that our quivers of interest, Q̃u,β, are sink-recurrent
(see Theorem 5.6).

Let Q be a quiver with no frozen vertices. A vertex s of Q is a sink if it has no outgoing
arrows. We let N in

s (Q) be the set of vertices of Q that have an arrow pointing to s. The
following notion is analogous to the class of leaf-recurrent quivers from [GL22a, Section 5.4];
see also [GL22a, Remark 5.14].

Definition 5.4. The class of sink-recurrent quivers is defined recursively as follows.

• Any isolated quiver Q is sink-recurrent.
• Any quiver that is mutation equivalent to a sink-recurrent quiver is sink-recurrent.
• Suppose that a quiver Q has a sink vertex s such that the quivers Q − {s} and
Q− (N in

s (Q) ∪ {s}) are sink-recurrent. Then Q is sink-recurrent.

The above definition refers to mutable quivers (without frozen vertices). We say that an

ice quiver Q̃ is sink-recurrent if its mutable part Q is sink-recurrent.

Proposition 5.5. If Q̃ is a sink-recurrent quiver, then A(x, Q̃) is locally acyclic.

Proof. If Q̃ is isolated, we are done. Otherwise, since local acyclicity is a property of the
cluster algebra rather than the quiver, we may assume that Q has a sink s so that Q− {s}
and Q− (N in

s (Q)∪{s}) are sink-recurrent (by mutating if necessary). Consider the freezings
A1 = A(x, Q[s]) and A2 = A(x, Q[N in

s (Q)]). The mutable parts of Q[s] and Q[N in
s (Q)] are

Q−{s} and Q−N in
s (Q), respectively, which are both sink-recurrent, the former by definition,

and the latter because Q−N in
s (Q) differs from the sink-recurrent quiver Q− (N in

s (Q)∪{t})
by an isolated vertex. So A1 and A2 are locally acyclic by induction, and thus are cluster
localizations.

Let t be any neighbor of s. Then the pair (s, t) forms a covering pair in the sense of
[Mul13], and by [Mul13, Lemma 5.3] it follows that xs and xt cannot simultaneously vanish

on A(Q̃). It follows that A1 and A2 cover A. The union of the covers of A1 and A2 by
isolated cluster algebras is a cover of A(x, Q) by isolated cluster algebras. �
5.2. Local acyclicity. Our goal is to show the following result, which by Proposition 5.5

implies that the cluster algebra A(x, Q̃) is locally acyclic.

Theorem 5.6. For any u ≤ β, the ice quiver Q̃u,β is sink-recurrent.

Proof. We proceed by induction on the number `(β)− `(u) of vertices of Q̃u,β. For the base
case `(β) = `(u), we see that β is a reduced word for u and all crossings are hollow, and thus

Q̃u,β is an empty quiver. Let us now assume that `(β) > `(u).
By Remark 3.3, it suffices to consider the case u = w0. Applying the moves (B1) and (B4),

we may assume that all indices in β are positive. Then, assuming β = iβ0, we can transform
β into

(5.2) β = iβ0
(B5)−−→ (−i)β0

(B1)−−→ · · · (B1)−−→ β0(−i) (B4)−−→ β0i
∗.

We call the operation (5.2) the conjugation move.
Since u = w0 and `(β) > `(u), the braid word β must be non-reduced. Then, after

applying the moves (B2)–(B3), we may transform β into a word of the form β1iiβ2, for two
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positive braid words β1, β2. Applying conjugation moves (5.2), we may further transform
it into the word iiβ2β

∗
1 , where β∗1 is obtained from β1 by applying the map i 7→ i∗ to each

index. Applying one more move (B5), we obtain the word (−i)iβ2β
∗
1 which we still denote

by β.
By the same argument as in Section 4.4.1, we get that the crossing i1 = −i is solid. Let

β′ := iβ2β
∗
1 be obtained by omitting −i from β. Since i1 is solid, we have u ≤ β′, and by the

induction hypothesis, the quiver Qu,β′ is sink-recurrent.
Suppose first that the crossing i2 = i is hollow. It is easy to check from the propagation

rules in Figure 8 that no mutable relative cycle passes through the bridge b1. In particular,
we see that Qu,β = Qu,β′ , which we know is sink-recurrent by induction.

Suppose now that both crossings i1 = −i and i2 = i are solid. The graph Gu,β has
a square psrq formed by the two corresponding bridges as in Figure 15(left). The index
d := 2 is mutable and the relative cycle Cd passes through the vertices of the square in
the counterclockwise direction. Any other mutable relative cycle Cc satisfying 〈Cc, Cd〉 6= 0
must have signature sp (i.e., pass through the bridge b2 in the direction opposite to Cd). In
particular, we see that 〈Cc, Cd〉 = 1 whenever c is mutable and 〈Cc, Cd〉 6= 0. It follows that
d is a sink in Qu,β.

Let β′′ := β2β
∗
1 be obtained by omitting both −i and i from β. We still have u ≤ β′′, and

by the induction hypothesis, the quiver Qu,β′′ is sink-recurrent. We have Qu,β′ = Qu,β −{d}.
The quiver Qu,β′′ is obtained from Qu,β by deleting d together with all vertices that have
an arrow pointing to d, since the corresponding cycles become frozen in Gu,β′′ . The result
follows. �
Remark 5.7. Similar reasoning has been recently used in [GL22a, Proposition 7.9] to study
plabic fences, which are recovered as special cases of our construction when u = id.

From Theorem 5.6 and Proposition 5.5, we have the following immediate corollary.

Corollary 5.8. For any u ≤ β, the quiver Q̃u,β is locally acyclic.

5.3. Really full rank. Our goal is to show the following result; cf. Definition 5.1.

Theorem 5.9. The quiver Q̃u,β is really full rank.

In order to give a proof, we study the marked surface (Su,β,M) and the lattices Λu,β =
H1(Su,β,M) and Λ∗u,β = H1(Su,β \M, ∂Su,β \M) in more detail. See Figure 6(d) for an
example of a surface Su,β. We first construct an explicit basis of Λ∗u,β. Recall from Section 3.3
that Su,β is obtained by replacing every edge of Gu,β with a thin rectangle and gluing them
together at the vertices of Gu,β. For every edge e of Gu,β, let the dual edge e∗ ∈ Λ∗u,β denote
some orientation of a short line segment intersecting e connecting the opposite boundaries
of the corresponding thin rectangle.

Lemma 5.10. The elements (b∗c)c∈Ju,β form a Z-basis of Λ∗u,β.

Proof. Recall from (3.2) that the lattices Λu,β and Λ∗u,β are dual to each other. Since Su,β
deformation retracts onto Gu,β, we see that Λu,β

∼= Z|Ju,β | is a free abelian group whose
rank is the number of bridges in Gu,β. Thus, Λ∗u,β

∼= Z|Ju,β |, and it suffices to show that the
elements (b∗c)c∈Ju,β span Λ∗u,β over Z.

It is clear that any element of Λ∗u,β can be written as a Z-linear combination of the elements
of the form e∗ for the various edges e of Gu,β: this can be achieved by taking a curve inside
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Mi

Mi+1

b∗1 b∗2b∗1 b∗2
Mi

Mi+1

C2 C2 = b∗1 + b∗2 in Λ∗
u,β

Figure 26. Pushing a relative cycle in Λ∗u,β to the boundary.

Su,β and “pushing it to the boundary,” i.e., applying an isotopy so that the resulting curve is
contained inside ∂Su,β with the exception of several line segments of the form ±e∗ for some
edge e; see Figure 26. It remains to explain how an arbitrary edge e∗ can be expressed as a
Z-linear combination of the dual bridge edges.

For any vertex p of Gu,β incident to edges e1, e2, e3, we have a linear relation ε1e
∗
1 + ε2e

∗
2 +

ε3e
∗
3 = 0 inside Λ∗u,β, for some ε1, ε2, ε3 ∈ {±1}. Every non-bridge edge of Gu,β passes

through a dot inside Γ(u(c)) for some c ∈ [0,m]. We treat these edges from right to left, i.e.,
by induction on c = m,m − 1, . . . , 0. For the induction base, if e is a non-bridge edge of
Gu,β whose right endpoint is a degree 1 vertex in Γ(u(m)) then clearly e∗ = 0 in Λ∗u,β. For
the induction step, consider the right endpoint p of e, and let e2, e3 be the other two edges
incident to p. The above linear relation expresses e∗ as a sum of ±e∗2 and ±e∗3, and by the
induction hypothesis, each of them is a Z-linear combination of dual bridge edges. �

Corollary 5.11. The relative cycles (Cc)c∈Ju,β form a Z-basis of Λu,β.

Proof. Each relative cycle Cc passes through the bridge edge bc and possibly through some
bridges to the left of it. We therefore get 〈Cc, b∗c〉 = ±1 and 〈Cc, b∗d〉 = 0 for d > c. Therefore
the matrix 〈Cc, b∗d〉 is lower triangular with ±1-s on the diagonal, which implies the result. �

Proof of Theorem 5.9. Our goal is to show that the mutable relative cycles (Cc)c∈Jmut
u,β

can

be extended to a Z-basis B of Λ∗u,β. Indeed, if this is true, then by Corollary 5.11, each
element of the basis of Λu,β dual to B with respect to 〈·, ·〉 can be expressed as a Z-linear
combination of (Cc)c∈Ju,β . This is equivalent to expressing the standard basis vectors of Zk,
where k := |Jmut

u,β |, as Z-linear combinations of the rows of the exchange matrix B̃(Q̃u,β).
We show that (Cc)c∈Jmut

u,β
can be extended to a Z-basis of Λ∗u,β by induction in the same

way as we did in Theorem 5.6. The Z-span of (Cc)c∈Jmut
u,β

is invariant under mutation for-

mulae (3.4). It is therefore unchanged under the moves (B1)–(B4). For the move (B5), we
showed in Proposition 4.7 that the surface Su,β is unchanged except that we swap the labels
of two marked points. The collection (Cc)c∈Jmut

u,β
is also unchanged under (B5). We may

therefore apply the moves (B1)–(B5) and arrive at the case where β has a double bridge on
the left:4 β = iiβ0 for some β0 ∈ (±I)m−2.

Let β′ := iβ0. As in the proof of Theorem 5.6, we have u ≤ β′. The graph Gu,β has one
more mutable cycle Cd with d := 2 and one more bridge b1 than the graph Gu,β′ . Let B′ be
the Z-basis of Λ∗u,β′ containing (Cc)c∈Jmut

u,β \{d}. Then it is clear that {b1} t B′ is a Z-basis of

Λ∗u,β. As shown in Figure 26, we have Cd = ±b∗2 ± b∗1 in Λ∗u,β. Thus, B := {Cd} t B′ is a
Z-basis of Λ∗u,β containing (Cc)c∈Jmut

u,β
. �

4Unlike in the proof of Theorem 5.6, here we require the two bridges to be of the same color.
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6. Double braid varieties

6.1. Notation. Let G = SLn. Recall that I := [n − 1] indexes the simple transpositions
of the Weyl group W = Sn, and that for i ∈ I, we denote i∗ := n − i. For i ∈ I, we set
(−i)∗ := −i∗. Let B+ and B− denote the subgroup of upper triangular and lower triangular
matrices, respectively, and let U+ and U− denote the respective unipotent subgroups. We
use H to denote the torus of diagonal matrices.

For i ∈ I, let φi : SL2 → G denote the homomorphism where φi(g) is the matrix which
has g as the 2 × 2 submatrix on rows and columns i, i + 1 and otherwise agrees with the
identity matrix.

We use φi to lift Sn to G. Let

ṡi := φi

(
0 −1
1 0

)
.

For w ∈ Sn, we define ẇ := ṡi1 . . . ṡin where si1 . . . sin is a reduced expression for w. The map
w 7→ ẇ is not a homomorphism, but if `(vw) = `(v) + `(w), then (vw)• = v̇ẇ. In particular,
ẇ does not depend on the choice of reduced expression. Explicitly,

(ẇ)i,j =

{
0 if i 6= w(j),

(−1)|{a<j:w(a)>w(j)}| if i = w(j).

We omit the dot when the choice of the signs in the permutation matrix of w does not
matter: e.g., we write B+wB+ and Hw in place of B+ẇB+ and Hẇ.

We will also need the generators

(6.1) xi(t) := φi

(
1 t
0 1

)
, yi(t) := φi

(
1 0
t 1

)
, α∨i (t) := φi

(
t 0
0 1/t

)
,

and the braid matrices

zi(t) := φi

(
t −1
1 0

)
= xi(t)ṡi = ṡiyi(−t);

z̄i(t) := φi

(
t 1
−1 0

)
= xi(−t)ṡ−1

i = ṡ−1
i yi(t).

6.2. Weighted flags. A weighted flag is an element F = gU+ ∈ G/U+. Associated to a
weighted flag F is the flag π(F ) = gB+, the image of F in G/B+.

Definition 6.1. Two weighted flags (F, F ′) are called (weakly) w-related if there exist g ∈ G
and h ∈ H such that (gF, gF ′) = (U+, hẇU+) ∈ G/U+×G/U+. Equivalently, F = g1U+ and

F ′ = g2U+ are weakly w-related if and only if g−1
1 g2 ∈ B+ẇB+. We write this as F

w
=⇒ F ′.

Two weighted flags (F, F ′) are called strictly w-related if there exists g ∈ G such that
(gF, gF ′) = (U+, ẇU+) ∈ G/U+×G/U+. Equivalently, F = g1U+ and F ′ = g2U+ are strictly

w-related if and only if g−1
1 g2 ∈ U+ẇU+. We write this as F

w−→ F ′.

Let F, F ′ be two weighted flags and let B,B′ be their images in G/B+. Then

(6.2) F
w−→ F ′ implies F

w
=⇒ F ′, which in turn implies B

w−→ B′ (see Section 2.7).

We collect some elementary facts about relative position (see e.g. [SW21, Appendix]).

Lemma 6.2.
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(1) F
id−→ F ′ if and only if F = F ′.

(2) If F
v−→ F ′

w−→ F ′′ and `(vw) = `(v) + `(w), then F
vw−→ F ′′.

(3) Suppose `(vw) = `(v) + `(w). If F
vw−→ F ′′, then there exists a unique F ′ such that

F
v−→ F ′ and F ′

w−→ F ′′.

Lemma 6.3. Suppose F
si−→ F ′ and say F = gU+. Then there exists a unique t ∈ C

such that F ′ = gzi(t)U+. Similarly, if F ′ = g′U+, there exists a unique t′ ∈ C such that
F = g′z̄i(t

′)U+.

Remark 6.4. The parameters t, t′ in Lemma 6.3 depend on the choices of the representative
matrices g, g′.

Lemma 6.5. Suppose F
v

=⇒ gU+
si−→ gzi(t)U+ and let w be such that F

w
=⇒ gzi(t)U+. If

vsi > v, then w = vsi for all t ∈ C. If vsi < v, then w = vsi for t = 0 and w = v for t ∈ C×.
In particular, w ∈ {v, vsi}.

Lemma 6.6. Suppose F
w

=⇒ F ′′.

(1) If w > wsi, then there is a unique F ′ such that F
wsi=⇒ F ′

si−→ F ′′.

(2) If w > siw, then there is a unique F ′ such that F
si−→ F ′

siw=⇒ F ′′.

Proof. We show only (1). The images π(F ) and π(F ′′) in G/B+ uniquely determine a flag

L ∈ G/B+ satisfying π(F )
wsi−→ L

si−→ π(F ′′), and L has a unique lift F ′ to G/U+ such that

F ′
si−→ F ′′. �

6.3. Double braid variety. For a pair (u, β) ∈ Sn × (±I)m with u ≤ β, let
◦
Yu,β denote

the space of tuples of weighted flags satisfying

(6.3)

X0 X1 · · · Xm

Y0 Y1 · · · Ym

s+i1
s+i2 s+im

s−
i∗1

w0·id

s−
i∗2

s−
i∗m

w0·u

Also define Yu,β by omitting the condition that (X0, Y0) are weakly w0-related. Then Yu,β
is a Cl-bundle over G/U+ (where l = m + `(w0u)), and

◦
Yu,β is an open subset of Yu,β. We

denote points in
◦
Yu,β and Yu,β by (X•, Y•).

Remark 6.7. Intuitively, a point in Yu,β is a walk in G/U+×G/U+ from a pair of weighted

flagsXm
w0u←− Ym to a pair of weighted flagsX0

w0⇐= Y0. The “direction” of step c is dictated by
the crossing ic of β. A red crossing i in β means the step changes the i-dimensional subspace
of the first flag in the pair. A blue crossing j means the step changes the (n−|j|)-dimensional

subspace of the second flag. Given an arbitrary pair (Xm, Ym) satisfying Xm
w0u←− Ym, we

can parametrize (Xc−1, Yc−1) iteratively for c = m,m− 1, . . . , 1 using Lemma 6.3: assuming
(Xc, Yc) = (gcU+, g

′
cU+), we set

(6.4) (Xc−1, Yc−1) :=

{
(gczic(tc)U+, g

′
cU+), if ic > 0,

(gcU+, g
′
cz̄|ic|∗(tc)U+), if ic < 0,
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for arbitrary parameters t := (t1, t2, . . . , tm) ∈ Cm. For (X•, Y•) to be a point in
◦
Yu,β,

we require further that X0
w0=⇒ Y0, which is an extra open condition on the parameters

(t, Xm, Ym).

The group G acts on
◦
Yu,β and Yu,β by acting simultaneously on all the weighted flags by

left multiplication.

Proposition 6.8. The action of G on
◦
Yu,β is free.

Proof. G acts freely on pairs (X0, Y0) which are weakly w0-related. Indeed, it suffices to
consider the case (X0, Y0) = (U+, hẇ0U+). The stabilizer of the pair (U+, hẇ0U+) is U+ ∩
hẇ0U+ẇ

−1
0 h−1, which is contained in U+ ∩B− = {1}. �

Definition 6.9. The double braid variety
◦
Ru,β = G\

◦
Yu,β is the quotient of

◦
Yu,β by G.

Our notation is consistent with Section 2 due to the following.

Proposition 6.10. Let β ∈ Im be a positive braid word. Then the double braid variety
◦
Ru,β

is isomorphic to the braid Richardson variety defined in (2.2).

Proof. Write π for the natural map G/U+ → G/B+. Let (X•, Y•) ∈
◦
Ru,β. The G-action can

be gauge-fixed by assuming (X0, Y0) = (hU+, ẇ0U+), where h ∈ H. With this gauge-fix, we

obtain a map πm :
◦
Ru,β → (G/B+)m sending (X•, Y•) 7→ (π(X1), π(X2), . . . , π(Xm)). We

now show that this map is an isomorphism onto the braid Richardson variety of (2.2). Since

π(X0) = B+ and π(Y0) = B−, (6.2) shows that πm maps
◦
Ru,β into the space (2.2).

For the inverse of πm: Suppose we have two flags B,B′ ∈ G/B+ satisfying B
si−→ B′ and

a lift F ∈ G/U+ of B is given. Then there is a unique F ′ ∈ G/U+ that lifts B′ and satisfies

F
si−→ F ′. Now, given a point B• in the space (2.2), we set Y0 = · · · = Ym = ẇ0U+ and set

Xm to be the unique lift of Bm such that Ym
w0u−→ Xm. Lifting Bm−1, Bm−2, . . . , B1 from right

to left (using the observation at the beginning of the paragraph), we obtain a unique point

in
◦
Ru,β which πm maps to B•. �

Remark 6.11. When both blue and red subwords of β are reduced, the same argument
as in the proof of Proposition 6.10 shows that our double braid varieties are isomorphic to

the varieties considered by Webster and Yakimov [WY07]. When u is the identity,
◦
Rid,β is

isomorphic to the double Bott–Samelson cells of Shen and Weng [SW21].

Remark 6.12. The isomorphism of Proposition 6.10 is not compatible with total positiv-

ity, in the sense that it does not send the totally positive part R>0
u,w of

◦
Ru,w (introduced by

Lusztig [Lus94]) to the subset of the braid variety
◦
Ru,w where all cluster variables take pos-

itive value. In order to fix that, one must compose this isomorphism with an automorphism

of
◦
Ru,w discussed in Section 6.6.

Notation 6.13. For any object defined in terms of a pair (u, β), we suppress the permutation

u from the notation when u = w0. For example, we write
◦
Rβ :=

◦
Rw0,β.

Lemma 6.14. Given u ≤ β, let γ+ ∈ I`(w0u) be a reduced word for w0u using red letters and
γ− ∈ (−I)`(uw0) be a reduced word for uw0 in blue letters. Then

◦
Yu,β ∼=

◦
Yβγ+ ∼=

◦
Yβγ− and

◦
Ru,β

∼=
◦
Rβγ+

∼=
◦
Rβγ− .
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Proof. The isomorphisms
◦
Yβγ+ →

◦
Yu,β

◦
Yβγ− →

◦
Yu,β

are given by truncating (X•, Y•) after the pair (X`(β), Y`(β)). The choice of γ+ and γ− together
with Lemma 6.2(2) ensures that the maps are well defined. Injectivity and surjectivity follow
from Lemma 6.2(3). The isomorphisms are G-equivariant and so descend to the quotient. �

6.4. Geometry of double braid varieties.

Proposition 6.15. For u ≤ β, the double braid variety
◦
Ru,β is a smooth, affine, irreducible

complex algebraic variety of dimension equal to d(u, β) := `(β)− `(u).

Proof. Using Lemma 6.14, we may assume u = w0. Consider the space of tuples of weighted
flags satisfying

(6.5)

U+ X1 · · · Xm

Y0 Y1 · · · Ym

s+i1
s+i2 s+im

s−
i∗1

s−
i∗2

s−
i∗m

id

This space is an iterated C1-bundle and thus affine. Imposing the condition that U+ and
Y0 are weakly w0-related (that is, Y0 ∈ B+ẇ0B+ = B+ẇ0U+) cuts out a nonempty smooth

affine open subset V of the iterated C1-bundle. The braid variety
◦
Rβ is the quotient of V

by the diagonal action of U+ = StabG(U+). The group U+ acts freely on B+ẇ0U+ and thus

acts freely on V . It follows that the quotient
◦
Rβ is also smooth and affine; it is also clearly

irreducible.
For the dimension, note that

dim(
◦
Yβ) = dim(G/U+) + `(β) = dim(G)− `(w0) + `(β)

so dim(
◦
Rβ) = dim(

◦
Yβ)− dim(G) = `(β)− `(w0). �

Proposition 6.16. Let u ≤ β. Suppose that β′ is related to β by any of the moves

(B1)–(B5). Then
◦
Ru,β

∼=
◦
Ru,β′.

Proof. Using Lemma 6.14, we assume that u = w0. We give an isomorphism m :
◦
Yβ →

◦
Yβ′ ,

which is G-equivariant and so descends to an isomorphism of double braid varieties. The
map m changes only the weighted flags indexed by letters involved in the double braid or
color-changing move, so we show only that snippet of the tuple. For moves involving letters
of a single color, we give the isomorphism for the “red” move; the isomorphism is similar for
the “blue” move. Without loss of generality, we may use the action of G to gauge-fix one of
the weighted flags involved to be U+.

For (B1) (ij 7→ ji with i, j of opposite color), the map m is given by



X X ′ X ′

Y Y Y ′

si id

id sj∗



7→




X X X ′

Y Y ′ Y ′.

id si

sj∗ id



.
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For (B2) (ij 7→ ji with i, j of the same color, |i− j| > 1), we use the identity zi(t1)zj(t2) =
zj(t2)zi(t1). Supposing that the move is on red letters, the map m sends

(
zj(t2)zi(t1)U+ zj(t2)U+ U+

)si sj 7→
(
zi(t1)zj(t2)U+ zi(t1)U+ U+

)sj si

and does not affect the weighted flags in the bottom row.
For (B3) (iji 7→ jij with i, j of the same sign, j = i+1), we use the identity zi(t1)zi+1(t2)zi(t3) =

zi+1(t3)zi(t1t3 − t2)zi+1(t1). Supposing that the move is on red letters, the map m sends

(
zi(t1)zi+1(t2)zi(t3)U+ zi(t1)zi+1(t2)U+ zi(t1)U+ U+

)si si+1 si

7→
(
zi+1(t3)zi(t1t3 − t2)zi+1(t1)U+ zi+1(t3)zi(t1t3 − t2)U+ zi+1(t3)U+ U+

)si+1 si si+1

and does not affect weighted flags in the bottom row.
For (B4) (βi 7→ β(−i∗) assuming u = w0), we have Xm = Ym. We note that (i∗)∗ = i.

The map m is given by



X X ′

X ′ X ′

si

id


 7→




X X

X ′ X

id

si


 .

For (B5) ((−i)β 7→ iβ), we use the identity zi∗(t)
−1hẇ0 = h′ẇ0z̄i(t

′), where t′ = thi∗+1/hi∗
and h′j,j = hsi∗ (j),si∗ (j). Assuming i ∈ I, the map m sends




zi∗(t)
−1hẇ0U+ zi∗(t)

−1hẇ0U+

zi∗(t)
−1U+ U+

id

si∗

w0



7→




h′ẇ0U+ h′ẇ0z̄i(t
′)U+

U+ U+

si

w0

id


 . �

From Lemma 6.14 and Proposition 6.16, we have an immediate corollary.

Corollary 6.17. Any double braid variety
◦
Ru,β with u ≤ β is isomorphic to a braid variety

◦
Rβ′ where β′ has only red letters.

The purpose of defining double braid varieties is to obtain more seeds (or more Deodhar
tori), one for each double braid word.

6.5. Grid and chamber minors. We next discuss regular functions on
◦
Ru,β. Given

(X•, Y•), let

(6.6) Zc := Y −1
c Xc ∈ U+\G/U+.

It is clear that Zc is well defined for a point in
◦
Ru,β, since it is unchanged by the action

of G. We frequently abuse notation and use Zc to denote both the double coset and a
representative of this double coset. Our goal is to use the matrix Zc to introduce certain

regular functions on
◦
Ru,β,

◦
Yu,β,Yu,β which we refer to as grid minors. Recall from Section 3.1

the definition of the u-PDS u = (u(0), . . . , u(m)).
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Definition 6.18. For c ∈ Ju,β a crossing and h ∈ I, we define the red grid minor as

(6.7) ∆c,h(X•, Y•) = ∆w0u(c)[h],[h](Zc),

and the blue grid minor as

(6.8) ∆c,−h(X•, Y•) = ∆[n+1−h,n],u−1
(c)
w0[n+1−h,n](Zc) = ∆w0[h],u−1

(c)
[h](Zc),

where Zc = Y −1
c Xc.

Note that the color of a grid minor ∆c,h is determined by the sign of h. It is not true in
general that for J ⊂ [n] of size |J | = h, a flag minor of the form ∆J,[h] or ∆w0[h],J gives a
well-defined function on U+\G/U+. However, for the particular varieties we are interested
in, grid minors indeed give rise to well-defined functions.

Lemma 6.19. For each c ∈ Ju,β and h ∈ I, the grid minors ∆c,±h give rise to G-invariant

regular functions on Yu,β and
◦
Yu,β, and to regular functions on

◦
Ru,β. These regular functions

are compatible with the quotient map
◦
Yu,β →

◦
Ru,β and the inclusion map

◦
Yu,β ↪→ Yu,β.

Proof. As we will explain in Section 7, each of
◦
Ru,β,

◦
Yu,β,Yu,β contains an open dense subset

consisting of (X•, Y•) satisfying Xc

w0u(c)⇐= Yc for all c ∈ [0,m] := {0, 1, . . . ,m}. In this

case, Zc is contained in a specific Bruhat cell
◦
Xw0u(c) := B+w0u(c)B+ of G. Therefore for

arbitrary (X•, Y•), Zc belongs to the closure Xw0u(c) of
◦
Xw0u(c) inside G. It is well known that

the flag minors of the form (6.7)–(6.8) give rise to U+ × U+-invariant regular functions on

Xw0u(c) , which are moreover nonvanishing on
◦
Xw0u(c) . Explicitly, each matrix in

◦
Xw0u(c) can

be transformed by the U+ × U+-action into a unique matrix in the torus w0u(c)H, and the
grid minors are characters of this torus. The fact that these functions are G-invariant and
compatible with the quotient/inclusion maps is obvious from the definition of Zc. �
Lemma 6.20. Consider a crossing c ∈ [m]. Suppose h 6= ic is of the same sign as ic. Then

∆c−1,h = ∆c,h.

Proof. Let i := ic. The result follows from the fact that Zc−1 = Zcxi(t)ṡi or Zc−1 = ṡi∗xi∗(t)Zc
(as usual using Zc also to denote a representative for the double coset) for some t ∈ C,
depending on whether c is red or blue. �

We will be particularly interested in the following subclass of grid minors.

Definition 6.21. Define the chamber minor of c as

(6.9) ∆c := ∆c−1,ic .

Note that ∆c is a minor of Zc−1. In words, Lemma 6.20 shows that a crossing of color
x ∈ {red, blue} can change exactly one grid minor of color x (but may change many grid
minors of the opposite color). The “changed” grid minor of color x to the left of the bridge
bc is exactly the chamber minor ∆c.

Remark 6.22. We explain the relationship between grid minors and 3D plabic graphs;
compare Figure 27 to Figure 6. Recall from Section 3.2 that for a 3D plabic graph Gu,β

with coordinates (i, j, t), we consider its red projection πred(Gu,β) with coordinates (t, j) and
its blue projection πblue(Gu,β) with coordinates (t, i). For c ∈ [0,m] and h ∈ I, let us place
the red grid minor ∆c,h at the point (t = c, j = h + 0.5), lying in some face of πred(Gu,β).
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1

2

3

∆0,1

∆0,2

∆1,1

∆1,2

∆2,1

∆2,2

∆3,1

∆3,2

∆4,1

∆4,2

∆5,1

∆5,2

∆1,1 ∆3,1

∆2,2

1

2

3

∆0,−1

∆0,−2

∆1,−1

∆1,−2

∆2,−1

∆2,−2

∆3,−1

∆3,−2

∆4,−1

∆4,−2

∆5,−1

∆5,−2∆0,−2

∆4,−1

(a) πred(Gu,β), red grid minors (labels) (b) πblue(Gu,β), blue grid minors (labels)

1

2

3

∆3,1(Z0) = t2t4t5 − 1

∆23,12(Z0) = t1t4 + 1

∆3,1(Z1) = t2t4t5 − 1

∆23,12(Z1) = t4

∆3,1(Z2) = t4t5

∆23,12(Z2) = t4

∆3,1(Z3) = t4t5

∆13,12(Z3) = t5

∆3,1(Z4) = t5

∆13,12(Z4) = t5

∆3,1(Z5) = 1

∆13,12(Z5) = 1

(c) πred(Gu,β), red grid minors (values)

1

2

3

∆3,1(Z0) = t2t4t5 − 1

∆23,12(Z0) = t1t4 + 1

∆3,1(Z1) = t2t4t5 − 1

∆23,12(Z1) = t4

∆3,1(Z2) = t4t5

∆23,12(Z2) = t4

∆3,1(Z3) = t4t5

∆23,13(Z3) = t4

∆3,1(Z4) = t5

∆23,13(Z4) = 1

∆3,1(Z5) = 1

∆23,13(Z5) = 1

(d) πblue(Gu,β), blue grid minors (values)

X0 =
[ −t2 1 0

−1 0 0
t2t4 −t4 1

]
X1 =

[ −t2 1 0
−1 0 0
t2t4 −t4 1

]
X2 =

[−1 0 0
0 −1 0
t4 0 1

]
X3 =

[−1 0 0
0 0 −1
t4 −1 0

]
X4 =

[
0 −1 0
0 0 −1
1 0 0

]
X5 =

[
0 −1 0
0 0 −1
1 0 0

]

Y0 =
[

t1 1 0
−t5 0 1
1 0 0

]
Y1 =

[
1 0 0
0 t5 1
0 −1 0

]
Y2 =

[
1 0 0
0 t5 1
0 −1 0

]
Y3 =

[
1 0 0
0 t5 1
0 −1 0

]
Y4 =

[
1 0 0
0 t5 1
0 −1 0

]
Y5 =

[
1 0 0
0 1 0
0 0 1

]

Z0 =
[ t2t4 −t4 1
−t1t2t4−t2 t1t4+1 −t1
t2t4t5−1 −t4t5 t5

]
Z1 =

[ −t2 1 0
−t2t4 t4 −1

t2t4t5−1 −t4t5 t5

]
Z2 =

[ −1 0 0
−t4 0 −1
t4t5 −1 t5

]
Z3 =

[ −1 0 0
−t4 1 0
t4t5 −t5 −1

]
Z4 =

[
0 −1 0
−1 0 0
t5 0 −1

]
Z5 =

[
0 −1 0
0 0 −1
1 0 0

]

id s1 s2 s1 id

s2∗

w0·id

id id id s1∗

w0·u

(e) the matrices Xc, Yc, Zc for c ∈ [0,m]

Figure 27. Grid minors for u = s2 and β = (−2, 1, 2, 1,−1); see Exam-
ple 3.10, Figure 6, and Example 6.24. The chamber minors ∆c, c ∈ [m], are
boxed.

Similarly, we place the blue grid minor ∆c,−h at the point (t = c, i = h + 0.5), lying in
some face of πblue(Gu,β). This labeling is shown in Figure 27(a,b). Each chamber minor ∆c

appears immediately to the left of the bridge bc in the projection of the corresponding color;
these minors are boxed in Figure 27.

Remark 6.23. Lemma 6.20 can be seen as a special case of the observation that any two
red (resp., blue) grid minors that belong to the same face of πred(Gu,β) (resp., πblue(Gu,β))
are equal.

Example 6.24. We continue Example 3.10; thus, u = s2, β = (−2, 1, 2, 1,−1), and Ju,β =
{1, 2, 4, 5}. The matricesXc, Yc, Zc are computed in Figure 27(e) from right to left using (6.4).
The grid minors given by (6.7)–(6.8) are computed in Figure 27(c,d). The solid (resp., hollow)
chamber minors are boxed in solid (resp., dashed) lines.

6.6. Comparison with chamber minors for Richardsons and double Bruhat cells.
As we mentioned in the introduction, braid varieties include double Bruhat cells, open



38 PAVEL GALASHIN, THOMAS LAM, MELISSA SHERMAN-BENNETT, AND DAVID SPEYER

positroid varieties, and open Richardson varieties, cluster structures on which have been stud-
ied previously in many works including [FZ99, GY20, Sco06, SSBW19, GL19, Lec16, Ing19].
We briefly explain how our chamber minors relate to chamber minors defined in some of
these previous works.

Let g 7→ g−ι be the involutive automorphism of G defined by

xi(t) 7→ xi(−t), yi(t) 7→ yi(−t), ṡi 7→ ṡ−1
i , h 7→ h,

for all i ∈ I, t ∈ C, and h ∈ H. This map is a composition of the involution g 7→ gι

studied in [FZ99, Section 2.1] with the involution g 7→ g−1 (these two involutions commute).
The properties of the involution g 7→ g−ι in relation to total positivity were first studied
in [GL22b, Section 6.2]. Since G = SLn, one can check that for a matrix g = (gi,j)i,j∈[n], we
have g−ι = ((−1)i+jgi,j)i,j∈[n].

We will use the following relations for relative positions of weighted flags:

(6.10) U+
si←− ṡ−1

i U+, α∨i (1/t)U+
si←− yi(−t)U+, α∨i∗(t)ẇ

−1
0 U+

si∗−→ xi∗(−t)ẇ−1
0 U+,

for all t ∈ C× and i ∈ I, where α∨i was defined in (6.1).

6.6.1. Open Richardson varieties. Observe that the map gB+ 7→ g−ιB+ preserves the subsets

B−uB+, B+wB+, and therefore yields an involutive automorphism of
◦
Ru,w. Choose a reduced

word5 β for w and consider the isomorphism between an open Richardson and a braid
Richardson variety

(6.11)
◦
Ru,w

∼−→
◦
Ru,β, gB+ 7→ (X•, Y•),

where (X•, Y•) satisfies the following conditions:

π(X0) = B+, π(Xm) = g−ιB+, and Y0 = Y1 = · · · = Ym = ẇ−1
0 U+.

As explained in the proof of Proposition 6.10, these conditions determine the tuple (X•, Y•) ∈
◦
Ru,β uniquely. We explain how to do this explicitly when the element gB+ is MR-parametrized ;
such parametrizations were introduced in [MR04] in relation to total positivity for flag vari-
eties [Lus94]. Let

(6.12) g := g1 · · · gm, where gc =

{
ṡic if c /∈ Ju,β,

yic(tc) if c ∈ Ju,β.

Here t = (t1, . . . , tm) consists of some nonzero parameters. We get

g−ι = g−ι1 · · · g−ιm , where g−ιc =

{
ṡ−1
ic

if c /∈ Ju,β,

yic(−tc) if c ∈ Ju,β.

We first check that we may set Xm := g−ιU+, i.e., that Xm
w0u←− Ym. Indeed, it is well

known [GL22b, Equation (2.8)] that g ∈ U−u̇. Thus, g−ι ∈ U−ü, where for a reduced word
u = sj1 · · · sjl , we set ü := u̇−ι = ((u−1)•)−1 = ṡ−1

j1
· · · ṡ−1

jl
. The element ü satisfies ẇ0ü =

(w0u)•. It follows that ẇ0 · (Xm, Ym) = (ẇ0g
−ιU+, U+), where ẇ0g

−ιU+ ∈ U+(w0u)•U+, and

thus indeed Xm
w0u←− Ym. We now may compute Xm−1, . . . , X0 iteratively using Xc−1

sic←− Xc

together with the relations in (6.10). Comparing our chamber minors with the chamber
minors of [Ing19], we arrive at the following result.

5We denote the reduced word for w by β as opposed to w in order to make the visual differences between

the varieties
◦
Ru,w and

◦
Ru,β more apparent.
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1

2

3

4

5

1
t3t6t8

1
t2t3t5t6t8

1
t1t2t3t4t5t6

1
t4t5t6

1
t3t6t8

1
t2t3t5t6t8

1
t5t6t8

1
t4t5t6

1
t3t6t8

1
t6t8

1
t5t6t8

1
t4t5t6

1

1
t6t8

1
t5t6t8

1
t4t5t6

1

1
t6t8

1
t5t6t8

1
t8

1

1
t6t8

1
t8

1
t8

1

1

1
t8

1
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(a) open Richardson variety (Example 6.28)
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(b) double Bruhat cell (Example 6.30)

Figure 28. Comparing grid minors to chamber minors of [Ing19, FZ99].

Proposition 6.25. The isomorphism (6.11) sends the chamber minors of [Ing19] to the
chamber minors (∆c)c∈Ju,β from Definition 6.21. In particular, all chamber and grid minors
from Definitions 6.18 and 6.21 take positive values on the image of the totally positive part

R>0
u,w ⊂

◦
Ru,w under (6.11).

Remark 6.26. The fact that the red grid minors of Zc take positive values when restricted

to the subset R>0
u,w ⊂

◦
Ru,w is a reflection of the fact that the reversal map gB+ 7→ ẇ0g

−ιB+

preserves total positivity; see [GL22b, Proposition 6.4].

Remark 6.27. For a comparison between the chamber minors of [Ing19, Lec16, MR04],
see [GL22b, Section 11].

Example 6.28. Consider the running example of [Ing19]: w = s3s2s1s4s3s2s3s4 and u = s3,
which was already considered in the introduction (Figure 4). Applying the parametriza-
tion (6.12) and computing (X•, Y•) from it using the above algorithm, we arrive at the
following sequence of matrices Zc = Y −1

c Xc:

Z0 =




0 0 0 0 t4t5t6
0 0 0 −t1t2t3 0

0 0
t8
t1t4

0 0

0 − 1
t2t5

0 0 0

1
t3t6t8

0 0 0 0


, Z1 =




0 0 0 0 t4t5t6
0 0 t1t2t3 − t8t4 0

0 0 t2t3 0 0
0 − 1

t2t5
0 0 0

1
t3t6t8

0 0 0 0


, . . . , Z8 =

[
0 −t4t5t6 t4 t4t5−t8 1

t1t2t3 −t1t2−t1t6−t5t6 1 t1+t5 0
t2t3 −t2−t6 0 1 0
t3 −1 0 0 0
1 0 0 0 0

]
.

The associated grid minors are computed in Figure 28(a). Applying the monomial trans-
formation in [GL22b, Example 11.7], we see that these minors coincide with the ones given
in [Ing19, Figure 7.8].

6.6.2. Double Bruhat cells. For w, v ∈ Sn, consider the double Bruhat cell Gw,v and the
reduced double Bruhat cell Lw,v defined by

Gw,v := B+wB+ ∩B−vB− and Lw,v := Gw,v/H.
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Let β = (i1, i2, . . . , im), where m = `(w) + `(v), be a double reduced word for (w, v); that
is, it is a shuffle of a reduced word for w on positive indices and a reduced word for v on
negative indices. The following map is an isomorphism by an argument similar to [WY07,
Proposition 2.1]:

(6.13) Lw,v
∼−→

◦
Rid,β, g 7→ (X•, Y•),

where (X•, Y•) satisfies the following conditions:

π(X0) = B+, Xm = g−ιU+, π(Y0) = B−, and Ym = g−ιẇ−1
0 U+.

Applying the relations (6.10), we compute Xm−1, . . . , X0 and Ym−1, . . . , Y0 iteratively. In
order to compare our minors to the minors considered in [FZ99, BFZ05], let us choose a
parametrization

g := g1 · · · gm, where gc =

{
yic(tc) if ic > 0,

x|ic|(tc) if ic < 0.

The nonzero parameters t1, . . . , tm are expressed as monomials in the cluster variables of [FZ99,
BFZ05] computed on the twisted matrix ξw,v(g); see [FZ99, Definition 1.5]. Given a matrix
x ∈ B−B+, let us denote by ([x]−, [x]0, [x]+) ∈ U−×H ×U+ its LDU factorization. One can
check that for any g ∈ Gw,v, the matrix g0 := [ẇ−1g]0 is well defined.

It follows from the definition of the map (6.13) that we have Zc ∈ Hẇ0 for each c ∈ [0,m].
In particular, the red and the blue grid minors coincide: ∆c,h = ∆c,−h for all c, h. We leave
the verification of the following result to an interested reader.

Proposition 6.29. Under the isomorphism (6.13), the grid minors ∆c,h are equal to the
chamber minors of [FZ99, Section 4.5] evaluated at g0ξ

w,v(g). In particular, all chamber and
grid minors from Definitions 6.18 and 6.21 take positive values on the image of the totally
positive part Gw,v

>0 ⊂ Gw,v under (6.13).

Example 6.30. We consider the running example of [FZ99, Section 4.5], except that we
ignore theH-part factors in their decomposition (marked by green points in [FZ99, Figure 4]).
Thus, we have

β = (2,−1, 3,−3,−2, 1, 2,−1, 1), w = s2s3s1s2s1, v = s1s3s2s1, u = id.

The matrices g, g0, and g0ξ
w,v(g) are given by

g =

[
t2t5t7t9+t2t6t8t9+t2t6+t2t9+t8t9+1 t2t5t7+t2t6t8+t2+t8 t2t5 0

t5t7t9+t6t8t9+t6+t9 t5t7+t6t8+1 t5 0
t1t5t7t9+t1t6t8t9+t1t6+t1t9+t7t9 t1t5t7+t1t6t8+t1+t7 t1t5+1 t4

t3t7t9 t3t7 t3 t3t4+1

]
, g0 =



t3t7t9 0 0 0

0
t1t6
t9

0 0

0 0 1
t6t7

0

0 0 0 1
t1t3


, and

g0ξ
w,v(g) =




t2t5t7t9+t2t6t8t9+t2t6+t2t9+t8t9+1
t2t5

t8t9+1
t8

1
t4t5t8

1

t2t6+1
t2t5t9

1
t8t9

1
t4t5t8t9

1
t9

1
t2t5t6t7

1
t6t7t8

t6t8+1
t4t5t6t7t8

t6t8+1
t6t7

0
t2

t1t3t8

t1t5t8+t2t6t8+t2+t8
t1t3t4t5t8

t1t3t4t5t8+t1t5t8+t2t6t8+t2+t8
t1t3


.

One can check that the chamber minors from [FZ99, Figure 6] computed on the matrix
g0ξ

w,v(g) coincide with the red grid minors computed in Figure 28(b).

Remark 6.31. The chamber minors of [FZ99] computed on the matrix ξw,v(g) have a de-
scription in terms of strands in a double wiring diagram; see [FZ99, Theorem 4.11]. If one
computes them on the matrix g0ξ

w,v(g) instead, one gets a similar description: each chamber
minor equals (

∏
tk)
−1, where the product is taken over all crossings which are to the right of
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the chamber and such that the chamber is located vertically between the two strands partic-
ipating in the crossing. In other words, the transformation ξw,v(g) 7→ g0ξ

w,v(g) gauge-fixes
to 1 the chamber minors corresponding to the chambers open on the right.

7. Deodhar geometry and seeds

Let u ≤ β. We will use the u-positive distinguished subexpression (cf. Section 3.1) to

define a torus in
◦
Ru,β, which will ultimately be a cluster torus. We will then use (u, d)-almost

positive sequences (cf. Section 3.6) to define hypersurfaces in
◦
Ru,β, and in turn to define

cluster variables for
◦
Ru,β.

7.1. The Deodhar torus. We continue to denote the u-PDS by u = (u(0), . . . , u(m)).

Definition 7.1. The Deodhar torus Tu,β ⊂
◦
Ru,β is the subset of

◦
Ru,β given by the conditions

(7.1) Xc

w0u(c)⇐= Yc for c = 0, 1, . . . ,m.

Remark 7.2. Points in Tu,β lift to walks of the sort described in Remark 6.7 where at each
step, one greedily increases the relative position of Xc and Yc.

Recall from the proof of Lemma 6.19 that all grid minors are nonvanishing on the Deodhar
torus Tu,β.

Lemma 7.3.

(1) For each solid c ∈ Ju,β, the grid minors (∆c−1,j)j∈±I are Laurent monomials in the
grid minors (∆c,h)h∈±I and the chamber minor ∆c = ∆c−1,ic.

(2) For each hollow c ∈ [m] \ Ju,β, the grid minors (∆c−1,j)j∈±I are Laurent monomials
in the grid minors (∆c,h)h∈±I .

(3) Every grid minor ∆c,j is a Laurent monomial in solid chamber minors (∆d)d∈Ju,β .

Proof. It suffices to verify the statement on Tu,β.
(1) and (2): Set i := ic. We assume c is red, as the other case is similar. By Lemma 6.20,

we only need to check the statement for blue grid minors and, if c is hollow, additionally
for ∆c−1,i. (For c solid, the statement is vacuously true for ∆c−1,i = ∆c.) Consider a point
(X•, Y•) ∈ Tu,β. Following the proof of Lemma 6.19, let us choose representative matrices
Xc, Yc such that Zc = h(w0u(c))

• for some h ∈ H. With this choice (cf. Remark 6.4), we find
that for some t ∈ C,

Xc−1 = gzi(t)U+ Xc = gU+

Yc−1 Yc.

si

id

w0u(c−1) w0u(c)

Set Z := Zc, so Zc−1 = Zzi(t). We use the following elementary calculation to compare grid
minors at c− 1 to those at c.

(7.2) ∆A,B(Zzi(t)) =





∆A,B(Z) if si(B) = B,

−∆A,si(B)(Z) if si(B) < B,

t∆A,B(Z) + ∆A,si(B)(Z) if si(B) > B.
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Recall that Z = h(w0u(c))
•, so many minors of Z vanish. If the crossing c is hollow (so

u(c−1) < u(c)), then when in the third case of (7.2), the minor multiplying t is always zero.
This is enough to show the blue grid minor ∆c−1,j equals ∆c,j. One can check further that

∆c−1,i =
∆c,i−1∆c,i+1

∆c,i

.

If c is solid, then (7.2) implies t = ∆c/∆c,i, and that a blue grid minor ∆c−1,j is either
equal to ∆c,j or it is equal to t∆c,j. Both of these are Laurent monomials in the desired set
of grid minors.

(3): Gauge-fix so that Ym = U+ and Xm = (w0u)•U+. All of the grid minors ∆m,j are
equal to 1, so by (1) and (2), the grid minors ∆m−1,j are Laurent monomials in the chamber
minor ∆m, if m is solid, and are equal to 1 if m is hollow. Continuing from right to left,
(1) implies that all grid minors ∆c,j are Laurent monomials in the solid chamber minors
{∆d}d∈Ju,β |d≥c. �

We now show that the Deodhar torus is in fact a torus.

Proposition 7.4.

(1) The Deodhar torus Tu,β is an open subset of
◦
Ru,β, isomorphic to an algebraic torus

of dimension d(u, β).
(2) The character lattice of Tu,β consists of Laurent monomials in the solid chamber

minors ∆c, c ∈ Ju,β. The ring of regular functions on Tu,β is the ring of Laurent
polynomials in the chamber minors.

(3) The grid minors are characters of Tu,β.

Proof. We will show that the map Tu,β → (C×)d(u,β) sending a point to the tuple of its solid
chamber minors is an isomorphism. This implies all three of the claims. Using Lemma 6.14,
we assume that u = w0. Following Notation 6.13, we set Tβ := Tw0,β and d(β) := d(w0, β) =
`(β)− `(w0).

We first show how to uniquely recover a point in Tβ from the nonzero values of ∆c. That
is, we show that the map is injective. By Lemma 7.3, it suffices to show that a point in
Tβ can be uniquely recovered from its grid minors. Throughout, we gauge-fix Y0 = U+ and
X0 = hẇ0U+, where h ∈ H.

First, we can recover X0 and Y0, as h is uniquely determined by the grid minors ∆0,j.
Now we show for c ∈ [m] that if Xc−1, Yc−1 are known, then Xc, Yc are uniquely determined

by the grid minors. There are two cases, depending on whether c is solid or hollow.
Case 1: Suppose the crossing c is solid, so u(c−1) = u(c). Let i := ic. If c is red, resp.,

blue, we have

Xc−1 = gzi(t)U+ Xc = gU+

Yc−1 Yc,

si

id

w0u(c−1) w0u(c) resp.,

Xc−1 Xc

Yc−1 = gz̄|i|∗(t)U+ Yc = gU+,

id

s|i|∗

w0u(c−1) w0u(c)

for a unique t ∈ C×. So Zc = Zc−1zi(t)
−1 if c is red, and Zc = z̄|i|∗(t)Zc−1 if c is blue. We

would like to find t. By a formula analogous to (7.2), we have t = ∆c,i/∆c−1,i. So Xc, Yc can
be recovered from the grid minors and thus from the chamber minors.
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Case 2: Suppose the crossing c is hollow, so u(c−1) < u(c). In this case, Xc−1 and Yc−1

satisfy the conditions of Lemma 6.6(1) if c is red and Lemma 6.6(2) if c is blue. So Xc and
Yc are uniquely determined.

To show Tβ → (C×)d(β) is also surjective, we must check that an arbitrary tuple in (C×)d(β)

is the list of chamber minors for a point of Tβ. To see this, we define a point of Tβ moving
right to left. Set Ym = Xm = U+. Then, supposing we have defined Xc = gU+ and Yc = fU+,
let t := ∆c−1,ic/∆c,ic and define

Xc−1 =

{
gzic(t)U+ if ic > 0,

Xc if ic < 0,
and Yc−1 =

{
Yc if ic > 0,

f z̄ic∗(t)U+ if ic < 0.

This produces a point in Tβ by Lemma 6.5. Using (7.2) or similar formulas, one can also
check that its chamber minors are equal to the desired tuple. �

While the braid variety
◦
Ru,β is unchanged by braid moves, the Deodhar torus Tu,β may

change. In particular, we will show later that non-mutation moves and color-changing moves
preserve the Deodhar torus, while mutation moves change it.

7.2. Deodhar hypersurfaces. For d ∈ Ju,β, recall the notion of the (u, d)-almost positive

sequence (v
〈d〉
(0) , . . . , v

〈m〉
(0) ) from Definition 3.15. In this section, we use the (u, d)-APS for

solid d to define Deodhar hypersurfaces for
◦
Ru,β.

Definition 7.5. Let d ∈ Jmut
u,β . Define the mutable Deodhar hypersurface Vd ⊂

◦
Ru,β to be

the closure of the locus satisfying

(7.3) Xc

w0v
〈d〉
(c)⇐= Yc for all c ∈ [0,m].

Abusing notation, also denote Vd ⊂
◦
Yu,β ⊂ Yu,β.

Remark 7.6. Points in the locus satisfying (7.3) lift to walks of the sort described in
Remark 6.7 where at every step besides step d, one greedily increases the relative position
of Xc and Yc. At step d, one makes a “mistake” and decreases the relative position of Xd

and Yd.

Proposition 7.7. The closed subset
◦
Ru,β \ Tu,β is the union of the mutable Deodhar hyper-

surfaces Vd for d ∈ Jmut
u,β . Each Deodhar hypersurface Vd is irreducible and has codimension 1

in
◦
Ru,β.

Proof. Parametrizing Yu,β using (6.4), the conditions (7.3) cut out an iterated fiber bundle
over G/U+ ×G/U+, where each fiber is either C, C×, or (in the case of the crossing c = d)
a point. This is an irreducible variety that is codimension one in Yu,β. The condition that

d ∈ Jmut
u,β implies that this locus belongs to

◦
Yu,β, and in particular, that the action of G is

free. It follows that Vd ⊂
◦
Ru,β is a codimension 1 irreducible hypersurface.

Let (X•, Y•) ∈
◦
Ru,β \ Tu,β belong to the complement. Then one of the conditions (7.1)

fails. Let d ∈ [0,m] be equal to the largest value of c for which (7.1) fails. Let V ′d ⊂
◦
Ru,β

be the locus of points where (7.1) holds for c > d and fails for c = d. By Lemma 6.5 and

the definition of the almost positive subexpression (v
〈d〉
(0) , . . . , v

〈m〉
(0) ), an open dense subset V ′′d

of V ′d satisfies (7.3). Recall that when d ∈ Ju,β is a frozen crossing, the 0-th term v
〈d〉
(0) of the
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(u, d)-APS is not equal to the identity. Thus, if d /∈ Jmut
u,β then V ′′d , and therefore V ′d itself, is

empty, a contradiction. Thus, d ∈ Jmut
u,β and (X•, Y•) belongs to the hypersurface Vd. �

When d ∈ J fro
u,β, elements (X•, Y•) satisfying (7.3) do not lie in

◦
Ru,β. In this case, we must

define the corresponding Deodhar hypersurface inside Yu,β.

Definition 7.8. Let d ∈ J fro
u,β. Define the frozen Deodhar hypersurface Vd ⊂ Yu,β as the

closure of the locus satisfying (7.3).

The following result follows from the same argument as in the proof of Proposition 7.7.

Lemma 7.9. For d ∈ J fro
u,β, the subvariety Vd ⊂ Yu,β is irreducible and codimension 1 in Yu,β.

Let ordV f ∈ Z denote the order of vanishing of a rational function f on a hypersurface

V . Note that if f ∈ C(
◦
Ru,β) we can calculate ordV f in

◦
Ru,β or pull it back to

◦
Yu,β and

calculate ordV f there. In the case that V is a frozen Deodhar hypersurface, we compute

ordV f by pulling f back to
◦
Yu,β and then viewing f as a rational function on Yu,β. When

f is a grid minor, its pullback to
◦
Yu,β and extension to Yu,β are regular functions in view of

Lemma 6.19.

Proposition 7.10. Fix d ∈ Ju,β. For j ∈ I,

ordVd∆c,j =

{
1 if u(c)[j] 6= v

〈d〉
(c) [j],

0 otherwise,
and ordVd∆c,−j =

{
1 if u−1

(c) [j] 6= (v
〈d〉
(c) )−1[j],

0 otherwise.

Proof. We compute the order of vanishing inside the space S ⊂ Yu,β of tuples (X•, Y•) of the
form (6.5) (i.e., the space where X0 has been gauge-fixed to U+). This space S is an affine
space with coordinates t = (t1, t2, . . .), as each Xi or Yi is of the form zij1 (tj1) · · · zijr (tjr) or
z̄ij1 (tj1) · · · z̄ijr (tjr) for some r. (These coordinates differ from those given by (6.4).) The Zc
are then also products of inverses of braid matrices in some subset of the parameters t.

Let Z be any matrix that is a product of braid matrices or their inverses with parameters
from t, each parameter used at most once. Then it is easy to see that every minor of Z is
linear or constant in each variable ti. The Deodhar hypersurface Vd is cut out by a minor of
Zd−1, and this minor has degree one in some parameter t = ti(d). Any grid minor ∆c,j is at
most degree one in t, and thus vanishes to order at most one on Vd.

Suppose j ∈ I. Then u(c)[j] = v
〈d〉
(c) [j] if and only if for a generic point in Vd, the j-th

subspace in the weighted flag Xc has the correct relative position (given by u(c)[j]) with
respect to Yc. This holds if and only if ∆c,j does not vanish on Vd. As we showed above,
ordVd∆c,j ≤ 1, and thus we obtain the stated formula for j ∈ I. The argument for j ∈ −I is
identical. �
Proposition 7.11. The map

(7.4) f 7→ (ordVcf)c∈Ju,β

is an isomorphism from the character lattice of Tu,β to Zd(u,β).

Proof. Let C ⊂ Zd(u,β) be the image of {∆c}c∈Ju,β . By Proposition 7.10, the chamber minor
∆c vanishes to order 1 on Vc, and does not vanish on Vd for d < c. Thus, there is an upper
unitriangular matrix taking the standard basis of Zd(u,β) to C. In particular, the images of
the chamber minors form a basis of Zd(u,β). �
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7.3. Seeds. The isomorphism (7.4) allows us to define new distinguished characters on Tu,β,
which will be the cluster variables.

Definition 7.12. For c ∈ Ju,β, we define the cluster variable xc to be the unique character of
Tu,β that vanishes to order one on Vc and has neither a pole nor a zero on Vc′ for c′ ∈ Ju,β\{c}.
We denote the cluster by xu,β = {xc}c∈Ju,β .

Example 7.13. Continuing Example 6.24, we see that in the notation of Figure 27, the
cluster variables are given by

x1 = t1t4 + 1, x2 = t2t4t5 − 1, x4 = t4, x5 = t5.

In particular, ∆4 = t4t5 = x4x5 factors as a product of two cluster variables.

It is immediate from the definition that each cluster variable is a regular function on
◦
Ru,β

and in particular each frozen variable is a unit in C[
◦
Ru,β]. It is also immediate that the

cluster variables in xu,β are algebraically independent and irreducible.

Recall the definition of the ice quiver Q̃u,β from (3.3). The vertices of Q̃u,β are labeled by
c ∈ Ju,β, as are the elements of xu,β. So we define the seed

(7.5) Σu,β := (xu,β, Q̃u,β).

We may now state our main result.

Theorem 7.14. For all u ≤ β, we have

C[
◦
Ru,β] = A(Σu,β)

as subrings of C(
◦
Ru,β). Moreover, the cluster algebra A(Σu,β) is locally acyclic and really

full rank.

The proof of the isomorphism will occupy Sections 8–9. The local acyclicity and the really
full rank property of A(Σu,β) are Corollary 5.8 and Theorem 5.9.

We say that a cluster variable xc appears in a grid minor ∆d,h if ordVc∆d,h = 1. One
characterization for when this happens is given by Proposition 7.10. We now relate it to
the combinatorics of 3D plabic graphs; cf. Section 2.4. Recall from Section 3.4 that for
each d ∈ Ju,β we have a relative cycle Cd in Gu,β which bounds a disk Dd. Recall also from
Remark 6.22 that we decorate the faces of the projections of Gu,β with grid minors.

Lemma 7.15. Let d ∈ Ju,β, c ∈ [0,m], and h ∈ I (resp., h ∈ −I). Then xd appears in ∆c,h

if and only if ∆c,h lies in the red (resp., blue) projection of the disk Dd.

Proof. This follows from Propositions 7.10 and 3.16. Proposition 7.10 computes ordVd∆c,h

by comparing certain subsets: u(c)[h] and v
〈d〉
(c) [h] for the red minor, and (u(c))

−1[|h|] and

(v
〈d〉
(c) )−1[|h|] for the blue minor.

Proposition 3.16 shows that the permutation v
〈d〉
(c) can be recovered from the monotone

multicurve γd,c. From the details of this construction, one can conclude that u(c)[h] 6= v
〈d〉
(c) [h]

if and only if one of the curves in γd,c intersects the horizontal line j = h+ 0.5 inside Γ(u(c)).
This is equivalent to the point (c, h + 0.5) lying in the red projection of Dd. Similarly,

(u(c))
−1[h] 6= (v

〈d〉
(c) )−1[h] if and only if one of the curves in γd,c intersects the vertical line

i = h+ 0.5 in Γ(u(c)) if and only if (c, h+ 0.5) lies in the blue projection of Dd. Comparing
with Proposition 7.10 gives the result. �
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Example 7.16. Recall from Example 7.13 that in Figure 27, we have ∆4 = x4x5. This is
consistent with the fact that the face of πred(Gu,β) containing ∆4 = ∆3,1 lies inside the cycles
C4, C5 shown in Figure 6(e).

We now give an alternate construction of Q̃u,β related to the half-arrow description in
Section 3.7. First, consider a collection P+

u,β (resp., P−u,β) of half-arrows between the red
(resp., blue) grid minors {∆c,h}c∈[0,m],h∈I (resp., {∆c,h}c∈[0,m],h∈−I). It is obtained by placing
the following configuration of half-arrows around each bridge bc with ic > 0 in πred(Gu,β)
(resp., each blue bridge bc with ic < 0 in πblue(Gu,β)), where i := |ic|:

∆c−1,i+1 = ∆c,i+1

∆c,i

∆c−1,i−1 = ∆c,i−1

∆c−1,i

∆c−1,−i−1 = ∆c,−i−1

∆c,−i

∆c−1,−i+1 = ∆c,−i+1

∆c−1,−i

Proposition 7.17. Define a quiver with vertex set xu,β as follows. Write each grid minor
as

∆d,h =
∏

c∈Ju,β

x
qcd,h
c ,

where qcd,h := ordVc∆d,h ≥ 0. For every half-arrow ∆d,h → ∆d′,h′ in P+
u,β and P−u,β, draw

qcd,hq
c′

d′,h′ arrows from xc to x′c. (In other words, for every xc appearing in ∆d,h and x′c
appearing in ∆d′,h′, draw a half-arrow xc → x′c.) Then delete loops and 2-cycles. The

resulting collection of half-arrows agrees with the quiver Q̃u,β. That is, the signed number of
half-arrows between any two vertices is twice the number of arrows between the corresponding

vertices of Q̃u,β.

Proof. This follows directly from Lemma 7.15 and Proposition 3.18. �
Remark 7.18. Let β = w be a reduced word for w ∈ Sn. Comparing the above half-arrow
description to [Ing19, Definition VII.2] and applying Proposition 6.25, it follows that the
isomorphism (6.11) sends Ingermanson’s seed to our seed Σu,β. Thus, our cluster structure

on the open Richardson variety
◦
Ru,w recovers the upper cluster structure on

◦
Ru,w constructed

in [Ing19].

8. Moves preserve the cluster algebra

To each u ≤ β, we have associated a seed Σu,β and thus also a cluster algebra Au,β :=

A(Σu,β) ⊂ C(
◦
Ru,β). Our ultimate goal is to show that C[

◦
Ru,β] is isomorphic to Au,β. As an

intermediate step, we show the following.

Theorem 8.1. Suppose β and β′ are related by one of the moves (B1)–(B5). Let m :
◦
Ru,β

∼−→
◦
Ru,β′ be the corresponding isomorphism from Proposition 6.16. Then the isomorphism m∗ :

C(
◦
Ru,β′)

∼−→ C(
◦
Ru,β) restricts to an isomorphism Au,β′ ∼−→ Au,β.

Remark 8.2. If β and β′ are related by moves (B1)–(B4), then the quivers Q̃u,β and Q̃u,β′ are
related either by relabeling the vertices or by mutation (cf. Theorem 4.3, Proposition 4.7).
So in these cases, we have an isomorphism Au,β ∼= Au,β′ , and to prove Theorem 8.1, we
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just need to check that the isomorphism is induced by the appropriate isomorphism of braid
varieties.

Throughout the following three subsections, we assume that u = w0 (cf. Notation 6.13
and Lemma 6.14), and that β and β′ are related by a single move (B1)–(B5). We let

m :
◦
Rβ →

◦
Rβ′ denote the corresponding isomorphism, defined in Proposition 6.16. Any

pullback mentioned is a pullback by m. We set Jβ′ to be the set of solid crossings for β′.
For xc ∈ xβ′ , we denote pc := m∗(xc) and pβ′ := {pc}c∈Jβ′ . The isomorphism m also induces

a map on the double cosets Zc; we write Z ′c to denote the image of Zc under this map.
Pullbacks of grid minors are also denoted with primes.

8.1. Non-mutation moves and (B4) do not change the seed. In this section, we prove

Theorem 8.1 for non-mutation moves and (B4). We show that in this case, Σβ and (pβ′ , Q̃β′)
differ only by reindexing. As noted in Remark 8.2, it suffices to check this statement for
clsuter variables.

Proposition 8.3. Suppose β and β′ are related by a non-mutation move or (B4) and let α
be the corresponding relabeling bijection Jβ → Jβ′ from Section 4.4. Then xc = pα(c).

Proof. For (B4), α is the identity. It is clear that ∆c,h = ∆′c,h and xd appears in ∆c,h if and
only if pd appears in ∆′c,h. The claim follows. Indeed, suppose d ∈ Jmut

β and for all solid
c > d, we already know xc = pα(c). Then ∆d−1,id = xdM and ∆′d−1,id

= pα(d)M
′, where

M (resp., M ′) is a product of cluster variables xc (resp, pα(c)) with c > d. By above, the
left-hand sides of these two equations are equal and M = M ′. So e.g. by restricting to the
Deodhar torus, we may conclude xd = pα(d).

Now, for non-mutation moves. Suppose the non-mutation move involves the indices in
some interval (l, r] ⊂ [m] of length 2 or 3. Let GL (resp., GR) denote the portion of Gβ

between Γ(u(0)) and Γ(u(l)) (resp., between Γ(u(r)) and Γ(u(m))). Note that GL (resp., GR)
is also equal to the portion of Gu,β′ between Γ(u′(0)) and Γ(u′(l)) (resp., between Γ(u′(r)) and

Γ(u′(m))). By Section 4.4, for all c ∈ Jβ, the cycles Cc and C ′α(c) behave identically on GL and

GR. This implies a point is contained in the red (resp., blue) projection of Dc if and only if
it is contained in the red (resp., blue) projection of D′α(c). Also, for c /∈ (l, r) := [l+ 1, r− 1],

we have ∆c,h = ∆′c,h for all h ∈ ±I. Using Lemma 7.15, we obtain the following.

Lemma 8.4. Suppose c /∈ (l, r) and d ∈ Jβ. Then xd appears in ∆c,h if and only if pα(d)

appears in ∆′c,h = ∆c,h.

Note that α is the identity on (r,m]. The same argument as in the (B4) case shows
xc = pα(c) for solid crossings c > r. For solid c ∈ (l, r], to show xc = pα(c), it suffices to
find a grid minor ∆d,h with d ≤ l which is a product of xc and other xc′ which are already
known to be equal to pα(c′). In fact, a grid minor ∆l,h will always work; this can be seen
from Figures 22–24 and the rules governing cycles. Now, α is also the identity on [1, l], so
the same argument as for (B4) shows xc = pαc for solid c ≤ l. �
8.2. Mutation moves mutate the seed. In this section, we prove Theorem 8.1 for mu-

tation moves. We show that in this case, Σβ and (pβ′ , Q̃β′) are related by mutation. This
statement has already been checked for the quivers, so we just check the cluster variables.

Lemma 8.5. Suppose β and β′ are related by the mutation move whose rightmost crossing
is c+ 1. Then for d ∈ Jβ \ {c+ 1}, we have xd = pd.
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Proof. This argument is similar to the proof of Proposition 8.3. Say the mutation move
occurs on indices in the interval (l, r] ∈ [m], with r := c + 1. Then for h ∈ [0, l] ∪ [r,m],
the cluster variable xc+1 does not appear in grid minors ∆d,h and ∆d,h = ∆′d,h. Moreover, a
cluster variable xc′ 6= xc+1 appears in ∆d,h for h ∈ [0, l] ∪ [r,m] if and only if pc′ appears in
∆′d,h. The desired equality now follows from a triangularity argument. �

Now, we verify that the single new cluster variable in pβ′ satisfies the exchange relation
given by Σβ. We will need some identities for grid minors, which we obtain from standard
determinantal identities.

The following relations hold on G.

Proposition 8.6 (Desnanot–Jacobi identity). Suppose p, q ∈ Sn and a ∈ I with `(psa) =
`(p) + 1 and `(qsa) = `(q) + 1. Then

(8.1) ∆p[a],q[a]∆psa[a],qsa[a] = ∆psa[a],q[a]∆p[a],qsa[a] + ∆p[a−1],q[a−1]∆p[a+1],q[a+1].

Proposition 8.7 ([FZ99, Theorem 1.16(1)]). Let p, q ∈ Sn and a, b ∈ I. Suppose (sasb)
3 = 1

and `(qsasbsa) = `(q) + 3. Then

(8.2) ∆p[a],qsa[a]∆p[b],qsb[b] = ∆p[a],q[a]∆p[b],qsasb[b] + ∆p[a],qsbsa[a]∆p[b],q[b].

Lemma 8.8. Let A,B ⊂ [n] with |A| = |B|, a ∈ I, and suppose sa(A) ≥ A in the lexico-
graphic order. Then

∆sa(A),B(ṡaM) = ∆A,B(M) and ∆B,sa(A)(Mṡa) = −∆B,A(M).

Now, we use the determinantal identities above to obtain relations on grid minors before
and after a mutation move.

Proposition 8.9.

(1) Suppose β, β′ are related by a (B1) special solid move ji → ij on crossings c, c + 1.

Then the grid minors on
◦
Rβ satisfy

(8.3) ∆c,j∆
′
c,j = ∆c+1,j∆c−1,j + ∆c,j−1∆c,j+1.

(2) Suppose β, β′ are related by a (B3) fully solid move iji→ jij on crossings c−1, c, c+1.

Then the grid minors on
◦
Rβ satisfy

(8.4) ∆c,i∆
′
c,j = ∆c+1,i∆c−2,j + ∆c+1,j∆c−2,i.

Proof. Set v := u(c+1).
For (1): We will assume j < 0 and i > 0, as the other case is similar. Let k = −j. Note

that we can write Zc−1, Zc and Z ′c in terms of Zc+1:

Zc−1 = (z̄k∗(t
′))−1Zc+1zi(t) = ṡk∗xk∗(t

′)Zc+1xi(t)ṡi

while Zc = Zc+1xi(t)ṡi and Z ′c = ṡk∗xk∗(t
′)Zc+1.

Now, apply (8.1) to Zc−1 with p = w0sk, q = v−1, and a = k. Using vsi = skv > v,
Lemma 8.8, Lemma 6.20, and the U+ × U+-invariance of the grid minors, we obtain the
equation (8.3). For example,

∆p[a],qsa[a] = ∆sk∗w0[k],siv−1[k](Zc−1) = −∆w0[k],siv−1[k](Zc) = ∆w0[k],v−1[k](Zc+1) = ∆c+1,j.

For (2): Using the same strategy as above, we apply (8.2) to Zc−2 (or its transpose) to
obtain (8.4). If i > 0 and j = i + 1, for example, we set p = w0v, q = id, a = i and
b = i+ 1. �
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We need one additional identity on grid minors to show that pc+1 satisfies the correct
exchange relation.

Lemma 8.10. Choose a crossing c. Let a ∈ [n] and let b = −u(c)(a). Then the relation

∆c,a∆c,b+1 = ∆c,b∆c,a−1

holds on
◦
Rβ, where we set ∆c,0 = ∆c,±n := 1.

Proof. It suffices to show that this relation holds on the Deodhar torus Tβ, which is dense.
As in the proof of Lemma 7.3, we choose representatives Xc, Yc so that the matrix Zc is of
the form

g := Zc = h(w0u(c))
•

for some h ∈ H. Only the entries gw0u(c)(i),i are nonzero. So for i > 0, ∆c,i is (up to sign) the

product of the nonzero entries of g in columns 1, . . . , i. For i < 0, ∆c,i is (up to sign) the
product of the nonzero entries of g in rows w0(|i|), w0(|i|) + 1, . . . , n. Using this, we find

∆c,a

∆c,a−1

=
∆c,b

∆c,b+1

= (−1)qgw0(|b|),a.

where q is the number of nonzero entries of g southwest of gw0(|b|),a. �
Proposition 8.11. Let β and β′ be related by a mutation move whose rightmost crossing is

c+ 1. Then (pβ′ , Q̃β′) = µc+1(Σβ).

Proof. Case 1: Suppose the mutation move is a (B1) special solid move ji→ ij on crossings
c, c+1. Without loss of generality, we may assume j < 0 and i > 0. We see from Figure 19(a)
and Lemma 7.15 that xc+1 appears only in grid minors ∆c,i and ∆c,j. Using Proposition 7.17,
we find that the cluster variable x′c+1 in µc+1(Σβ) satisfies the exchange relation

xc+1x
′
c+1 = (∆c+1,i∆c−1,j + (∆c,i−1∆c,i+1∆c,j−1∆c,j+1)1/2)/f(8.5)

= (∆c+1,i∆c−1,j + ∆c,i−1∆c,j−1)/f(8.6)

where f is the cluster monomial

f =
∏

d 6=c+1

x
min(ordVd (∆c+1,i∆c−1,j),ordVd (∆c,i−1∆c,j−1))

d .

The equality in (8.6) follows from Lemma 8.10: since j = −u(c)(i) and j − 1 = −u(c)(i+ 1),
we get ∆c,j+1 = ∆c,i−1∆c,j/∆c,i and ∆c,i+1 = ∆c,j−1∆c,i/∆c,j.

On the other hand, using (8.3) and Lemma 8.10 together, we have that

(8.7) ∆′c,j∆c,i = ∆c+1,i∆c−1,j + ∆c,i−1∆c,j−1

on
◦
Rβ, where ∆′c,j is the grid minor evaluated after the braid move. This can be seen by

working on the Deodhar torus and multiplying (8.3) by ∆c+1,i−1/∆c+1,j+1; one must also use
∆c+1,j+1 = ∆c,j+1, which follows from the move being special solid.

To show that pc+1 obeys the exchange relation, we will prove that the left-hand side of
(8.7) is equal to fxc+1pc+1. It is easy to check that xc+1 appears in ∆c,i and pc+1 appears in
∆′c,j. So all that remains is to show that for d 6= c+ 1,

ordVd(∆
′
c,j∆c,i) = min(ordVd(∆c+1,i∆c−1,j), ordVd(∆c,i−1∆c,j−1)).

Eq. (4.1) implies an analogous statement for (8.3); that is, the order of vanishing of the
left-hand side on Vd is the minimum of the orders of vanishing of the two terms on the
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right. Since (8.7) differs from (8.3) by a Laurent monomial in cluster variables, we obtain
the desired equality for (8.7).

Case 2: Suppose the mutation move is a (B3) fully solid move iji → jij on crossings
c − 1, c, c + 1. We assume i > 0; the i < 0 case is similar. The proof strategy is similar to
Case 1, so we will be brief. By Proposition 7.10, the only red grid minors xc+1 appears in
are ∆c,i = ∆c−1,i. So by Proposition 7.17, the exchange relation for x′c+1 is

xc+1x
′
c+1 = (∆c+1,i∆c−2,j + ∆c+1,j∆c−2,i)/f

where f is the cluster monomial

f =
∏

d 6=c+1

x
min(ordVd (∆c+1,i∆c−2,j),ordVd (∆c+1,j∆c−2,i))

d .

On the other hand, (8.4) and (4.1) together imply that the right-hand side of the exchange
relation is equal to xc+1pc+1. �

8.3. Move (B5) rescales the seed. In this section, we prove Theorem 8.1 for (B5). If the
first crossing is hollow, this is straightforward (Lemma 8.12). If the first crossing is solid, we

show that Σβ and (pβ′ , Q̃β′) differ only in a single frozen variable and arrows involving that
frozen variable, in a way that preserves the cluster algebra (Proposition 8.13).

Lemma 8.12. Suppose β = (−i)γ and β′ = iγ for some positive double braid γ. If the first

crossing is hollow, then Σβ = (pβ′ , Q̃β′).

Proof. Note that the first crossing is hollow in β if and only if it is hollow in β′. The color of
the hollow crossing does not matter in the definition of the surface Su,β and does not affect

the interaction of any mutable cycle with any other cycle, so Su,β = Su,β′ and Q̃β = Q̃β′ .
Further, the upper triangular matrix relating chamber minors and cluster variables is the
same for both seeds, and all chamber minors pull back to chamber minors. This implies
xc = pc for all c ∈ Jβ. �

We now assume that the first crossings of β and β′ are solid. We would like to apply the
following proposition to the two seeds at hand.

Proposition 8.13 ([Fra16], cf. [LS16, Proposition 5.11]). Suppose (x, Q̃) and (x′, Q̃′) are
two seeds in F such that

• Q̃ and Q̃′ are ice quivers on the same set of vertices, whose mutable parts coincide,
• the mutable variables in x and x′ are the same, and the two sets of frozen variables

are related by an invertible monomial transformation, and
• for each mutable vertex c,

∏

v∈Q̃

x#arrows v→c in Q̃
v =

∏

v∈Q̃′

(x′v)
#arrows v→c in Q̃′ .

Then A(x, Q̃) = A(x′, Q̃′).

We first analyze the relationship between the clusters xβ and pβ′ .

Lemma 8.14. Suppose β = (−i)γ and β′ = iγ and the first crossing is solid. Then for
(c, h) 6= (0,±i), xd appears in ∆c,h if and only if pd appears in ∆c,h. Further, xc = pc for
c 6= 1.
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Proof. Note that for (c, h) 6= (0,±i), ∆c,h = ∆′c,h.
For the first claim: by Proposition 7.10, the appearance of a cluster variable xd in a grid

minor ∆c,h depends only on d and the suffix ic+1 . . . im of β. The same statement holds for
pd, ∆′c,h = ∆c,h and β′. Since for c > 0, the suffixes of β and β′ coincide, this implies the
first claim for all grid minors with c > 0. For c = 0, by Lemma 6.20, each blue grid minor
for c = 0 besides ∆0,−|i| is equal to a blue grid minor for c = 1. It follows from the definition
that ∆0,h = ∆0,−h, so this gives the first claim for grid minors with (c, h) 6= (0,±i).

The second claim follows from the first, since cluster variables are unitriangularly related
to chamber minors, and the first claim implies the unitriangular matrices for the two seeds
differ only in the first row (or column). �

Lemma 8.15. Suppose β = (−i)γ and β′ = iγ and the first crossing is solid. Then p1 =
x−1

1 M where M is a Laurent monomial in the frozen variables of xβ other than x1.

Proof. Suppose i > 0. For h ∈ H, let hj := hj,j.
Gauge-fix as in the proof of Proposition 6.16, so Z0 = hẇ0 and Z ′0 = h′ẇ0, where h′ is

obtained from h by swapping the positions of hn−i+1 and hn−i. It is easy to see that ∆0,a =
∆0,−a = hn · · ·hn−|a|+1, and similarly for ∆′0,a. Now, because x1 appears in ∆0,−i but not

∆0,−(i+1), we have hn−i = x−1
1 N where N is a Laurent monomial in the other frozen variables

of xβ. Similarly, because p1 appears in ∆′0,i and not ∆′0,i−1, we have h′n−i+1 = hn−i = p1N
′

where N ′ is a Laurent monomial in the other frozen variables of pβ′ . So p1 = x−1
1 N/N ′.

Since all frozen variables in pβ′ \{p1} are equal to frozen variables of xβ, we have proved the
claim. �

Lemma 8.16. Suppose β = (−i)γ and β′ = iγ and the first crossing is solid. For each
mutable crossing c ∈ Jmut

β , we have

(8.8)
∏

d∈Q̃β

x
#arrows d→c in Q̃β
d =

∏

d∈Q̃β′

p
#arrows d→c in Q̃β′

d .

Proof. The result follows straighforwardly from Proposition 7.17. Suppose i > 0. The quiver
P+
β is obtained from P+

β′ by adding the half-arrows coming from the leftmost red bridge of

πred(Gβ); the quiver P−β′ is obtained from P−β by adding the half-arrows coming from the
leftmost blue bridge of πblue(Gu,β′). Together with Lemma 8.14, this implies that the quivers

Q̃β and Q̃β′ can be obtained from a third quiver Q̃ by adding a vertex x1 or p1 and adding
the half-arrows contributed by the leftmost bridge.

As before, for h ∈ H, let hj := hj,j. Gauge-fix as in Proposition 6.16, so Z0 = hẇ0 and
Z ′0 = h′ẇ0, where h′ is obtained from h by swapping the positions of hn−i+1 and hn−i.

Fix c ∈ Jmut
β , and let L and R denote the left- and right-hand sides of (8.8). If xc does not

appear in ∆1,i, then there are no arrows between xc and x1 and the arrows xd → xc in Q̃β

are in bijection with arrows pd → pc in Q̃β′ . We find that (8.8) follows from Lemma 8.14.
If xc does appear in ∆1,i, then the arrows in P+

β around the leftmost red bridge contribute

(∆0,i+1∆0,i−1)1/2

∆0,i

=
h

1/2
n−i

h
1/2
n−i+1

to L.
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From Lemma 8.14, we know pc appears in ∆′1,−i = ∆1,i. The half-arrows in P−β′ around
the leftmost blue bridge contribute

∆′0,−i
(∆0,−(i+1)∆0,−(i−1))1/2

=
h

1/2
n−i

h
1/2
n−i+1

to R.
Now, if we divide L and R by (hn+i−1/hn−i)

1/2, we obtain two expressions that are equal.
Indeed, the expressions are monomials in xβ\{x1} and pβ′\{p1}, respectively, and exponents

in both expressions are determined by arrows in Q̃. �

9. Proof of Theorem 7.14

In this section, we continue to assume u = w0. Recall that to each double braid word

β ≥ w0, we have associated a cluster algebra Aβ ⊂ C(
◦
Rβ). By Theorem 8.1, this cluster

algebra is invariant under (B1)–(B5). We prove that C[
◦
Rβ] is equal to Aβ by induction on

the length ` = `(β).

9.1. Reduction to iiβ′. Using Theorem 8.1 and arguing as in the beginning of Theorem 5.6,
we may assume β = iiβ′ is a double braid in positive letters starting with ii. Note that the
index 1 ∈ Jβ is solid and the cluster variable x1 is frozen.

We first deal with the case that the second i is hollow, i.e., 2 /∈ Jβ.

Proposition 9.1. If 2 /∈ Jβ, then we have an isomorphism r :
◦
Rβ

∼−→
◦
Riβ′ × C× which

induces an isomorphism r∗ : Aiβ′ [x±1 ]
∼−→ Aβ. This implies the statement of Theorem 7.14 in

the case 2 /∈ Jβ.

Proof. Before defining the map r, we need the following facts. First, since all letters of β

are positive and u = w0, we have Y0 = Y1 = · · · = Ym = Xm. If X0
si←− X1

si←− . . .
sim←−− Xm

represents a point in
◦
Rβ, then we claim that X1

w0⇐= Xm. Indeed, X2
w⇐= Xm where

w ≤ w0si, since w0si is the Demazure product of i3i4 . . . im. We must in fact have w = w0si,
as otherwise it would be impossible to have X0

w0⇐= Xm. Since X1
si⇐= X2

w0si⇐= Xm and
w0 ≥ w0si, it follows from Lemma 6.5 that X1

w0⇐= Xm. Also, since Z0, Z1 are contained in

B+w0B+, the grid minors ∆0,h and ∆1,h are units in C[
◦
Rβ].

Second, x1 = ∆0,i/∆1,i and the vertex 1 of Q̃β is an isolated frozen vertex. Indeed, an

almost positive sequence v
〈d〉
(c) greedily decreases at each crossing besides d, going right to

left through β. From this and Proposition 7.10, it follows that a cluster variable xc 6= x1

appears in ∆1,i if and only if it appears in ∆0,i. Since x1 appears in ∆0,i, this proves that
x1 = ∆0,i/∆1,i. It also proves that the frozen vertex 1 is isolated: x1 appears only in the
grid minor ∆0,i, so by Proposition 7.17 there can only be arrows from x1 to cluster variables
appearing in ∆0,i−1,∆0,i+1 and ∆1,i = x−1

1 ∆0,i. All of these cluster variables are frozen.
The map r is defined as

r : (X0
si←− X1

si←− . . .
sim←−− Xm) 7→

(
(X1

si←− . . .
sim←−− Xm), x1

)
.

It is well defined by the previous paragraph. It is straightforward to check that the inverse
map is

q :
(

(X1 = gU+
si←− . . .

sim←−− Xm), t
)
7→ (gzi(t)U+

si←− X1
si←− . . .

sim←−− Xm).
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By induction, C[
◦
Riβ′ ] = Aiβ′ . So C[

◦
Riβ′ ×C×] is also equal to some cluster algebra which

we denote A. One quiver Q̃ for A is the disjoint union of Q̃iβ′ and a frozen vertex; the cluster
is xiβ′ together with the generator of the character lattice of C×, which is frozen.

We claim that A = q∗(Aβ). The cluster xβ pulls back to the cluster of A mentioned
above, as the grid minors pull back to grid minors and the combinatorics of Proposition 7.10

is identical for β and iβ′ away from the first crossing. And it is easy to see that Q̃ = Q̃β,
which shows the claim.

The statement of Theorem 7.14 in the case 2 /∈ Jβ is now immediate, as q∗(C[
◦
Rβ]) =

C[
◦
Riβ′ × C×] = A = q∗(Aβ). �
Henceforth, we assume that the first two crossings are solid, i.e., 1, 2 ∈ Jβ.

9.2. Open-closed covering. Let x := x2 be the “leftmost” mutable cluster variable in Q̃β.
Let

W := {x2 6= 0} V := V2 = {x2 = 0}
be the open-closed covering of

◦
Rβ coming from x2. Thus V is a Deodhar hypersurface and

W is its complement. By the proof of Theorem 5.6, vertex 2 is a sink in Qβ, the mutable

part of Q̃β.

Lemma 9.2. The open subset W is isomorphic to
◦
Riβ′×C×, and V is isomorphic to

◦
Rβ′×C.

Proof. The isomorphism W ∼=
◦
Riβ′ × C× is identical to the map r in the proof of Proposi-

tion 9.1 (using the ratio ∆0,i/∆1,i rather than x1). The condition that x2 6= 0 is equivalent

to the condition that X1
w0⇐= Xm, so W is precisely the subset of

◦
Rβ on which the map r is

well defined.
The isomorphism V

∼−→
◦
Rβ′ × C is similar. If X0

si←− X1
si←− . . .

sim←−− Xm represents a

point in V , then Xm is not weakly w0-related to X1. Because X0
w0⇐= Xm, we have in fact

X1
w0si⇐= Xm. By Lemma 6.5, this means X2

w0⇐= Xm. So we may define a map V
∼−→

◦
Rβ′ ×C

by

(gṡizi(t)U+ = X0
si←− gṡiU+ = X1

si←− gU+ = X2 ← . . .
sim←−− Xm) 7→

(
(X2

si2←− . . .
sim←−− Xm), t

)
.

(The fact that all points in V are represented by a tuple of the form written above follows
from Lemma 6.5 as well.) The inverse of this map is clear. �

9.3. Triangularity. The grid minors ∆c,j on
◦
Rβ restrict to the corresponding grid minors

on
◦
Riβ′ (resp.,

◦
Rβ′), except for grid minors for the leftmost (resp., the leftmost two) crossings.

Functions on
◦
Riβ′ (resp.,

◦
Rβ′) can be pulled back to W (resp., V ) under the projection

πiβ′ :
◦
Riβ′ × C× →

◦
Riβ′ (resp., πβ′ :

◦
Rβ′ × C→

◦
Rβ′).

By induction, we have shown that C[
◦
Riβ′ ] = Aiβ′ and C[

◦
Rβ′ ] = Aβ′ . These equalities are

compatible with the one that we want to prove, as the following result demonstrates.

Proposition 9.3. Let xc be a cluster variable of xβ, not equal to x1 (resp., x1 or x2). Then

xc restricts to the pullback under πiβ′ (resp., πβ′) of similarly denoted cluster variable on
◦
Riβ′

(resp.,
◦
Rβ′). That is, xc ∈ Aβ and x′c ∈ Aiβ′ (resp., x′c ∈ Aβ′) have the same image in the

following diagrams:

Aβ ↪→ Frac(C[
◦
Rβ])

restriction−−−−−→ Frac(C[W ])
pullback←−−−− C[

◦
Riβ′ ] = Aiβ′ ,
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Aβ ↪→ Frac(C[
◦
Rβ])

restriction−−−−−→ Frac(C[V ])
pullback←−−−− C[

◦
Rβ′ ] = Aβ′ .

Proof. The claimed compatibility is true for grid minors, and the Laurent monomial expres-
sions for xc and x′c in terms of grid minors are the same. �

9.4. Regularity of mutated cluster variables. The results of Section 8 show that the

mutation of x2 is a regular function on
◦
Rβ. Indeed, applying (B5) rescales a single frozen

variable by a Laurent monomial in frozens and applying (B1) mutates at x2. The resulting

seed is xi(−i)β′ and it consists of regular functions on
◦
Rβ. The cluster variable x̃2 in this seed

differs from the mutation of x2 by a unit, hence the mutation of x2 is also a regular function.
For all other mutated cluster variables x̃c, we note that the formula for the mutation is

the same in Σβ,Σiβ′ and Σβ′ . Now, either (a) xc is mutable in both Σiβ′ and Σβ′ or (b) xc
is mutable in Σiβ′ and frozen in Σβ′ . If (a), then by induction x̃c is regular on both W and

V and thus on
◦
Rβ. If (b), then by induction x̃c is regular on W . Since xc is a unit on V

and x̃c = (M +M ′)/xc where M,M ′ are monomials in the other cluster variables, x̃c is also
regular on V .

9.5. Tori in the braid variety. For c ∈ Jmut
β , let x̃c be the cluster of the mutated seed

µc(Σβ). Since we have shown all the cluster variables and their mutations are regular, we
have maps

ϕ :
◦
Rβ → Cd, g 7→ (x1(g), x2(g), . . . , xd(g)) = x(g);

ϕc :
◦
Rβ → Cd, g 7→ (x1(g), x2(g), . . . , xd(g)) = x̃c(g).

Let Tc be the Deodhar torus associated to the cluster x̃c.

Proposition 9.4. There are inclusions of cluster tori T ↪→
◦
Rβ and Tc ↪→

◦
Rβ which are

partial inverses to ϕ, ϕc. In other words, we have inclusions C[
◦
Rβ] ⊂ C[x±1] and C[

◦
Rβ] ⊂

C[x̃±1
c ].

Proof. For T = Tβ, this statement is Proposition 7.4. For T2, this follows from Proposition 7.4

applied to the isomorphic braid variety
◦
Ri(−i)β, whose Deodhar torus pulls back to T2. For

c 6= 2, by the inductive hypothesis Tc includes into W , so also includes into
◦
Rβ. �

9.6. Finishing. We proceed by following the argument in [BFZ05, proof of Theorem 2.10].

Lemma 9.5. A Laurent monomial M = xa is regular on
◦
Rβ if and only if the exponents of

mutable cluster variables are nonnegative.

Proof. The “if” part is trivial. For the “only if” part, consider the restriction of M to the
torus Tc. Then xacc is a regular function on Tc and must be a Laurent polynomial in x̃c. It
follows from the exchange relation that ac ≥ 0. �

Lemma 9.6. For c ∈ Jmut
β , xc is irreducible in C[

◦
Rβ].

Proof. Every regular function on
◦
Rβ is a Laurent polynomial in x. If xc = PQ is the product

of two regular functions P and Q then both P and Q must be Laurent monomials in x. By
Lemma 9.5, one of the factors must be a Laurent monomial in only the frozen variables, and
thus invertible. Therefore xc is irreducible. �
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Lemma 9.7. Every mutation x̃c of a cluster variable xc is the product of an irreducible

element fc in C[
◦
Rβ] with a Laurent monomial in xd, d 6= c.

Proof. Let P ∈ C[
◦
Rβ] be an irreducible factor of x̃c. Restricting to Tc, the same argument

as in the proof of Lemma 9.6 implies that P is a Laurent monomial in x̃c. Restricting to T ,
we see that P is a Laurent polynomial in x. Substituting the exchange relation, we deduce
that the exponent of x̃c in P , as a Laurent polynomial in x̃c, must be nonnegative. We see
that one of the irreducible factors of x̃c is equal to x̃c times a Laurent monomial in xd, d 6= c
and the remaining irreducible factors are Laurent monomials in xd, d 6= c. �
Lemma 9.8. The complement of

T ∪
⋃

c∈Jmut
β

Tc

has codimension at least 2 in
◦
Rβ.

Proof. Let g be a point in the complement. Then either xc(g) = xd(g) = 0 for distinct
mutable indices c, d, or fc(g) = xd(g) = 0 for distinct mutable indices c, d. The codimension
two statement follows from Lemmas 9.6 and 9.7. �

9.7. Proof of Theorem 7.14. Since
◦
Rβ contains T ∪ ⋃c Tc, the coordinate ring C[

◦
Rβ] is

contained in the upper bound of Σβ given by

C[x±1] ∩
⋂

c∈Jmut
β

C[x̃±1
c ].

Since
◦
Rβ is smooth and thus normal, Lemma 9.8 implies that this inclusion is an equality.

By [BFZ05, Corollary 1.7] the upper bound is equal to the upper cluster algebra. By [Mul13]
and Corollary 5.8, the upper cluster algebra is equal to the cluster algebra. �

10. Applications

10.1. Curious Lefschetz. Let X be a smooth, affine, complex algebraic variety of dimen-
sion d. Then the cohomology H∗(X) = H∗(X,C) has a mixed Hodge structure, which gives
a Deligne (weak) splitting Hk(X) =

⊕
p,qH

k,(p,q)(X). We say that X is of mixed Tate type

if Hk(X) =
⊕

pH
k,(p,p)(X). We say that X satisfies the curious Lefschetz property if X

is of mixed Tate type and there is a class [γ] ∈ H2,(2,2)(X) such that cup product induces
isomorphisms

[γ]d−p : Hp+s,(p,p)(X)
∼−→ H2d−p+s,(2d−p,2d−p)(X)

for all p and s. Curious Lefschetz implies the curious Poincaré symmetry

dimHp+s,(p,p)(X) = dimH2d−p+s,(2d−p,2d−p)(X).

In [LS16] it is shown that a large class of cluster varieties satisfy curious Lefschetz, and the
following result is a consequence.

Theorem 10.1. Suppose that Q̃ is an ice quiver that is sink-recurrent, full rank, and has

an even number of vertices. Then the cluster variety X(Q̃) satisfies curious Lefschetz.

The even-dimensional hypothesis is not a significant restriction since we can always add
an extra isolated frozen vertex. See also [LS16, Theorem 8.3].
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Proof. Let X be a smooth, affine complex algebraic variety, and X = U ∪ V be an open
covering of X, and [γ] ∈ H2,(2,2)(X). By [LS16, Theorem 3.5], if all three (U, [γ]), (V, [γ]), (U∩
V, [γ]) satisfy curious Lefschetz then so does (X, [γ]).

By [LS16, Proposition 8.2], full rank isolated cluster varieties satisfy the curious Lefschetz
property with respect to a (nearly canonical) GSV form [γ]; cf. [GSV10].

Let X = SpecA(Q̃) be a sink-recurrent, full rank cluster variety and let X1 = SpecA1

and X2 = SpecA2 give an open cover of X, as in the proof of Proposition 5.5. Both X1

and X2 are sink-recurrent, and X1 ∩ X2 is also a cluster localization with mutable quiver
Q − (N in

s (Q) ∪ {s}), which is sink recurrent. Thus, by induction we may assume that
X1, X2, X1 ∩ X2 all satisfy curious Lefschetz with respect to (the respective restriction of)
the GSV form [γ] of X. Thus (X, [γ]) satisfies curious Lefschetz as well. �

We do not know whether the Louise condition [LS16] is satisfied for the quivers in this
work. The cohomology of open Richardson varieties are particularly interesting because of
the relations to both Category O and to knot homology [GL20]; see also [GHM21].

Corollary 10.2. Even-dimensional braid Richardson varieties
◦
Ru,β satisfy the curious Lef-

schetz property and thus the curious Poincaré symmetry. Odd-dimensional braid varieties
satisfy the curious Poincaré symmetry.

10.2. Braid Richardson links. By applying Remark 3.3 and the moves (B1)–(B4), we
reduce to considering pairs u ≤ β such that β has only positive indices. Then we can
consider a braid Richardson link Lu,β obtained as the braid closure of β · β(u)−1, where β
is viewed as a positive braid, and β(u) is the positive braid lift of u. This construction
generalizes the Richardson links of [GL20]. At the same time, a link LG inside R3 can be
constructed from a plabic graph G; see [STWZ19, FPST22, GL22a]. The construction can
be extended to give a link LGu,β for our 3D plabic graphs Gu,β, using the following convention
for bridges and for hollow crossings:

7→ 7→

The construction in [GL22a, Section 4.1] can be extended to our setting to show that the
braid Richardson link Lu,β agrees with the plabic graph link LGu,β .

If we treat the strands of LGu,β as the boundaries of ribbons, as suggested in the figure
above, the convention for hollow crossings forces the ribbons to intersect in R3. There is a
natural way to alter the surface Su,β locally at hollow crossings to obtain a Seifert surface
S(Lu,β) for Lu,β. However, Su,β and S(Lu,β) are different as abstract surfaces. Neverthe-
less, one can draw versions of the relative cycles (Cc)c∈Ju,β on S(Lu,β) rather than on Su,β,
preserving their intersection numbers.

The surface S(Lu,β) has the “wrong” homology, so an alternative is to consider a different
embedding S′u,β of the surface Su,β in R4, defined so that there are no intersections of ribbons
at hollow crossings. The surface S′u,β is diffeomorphic to Su,β, but it will now have the

“correct” link Lu,β as its boundary in R3.

10.3. Point count. Let Q be a mutable quiver. Following [GL22a], define the point count

rational function R(Q; q) to be the function q 7→ #X(Q̃)(Fq)/(q − 1)a where Fq denotes a
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finite field with q elements and Q̃ is a really full rank ice quiver with mutable part Q and a
frozen vertices.

Suppose Q is sink-recurrent. Then the covering considered in the proof of Proposition 5.5

shows that R(Q; q) is a rational function not depending on the choice of Q̃; see [GL22a,
Section 5.3]. We obtain the following variant of [GL22a, Conjecture 2.8].

Theorem 10.3. Let u ≤ β, and suppose that the 3D plabic graph Gu,β has c(Gu,β) connected
components. Then we have

R(Qu,β; q) = (q − 1)c(Gu,β)−1P top(Lu,β; q),

where P top(Lu,β; q) is obtained from the top a-degree term of the HOMFLY polynomial

P (Lu,β; a, z) by substituting a := q−
1
2 and z := q

1
2 − q− 1

2 .

Proof. By Theorems 5.6 and 5.9 and our main result Theorem 7.14, it follows that R(Qu,β; q)

is equal to (q−1)−a#
◦
Ru,β(Fq), where a is the number of frozen variables in Q̃u,β. A recursion

for the point count of
◦
Ru,β is given in [GLTW22, Section 5]. The comparison with the top

a-degree term of the HOMFLY polynomial proceeds in the same way as the proof of [GL20,
Theorem 2.1]. �

The special case of Theorem 10.3 when β is a reduced word for some permutation w ∈ Sn
follows from our main results combined with [GL20, Theorem 1.11]. See [GL20, GL21,
GL22a] for further details and examples.
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varieties. arXiv:2105.13948v1, 2021.

[CK22] Peigen Cao and Bernhard Keller. On Leclerc’s conjectural cluster structures for open Richardson
varieties. arXiv:2207.10184v1, 2022.

[CW22] Roger Casals and Daping Weng. Microlocal Theory of Legendrian Links and Cluster Algebras.
arXiv:2204.13244v2, 2022.

[Deo85] Vinay V. Deodhar. On some geometric aspects of Bruhat orderings. I. A finer decomposition of
Bruhat cells. Invent. Math., 79(3):499–511, 1985.

[FG06] Vladimir Fock and Alexander Goncharov. Moduli spaces of local systems and higher Teichmüller

theory. Publ. Math. Inst. Hautes Études Sci., (103):1–211, 2006.
[FG09] Vladimir V. Fock and Alexander B. Goncharov. Cluster ensembles, quantization and the dilog-
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Math., pages 531–568. Birkhäuser Boston, Boston, MA, 1994.
[Lus98] G. Lusztig. Total positivity in partial flag manifolds. Represent. Theory, 2:70–78, 1998.
[Mel19] Anton Mellit. Cell decompositions of character varieties. arXiv:1905.10685v1, 2019.
[MR04] R. J. Marsh and K. Rietsch. Parametrizations of flag varieties. Represent. Theory, 8:212–242,

2004.
[MS16] Greg Muller and David E. Speyer. Cluster algebras of Grassmannians are locally acyclic. Proc.

Amer. Math. Soc., 144(8):3267–3281, 2016.
[Mul13] Greg Muller. Locally acyclic cluster algebras. Adv. Math., 233:207–247, 2013.
[Mul14] Greg Muller. A = U for locally acyclic cluster algebras. SIGMA Symmetry Integrability Geom.

Methods Appl., 10:Paper 094, 8, 2014.
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