
POSITROID CATALAN NUMBERS

PAVEL GALASHIN AND THOMAS LAM

Abstract. Given a permutation f , we study the positroid Catalan number Cf defined to
be the torus-equivariant Euler characteristic of the associated open positroid variety. We
introduce a class of repetition-free permutations and show that the corresponding positroid
Catalan numbers count Dyck paths avoiding a convex subset of the rectangle. We show
that any convex subset appears in this way. Conjecturally, the associated q, t-polynomials
coincide with the generalized q, t-Catalan numbers that recently appeared in relation to the
shuffle conjecture, flag Hilbert schemes, and Khovanov–Rozansky homology of Coxeter links.

Contents

1. Introduction 1
2. Bounded affine permutations 4
3. Positroid Catalan numbers 6
4. Big paths 9
5. Convexity of the inversion multiset 12
6. Concave profiles and the counting formula 20
7. Other interpretations and further directions 23
References 26

1. Introduction

Open positroid varieties are remarkable subvarieties of the Grassmannian introduced by
Knutson–Lam–Speyer in [KLS13], building on the work of Postnikov [Pos06]. They ap-
pear in numerous contexts: total positivity, Schubert calculus, Poisson geometry, scattering
amplitudes, cluster algebras, and so on [Lus98, BGY06, AHBC+16, GL19]. In a recent pa-
per [GL20], we further connected positroid varieties to knot invariants, showing a relation
between the cohomology of an open positroid variety Π◦f and Khovanov–Rozansky homol-

ogy [KR08a, KR08b] of an associated positroid link β̂f .

1.1. Positroid Catalan numbers. Let Cyc(n) denote the set of n-cycles in the symmetric
group Sn. To each f̄ ∈ Cyc(n) we associate a bounded affine permutation f : Z → Z. The
map f is uniquely determined by the conditions f(i+ n) = f(i) + n and i < f(i) < i+ n for
all i ∈ Z, together with f(i) ≡ f̄(i) (mod n) for all 1 ≤ i ≤ n. Taking f modulo n recovers
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permutation f̄ ∈ Cyc(n) bounded affine permutation f ∈ Θk,n

Figure 1. Drawing an n-cycle (left) in affine notation (right).

f̄ , and thus f and f̄ determine each other. See Figure 1 for an example and Section 2.1 for
further details.

For a bounded affine permutation f , let Π◦f ⊂ Gr(k, n) denote the corresponding open
positroid variety of the Grassmannian. Let T ⊂ PGL(n) denote the natural torus of diagonal
matrices acting on Gr(k, n).

Definition 1.1. For an n-cycle f̄ ∈ Cyc(n), define the positroid Catalan number

Cf := χT (Π◦f )

to be the torus-equivariant Euler characteristic of Π◦f .

These numbers are positive integers which can be computed via an explicit combinatorial
recurrence; see Section 3.3. Additionally, they have the following interpretations:

(a) Cf is equal to the number of maximal f -Deograms introduced in [GL20], which are in
bijection with a class of distinguished subexpressions in the sense of Deodhar [Deo85];
see Section 7.4.

(b) Cf is equal to the q = 1 evaluation of the polynomial R̃f (q) := Rf (q)/(q − 1)n−1,
where Rf (q) is the Kazhdan–Lusztig R-polynomial [KL79, KL80]; see Section 3. By

[GL20, Theorem 1.11], R̃f (q) may be obtained as a coefficient of the HOMFLY poly-

nomial [FYH+85, PT87] of β̂f .
(c) Cf is equal to the q = t = 1 evaluation of the mixed Hodge polynomial P(Π◦f/T ; q, t).

By [GL20], P(Π◦f/T ; q, t) is equal to a coefficient of the Khovanov–Rozansky triply-

graded link invariant of β̂f .

We showed in [GL20], using results on torus knots that date back to Jones [Jon87], that
for gcd(k, n) = 1 and f given by f(i) = i + k, the positroid Catalan number Cf recovers
the famous (rational) Catalan number Ck,n−k := 1

n

(
n
k

)
which counts Dyck paths above the

diagonal inside a k × (n− k) rectangle. This explains the nomenclature “positroid Catalan
number” and points towards a deeper investigation of positroid Catalan numbers from a
combinatorial perspective. In this work, we make the first step in this direction.

1.2. Repetition-free permutations. To each n-cycle f̄ ∈ Cyc(n) we associate an inver-
sion multiset Γ(f), and we introduce a natural class of repetition-free permutations for which
the multiset Γ(f) has no repeated elements. Let [n] := {1, 2, . . . , n} and for f̄ ∈ Cyc(n), set

(1.1) k(f̄) := #{i ∈ [n] | f̄(i) < i}.
For 1 ≤ k ≤ n− 1, we denote

Θk,n := {f | f̄ ∈ Cyc(n) is such that k(f̄) = k}.
The set Cyc(n) is in bijection with

⊔n−1
k=1 Θk,n.
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Figure 2. Resolving a crossing (i, j) of f .
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γ(f) = (3, 4) γ(f
(1,2)
1 ) = (2, 3) γ(f

(1,3)
1 ) = (1, 1) Γ(f) = {(1, 1), (2, 3)}

Figure 3. Computing Γ(f) for f ∈ Θ3,7.

For f ∈ Θk,n, let

k(f) = k(f̄) := k, n(f) = n(f̄) := n, and γ(f) = γ(f̄) := (k, n− k).

An inversion of f ∈ Θk,n is a pair (i, j) of integers such that i < j, f(i) > f(j), and
i ∈ [n]. The length `(f) is the number of inversions of f . For an inversion (i, j) of f , let
f (i,j) : Z → Z be obtained by swapping the values f(i) and f(j) (and repeating this for
f(i+ rn) and f(j + rn) for all r ∈ Z). We say that f (i,j) is obtained from f by resolving the
crossing (i, j); see Figure 2. We let f̄ (i,j) ∈ Sn denote the permutation obtained by reducing
f (i,j) modulo n.

The permutation f̄ (i,j) ∈ Sn is a product of two cycles, say, f̄ (i,j) = (a1a2 · · · an1)(b1b2 · · · bn2),
where a1 ≡ i and b1 ≡ j modulo n. By taking order-preserving bijections {a1, a2, . . . , an1} →
[n1] and {b1, b2, . . . , bn2} → [n2], we may naturally view each of the two cycles as permuta-

tions f̄
(i,j)
1 ∈ Cyc(n1) and f̄

(i,j)
2 ∈ Cyc(n2). We thus have f

(i,j)
1 ∈ Θk1,n1 and f

(i,j)
2 ∈ Θk2,n2 ,

where k1 := k(f̄
(i,j)
1 ) and k2 := k(f̄

(i,j)
2 ).

Definition 1.2. For f ∈ Θk,n, the inversion multiset Γ(f) contains a point γ(f
(i,j)
1 ) for each

inversion (i, j) of f . We say that f is repetition-free if Γ(f) is actually a set, that is, if it
contains exactly `(f) distinct points.

See Figure 3 for an example. When we draw the set Γ(f) inside a k × (n− k) rectangle, we
swap the horizontal and vertical coordinates; cf. Notation 4.1.

We have γ(f
(i,j)
1 ) + γ(f

(i,j)
2 ) = (k, n − k), but note that we only include γ(f

(i,j)
1 ) in Γ(f)

for each inversion (i, j). Nevertheless, Γ(f) is always centrally symmetric, that is, invariant
under the map γ 7→ (k, n− k)− γ; see Corollary 4.4.

1.3. Main result. For a set Γ ⊂ [k−1]× [n−k−1], we let Γ̃ := Γt{(0, 0), (k, n−k)}. We
say that Γ is convex if Γ̃ contains all lattice points of its convex hull. For f ∈ Θk,n such that
Γ(f) is convex, let Dyck(Γ(f)) denote the set of lattice paths from (0, 0) to (k, n− k) with
up/right unit steps which stay above the main diagonal and avoid Γ(f). For each f ∈ Θk,n,
Γ(f) contains all lattice points (k1, n1 − k1) ∈ [k − 1]× [n− k − 1] that satisfy k1/n1 = k/n
(Lemma 4.6(iii)). Thus the paths in Dyck(Γ(f)) always avoid the main diagonal.
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Figure 4. Top row: a collection of repetition-free permutations f ∈ Θ4,8

drawn in affine notation as in Section 1.1. Bottom row: their inversion sets
Γ(f); see Definition 1.2 and Example 1.4.

Theorem 1.3.

(i) If f ∈ Θk,n is repetition-free then Γ(f) is centrally symmetric and convex, and

(1.2) Cf = # Dyck(Γ(f)).

(ii) For any centrally symmetric convex subset Γ ⊂ [k − 1] × [n − k − 1], there exists a
repetition-free f ∈ Θk,n satisfying Γ(f) = Γ.

Example 1.4. The bottom row of Figure 4 contains all possible centrally symmetric convex
subsets of [k − 1] × [n − k − 1] for k = 4 and n = 8. For each such subset Γ, the top row
contains a repetition-free bounded affine permutation f ∈ Θk,n satisfying Γ(f) = Γ.

1.4. Other interpretations and further directions. Even though our results are purely
combinatorial, they provide a starting point for several unexpected connections to the recent
results of [OR17, GHSR20, BHM+21] on the rational shuffle conjecture, Coxeter links, and
flag Hilbert schemes. In particular, the appearance of convex sets in [BHM+21, Section 7]
indicates that open positroid varieties may provide the right geometric framework for the
symmetric functions considered in [BHM+21]. We discuss these connections and list several
conjectures in Section 7.

Acknowledgments. We thank David Speyer and Eugene Gorsky for stimulating discus-
sions.

2. Bounded affine permutations

2.1. Affine permutations. An (n-periodic) affine permutation is a bijection f : Z → Z
satisfying the periodicity condition f(i+ n) = f(i) + n. We let S̃n denote the group (under
composition) of n-periodic affine permutations. Inversions, and the length function `(f) (see
Section 1.2) are defined for any f ∈ S̃n.

For k ∈ Z, let S̃
(k)
n ⊂ S̃n be the subset of affine permutations satisfying the condition

n∑

i=1

(f(i)− i) = kn.

Then S̃n =
⊔
k∈Z S̃

(k)
n . The subgroup S̃

(0)
n is the Coxeter group of affine type A. The group

S̃n is usually called the extended affine Weyl group.
A bounded affine permutation is an affine permutation f ∈ S̃n that satisfies the additional

condition i ≤ f(i) ≤ i + n for all i ∈ Z. Denote by Bk,n the (finite) set of bounded affine

permutations in S̃
(k)
n , called the set of (k, n)-bounded affine permutations. We see that if

f̄ ∈ Cyc(n) and k = k(f̄) then the associated bounded affine permutation f (cf. Section 1.1)
belongs to Bk,n. In other words, we have Θk,n ⊂ Bk,n.
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f sifsi f sifsi
length-preserving simple conjugation double move

Figure 5. Moves for computing R̃f (q) and Cf .

For k ∈ Z, let fk,n ∈ S̃(k)
n ⊂ S̃n be given by i 7→ i+ k for all i ∈ Z. Then {fk,n | k ∈ Z} is

exactly the set of length 0 elements in S̃n, and for 0 ≤ k ≤ n we have fk,n ∈ Bk,n.

For i ∈ Z, let si ∈ S̃n be the simple transposition given by i 7→ i + 1, i + 1 7→ i, and
j 7→ j for all j 6≡ i, i + 1 modulo n. For f ∈ Bk,n and i ∈ Z, we have `(sif) = `(f)± 1 and
`(fsi) = `(f)± 1. We write fsi < f if `(fsi) < `(f), and similarly for fsi > f , sif < f , and
sif > f .

Given f ∈ S̃n, define the cyclic shift σf ∈ S̃n by

(2.1) (σf)(i) := f(i− 1) + 1 for all i ∈ Z.

In other words, we have σf = f1,nff
−1
1,n. Note that σ preserves each of the subsets S̃

(k)
n , Bk,n,

and Θk,n.

2.2. Conjugation and double move reduction.

Definition 2.1. We say that f ∈ Bk,n has a double crossing at some i ∈ Z if sifsi < sif < f ,
sifsi < fsi < f , and sifsi, sif, fsi ∈ Bk,n.

Equivalently, for a := f−1(i + 1), b := f−1(i), c := f(i + 1), d := f(i), f has a double
crossing at i if and only if a < b < i < i + 1 < c < d. See Figure 5(right). In this case, we
say that sifsi is obtained from f by a double move.

Definition 2.2. Let f ∈ Bk,n, i ∈ Z, and f ′ := sifsi. If `(f) = `(sifsi) and sifsi ∈ Bk,n
then we say that f and f ′ are related by a length-preserving simple conjugation. We say
that f, g ∈ Bk,n are c-equivalent and write f

c∼ g if f and g can be related by a sequence of
length-preserving simple conjugations. See Figure 5(left).

The following result describes the structure of Θk,n under double moves and c-equivalence.

Proposition 2.3.

(i) The minimal length elements of Θk,n are of length d := gcd(k, n) − 1 and all such
elements are related by cyclic shift (2.1) and c-equivalence.

(ii) Any f ∈ Θk,n can be reduced to a minimal length element of Θk,n by double moves and
c-equivalence.

2.3. Proof of Proposition 2.3. We deduce these statements from the results of He and
Nie [HN14] and He and Yang [HY12].

Following [HN14], we introduce the following notation. For f, f ′ ∈ S̃n, we write f → f ′

if there is a sequence f = f0, f1, f2, . . . , fr = f ′ such that fj = sijfj−1sij for j = 1, 2, . . . , r,

satisfying `(fj) ≤ `(fj−1). We write f
c≈ f ′ if f → f ′ and f ′ → f . Thus f → f ′ if f ′ can be

obtained from f by a sequence of c-equivalences and double moves, and f
c≈ f ′ if f and f ′

are c-equivalent, without the restriction on staying inside Bk,n.
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Lemma 2.4. Let f ∈ Θk,n and f ′ ∈ S̃n be such that f → f ′. Then f ′ ∈ Θk,n.

Proof. Suppose f ∈ Θk,n and f ′ = sifsi satisfies `(f ′) ≤ `(f). Since f ∈ Θk,n, we have
f(j) ∈ [j + 1, j + n − 1] for all j ∈ Z. It follows from this that f ′ is also a bounded affine
permutation, and thus f ′ ∈ Θk,n. �

Theorem 2.5 ([HN14, Theorem 2.9]). Let O′ be an S̃
(0)
n -conjugacy class in S̃n and let

O′min ⊂ O′ denote the set of elements of minimal length. Then for any f ∈ O′, there exists
f ′ ∈ O′min such that f → f ′.

Proposition 2.6. Suppose that O′ is an S̃
(0)
n -conjugacy class in S̃n with a nonempty inter-

section with Θk,n. Then for f, f ′ ∈ O′min, we have f
c≈ f ′.

Proof. For f ∈ Θk,n, the image f̄ ∈ Sn is an n-cycle. The n-cycles are elliptic elements in
Sn, so by [HN14, Corollary 4.7], we have that O′ is nice in the sense of [HN14, Section 4.1].

It follows from the definition of nice that f
c≈ f ′ for f, f ′ ∈ O′min. �

Proposition 2.7. The elements of Θk,n all belong to a single S̃n-conjugacy class O in S̃n.

Proof. Our goal is to apply [HY12, Proposition 2.1]. In the notation of [HY12], we have
δ = id, W̃ ′ = W̃ , (P∨/Q∨)δ ∼= Z/nZ, and O0 is the Sn-conjugacy class consisting of n-cycles
in Sn. Choosing ν := k ∈ Z/nZ, we see that κ−1δ (ν) contains Θk,n. Similarly, η−1(O0)
contains all bounded affine permutations whose reduction modulo n is an n-cycle. Thus
Θk,n is a subset of η−1(O0)∩ κ−1δ (ν), which, according to [HY12, Proposition 2.1], is a single

S̃n-conjugacy class in S̃n. �

We are ready to finish the proof of Proposition 2.3. By Proposition 2.7, there is an S̃n-

conjugacy class O ⊂ S̃n containing Θk,n. Since S̃n = S̃
(0)
n o 〈f1,n〉, there exist finitely-many

distinct S̃
(0)
n -conjugacy classes O′0, . . . ,O′r−1 such that O =

⊔
iO′i and O′i = σiO′0. Note that

the cyclic shift σ is length-preserving. Thus the minimal length elements in O′0, . . . ,O′r−1
have the same length, and this length is equal to the minimal length of any element in Θk,n.

It is easy to see that c(fk,n) = gcd(k, n), where for f ∈ S̃n, we denote by c(f) := c(f̄)

the number of cycles of the permutation f̄ . Now, for f ∈ S̃n, we have c(sif) = c(fsi) ∈
{c(f) + 1, c(f) − 1}. It follows that for f ∈ Θk,n, we have `(f) ≥ gcd(k, n) − 1. On the
other hand, it is easy to see that fk,ns1s2 · · · sgcd(k,n)−1 ∈ Θk,n. Thus the minimal length of
f ∈ Θk,n is d := gcd(k, n) − 1. Since c(·) is invariant under conjugation, we find that any

f ∈ Θk,n with `(f) = d has minimal length in its S̃
(0)
n -conjugacy class.

Let f, f ′ ∈ Θk,n be two elements of length d. By Proposition 2.7, f and f ′ are S̃n-conjugate.

Thus f is S̃
(0)
n -conjugate to a cyclic shift g = σif ′ of f ′. Let O′ be the S̃

(0)
n -conjugacy class

containing f and g. Since `(f) = `(g) = d is minimal, by Proposition 2.6, we get f
c≈ g. By

Lemma 2.4, having f
c≈ g for f ∈ Θk,n implies that f

c∼ g. This proves Proposition 2.3(i).
As we showed above, the minimum length elements of Θk,n are also minimum length

elements in their S̃
(0)
n -conjugacy class. Thus Proposition 2.3(ii) follows from Theorem 2.5

combined with Lemma 2.4. �

3. Positroid Catalan numbers

3.1. R-polynomials. For each (k, n)-bounded affine permutation f , let Π◦f denote the open
positroid variety [KLS13]. The R-polynomial Rf (q) := #Π◦f (Fq) counts the number of points
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in Π◦f over a finite field Fq with q elements (where q is a prime power). These R-polynomials
are special cases of the R-polynomials of Kazhdan and Lusztig [KL79, KL80].

The following recurrence appears in [MS16, Section 4].

Proposition 3.1. The polynomials Rf (q), f ∈ Bk,n, may be computed from the following
recurrence.

(a) If n = 1 then Rf (q) = 1.
(b) If f̄ has some fixed points then Rf (q) = Rf ′(q), where f ′ is obtained from f by removing

all fixed points of f̄ .
(c) If f(i) = i + 1 or f(i + 1) = i + n (where n ≥ 2) then fsi, sif ∈ Bk,n and Rf (q) =

(q − 1)Rsif (q) = (q − 1)Rfsi(q).

(d) If f
c∼ g then Rf (q) = Rg(q).

(e) If f has a double crossing at i ∈ Z then

(3.1) Rsifsi(q) = (q − 1)Rsif (q) + qRf (q).

Proof. The results of [MS16] are formulated in the language of cluster algebras. For the
convenience of the reader, we give an alternative proof of (a)–(e) not relying on cluster
algebras, assuming familiarity with [KLS13]. We start by noting that the definition Rf (q) :=
#Π◦f (Fq) implies that Rf (q) = Rσf (q) since the open positroid varieties indexed by f and
by σf are isomorphic.

The initial condition (a) is trivial. Property (b) follows from the definition of the open
positroid variety Π◦f . If f(i) = i (resp. f(i) = i+n) then Π◦f maps isomorphically to another
open positroid variety Π◦f ′ under the natural projection map Gr(k, n)→ Gr(k, n− 1) (resp.,
Gr(k, n)→ Gr(k−1, n−1)) between Grassmannians that removes (resp., contracts) the i-th
column. See e.g. [Lam16, Lemmas 7.8 and 7.9].

The Kazhdan–Lusztig R-polynomials Rv,w(q) are indexed by pairs (v, w) of permutations.
When v 6≤ w (where ≤ denotes the Bruhat order on Sn), we have Rv,w(q) = 0, and for
v = w, we have Rv,w(q) = 1. For v ≤ w ∈ Sn, Rv,w(q) can then be computed by a recurrence
relation [KL79, Section 2]:

(3.2) Rv,w(q) =

{
Rsv,sw(q), if sv < v and sw < w,

(q − 1)Rsv,w(q) + qRsv,sw(q), if sv > v and sw < w.

Here, s = si for some 1 ≤ i ≤ n− 1 is a simple transposition satisfying sw < w.
For each f ∈ Bk,n, there is a pair (v, w) such that f = wτk,nv

−1 and Rf (q) = Rv,w(q),

where τk,n ∈ S̃n denotes a certain translation element ; see [KLS13, Proposition 3.15]. From
this, (3.2) implies (d)–(e) whenever we have a length-preserving simple conjugation or a
double crossing at 1 ≤ i ≤ n − 1. Applying the cyclic shift, we see that properties (d)–(e)
hold also for i = 0, which completes their proof.

Property (c) for 1 ≤ i ≤ n− 1 also follows from (3.2). If f(i) = i + 1 or f(i + 1) = i + n
then `(sif) = `(fsi) = `(f) + 1, and this corresponds to the case Rv,w(q) = (q − 1)Rsv,w(q);
here, Rsv,sw(q) = 0 since sv 6≤ sw. In the remaining case i = 0, (c) follows from applying
the cyclic shift.

Finally, a constructive algorithm to compute Rf (q) from (a)–(e) is given in the proof
of [MS16, Theorem 3.3]. �



8 PAVEL GALASHIN AND THOMAS LAM

0 1 2 3 0 1

1 2 3 0 1 2 3

. . .. . .

. . .. . .

0 1 2 3 4 5 0 1 2

1 2 3 4 5 0 1 2 3 4 5

. . .. . .

. . .. . .

0 1 2 3 4 5 6 7 0 1 2 3 4

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

. . .. . .

. . .. . .

0 1 2 3 4 5 6 7 8 0 1 2 3 4

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

. . .. . .

. . .. . .

2

2

3

3

3

5

4

5

R̃f (q) = 1 R̃f (q) = q2 + 1 R̃f (q) = q4 + q2 + 1 R̃f (q) = q6 + q4 + q3 + q2 + 1
Cf = 1 Cf = 2 Cf = 3 Cf = 5

Figure 6. Some examples of R̃f (q) and Cf .

3.2. Positroid Catalan numbers. Recall that for a permutation f̄ ∈ Sn, we let c(f̄) =
c(f) denote its number of cycles. For f ∈ Bk,n, we let

(3.3) R̃f (q) := Rf (q)/(q − 1)n−c(f).

It is easy to see (for example using (3.5) below; see also [GL20, Proposition 4.5]) that R̃f (q)
is always a polynomial in q.

The definition of a positroid Catalan number Cf (Definition 1.1) can be extended to all
f ∈ Bk,n by setting

(3.4) Cf := R̃f (1).

The relation to Definition 1.1 is given in Section 7.1. See Figure 6 for examples.

3.3. Recurrence for positroid Catalan numbers. If f has a double crossing at i ∈ Z
then (3.1) implies

(3.5) R̃sifsi(q) =

{
R̃sif (q) + qR̃f (q), if i, i+ 1 belong to the same cycle of f̄ ;

(q − 1)2R̃sif (q) + qR̃f (q), if i, i+ 1 belong to different cycles of f̄ .

Here, i, i+ 1 are considered modulo n.
The next result follows from Proposition 3.1 combined with (3.4)–(3.5).

Proposition 3.2. The positroid Catalan numbers Cf , f ∈ Bk,n, may be computed from the
following recurrence.

(a′) If n = 1 then Cf = 1.
(b′) If f̄ has some fixed points then Cf = Cf ′, where f ′ is obtained from f by removing all

fixed points of f̄ .
(c′) If f(i) = i+ 1 or f(i+ 1) = i+ n (where n ≥ 2) then fsi, sif ∈ Bk,n and Cf = Csif =

Cfsi.

(d′) If f
c∼ g then Cf = Cg.

(e′) If f ∈ Bk,n has a double crossing at i ∈ Z then

(3.6) Csifsi =

{
Csif + Cf , if i, i+ 1 belong to the same cycle of f̄ ;

Cf , if i, i+ 1 belong to different cycles of f̄ .

Proposition 3.3. Let f ∈ Bk,n. Then Cf is a positive integer.
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Proof. The proof of [MS16, Theorem 3.3] shows that Cf may be expressed using (a′)–(e′) in
terms of Cg for bounded affine permutations g satisfying either n(g) < n(f) or n(g) = n(f)
and `(g) > `(f). In particular, the recurrence in Proposition 3.2 is subtraction-free, which
shows the result. See also [GL20, Remark 9.4 and Proposition 9.5]. �

Remark 3.4. It is not always true that R̃f (q) has positive coefficients: see [GL20, Exam-
ple 4.22]. This question is closely related to the odd cohomology vanishing phenomenon
which appears for gcd(k, n) = 1 and f = fk,n (i.e., for torus knots) but not for all f ∈ Θk,n.
It is an important open problem to describe a wider class of positroids (or more generally,
knots) for which this phenomenon occurs. We expect this class to contain all f ∈ Θk,n which
are repetition-free; see Conjecture 7.1.

Let f ∈ Bk,n be such that f̄ = (a
(1)
1 · · · a(1)n1 )(a

(2)
1 · · · a(2)n2 ) · · · (a(r)1 · · · a(r)nr ) is a product of

r cycles. (The case r = 2 was considered in Section 1.2.) For each j ∈ [r], denote by

f |Sj
∈ B(kj, nj) the restriction of f to the set Sj of all integers congruent to one of a

(j)
1 , . . . , a

(j)
nj

modulo n. We deduce the following decoupling property from Proposition 3.2.

Corollary 3.5 (Decoupling). Let f ∈ Bk,n and i ∈ Z. If i and i+1 belong to different cycles
of f̄ then sifsi ∈ Bk,n and

(3.7) Cf = Csifsi .

In particular, in the above notation, for f ∈ Bk,n we have

(3.8) Cf =
r∏

j=1

Cf |Sj
.

Proof. Eq. (3.7) follows easily from Proposition 3.2. To deduce (3.8), we apply (3.7) repeat-
edly until each cycle of f̄ is supported on a cyclically consecutive interval [a, b] ⊂ [n] for
some a, b ∈ [n]. After that, Cf may be computed via Proposition 3.2 independently on each
interval, which results in the product formula (3.8). �

We will use a special case of (3.8) when r = 2.

Corollary 3.6. Suppose that f ∈ Θk,n has a double crossing at i ∈ [n]. Then

(3.9) Csifsi = C
f
(i,i+1)
1

C
f
(i,i+1)
2

+ Cf .

Our eventual goal will be to relate (3.9) to the recurrence for Dyck paths shown in Figure 12.
One other simple result we will need is the cyclic shift invariance of Cf and Γ(f).

Proposition 3.7. For any f ∈ Bk,n, we have

Γ(f) = Γ(σf), Cf = Cσf , and R̃f (q) = R̃σf (q).

Proof. It is obvious that both the definition of Γ(f) and the recurrence in Propositions 3.1
and 3.2 are invariant under the action of σ. �

4. Big paths

The next few sections contain the main body of the proof of Theorem 1.3. From now on,
we switch from working in the (k, n − k)-coordinates to working in the (k, n)-coordinates.
For f ∈ Θk,n, we let

(4.1) δ(f) := (k, n)
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0 1 2 3 4 5 0 1 2

3 4 5 0 1 2 3 4 5

. . .. . .

. . .. . .
−→ 3

6

P [0]
0

P [3]
3

P [2]
2

P [5]
5

P [1]
1

P [4]
4

P [n]
6

f̄ = (0, 3, 2, 5, 1, 4) in cycle notation P = P (f)

Figure 7. Computing the small path P (f). Its points are labeled according
to Notation 5.4.

and define the multiset Γ′(f) to be the image of Γ(f) under the map (k1, n1−k1) 7→ (k1, n1).
We let Γ̃′(f) := Γ′(f) t {(0, 0), (k, n)}.

Let f ∈ Θk,n. Our goal is to give a geometric interpretation of the multiset Γ′(f).

Notation 4.1. When referring to points in the plane, we swap their coordinates. For a point
α = (a, b) ∈ Z2, we denote by n(α) := b (resp., k(α) := a) its horizontal (resp., vertical)
coordinate.

Definition 4.2. The big path P
(f)
∞ of f is the path in the plane through the points pf,r :=

(f r(0)/n, r) for all r ∈ Z. The small path P (f) is the subpath of P
(f)
∞ through the points

pf,0, pf,1, . . . , pf,n.

See Figure 7. We usually drop the superscript and denote P∞ := P
(f)
∞ . We refer to the

points pf,r for r ∈ Z as the integer points of P∞.
Set δ := (k, n) and choose some α ∈ Z2. We will be interested in the intersection points

of P∞ with Q∞ := P∞ + α. First, observe that if α ∈ Zδ then P∞ = Q∞. If α /∈ Zδ then
it is easy to see that no integer point of P∞ belongs to Q∞, and that the set P∞ ∩ Q∞ is
invariant under adding multiples of δ. We denote by |P∞ ∩ Q∞| the size of this set when
considered “modulo δ,” that is, as a subset of the cylinder1 Z2/Zδ. For l := |P∞ ∩Q∞|, we
say that P∞ and Q∞ intersect l times. The number l is always finite and even.

Proposition 4.3. Let f ∈ Θk,n. Then f is repetition-free if and only if for all α ∈ Z2 \ Zδ,
P∞ and Q∞ := P∞ + α intersect at most two times. In this case, we have

Γ′(f) = {α ∈ [k − 1]× [n− 1] | P∞ intersects Q∞}.
Proof. Let α = (a, b) 6= (0, 0). If a ≤ 0, b ≥ 0 or a ≥ 0, b ≤ 0 then clearly P∞ does
not intersect Q∞. Thus if P∞ intersects Q∞ then there exists a unique t ∈ Z such that
α + tδ ∈ [k − 1]× [n− 1]. From now on, we assume that α ∈ [k − 1]× [n− 1].

We will prove the more general statement that for all f ∈ Θk,n, the multiplicity of α in
the multiset Γ′(f) is given by 1

2
|P∞ ∩Q∞|. Indeed, suppose that P∞ crosses Q∞ from below

at some non-integer point x. (That is, P∞ is below Q∞ when approaching x from the left
and above Q∞ when approaching x from the right.) Then x belongs to the segment of P∞
connecting pf,r to pf,r+1 and to the segment of Q∞ connecting α + pf,r−b to α + pf,r−b+1,

1Some of our constructions are most naturally described in terms of the cylinder Z2/Zδ. However, we
choose to work with the full plane Z2 since we need to talk about convexity. For example, we will see that
the set Γ̃′(f) is convex as a subset of the plane but not as a subset of the cylinder.
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where α = (a, b). Let i := f r(0) and j := an+ f r−b(0). Then we have i < j and f(i) > f(j),
and thus (i′, j′) := (i−tn, j−tn) form an inversion of f , where t ∈ Z is such that i−tn ∈ [n].

Moreover, it is easy to see that δ(f
(i′,j′)
1 ) = α, where δ(·) was defined in (4.1).

Conversely, given an inversion (i, j) of f with δ(f
(i,j)
1 ) = α, we may find a (unique modulo

n) index r ∈ Z such that f r(0) ≡ i modulo n, and we can also find a (unique modulo δ) shift
α ∈ Z2 such that Q∞ passes through the point pf,r + ( j−i

n
, 0). This shows that the inversions

(i, j) of f satisfying δ(f
(i,j)
1 ) = α are in bijection with the 1

2
|P∞ ∩ Q∞| points where P∞

crosses Q∞ from below. �

We say that a multiset Γ′ is centrally symmetric if for each α ∈ [k − 1] × [n − 1], the
multiplicities of α and of δ − α in Γ′ coincide.

Corollary 4.4. For all f ∈ Θk,n, the inversion multiset Γ′(f) is centrally symmetric.

Proof. We showed above that the multiplicity of α in Γ′(f) is given by 1
2
|P∞ ∩ (P∞ + α)|.

Since P∞ = P∞+δ, we find |P∞∩(P∞+δ−α)| = |P∞∩(P∞+α)|, and the result follows. �

We discuss how Γ′(f) changes under length-preserving simple conjugations and double
moves. The following result is immediate.

Lemma 4.5. Let f ∈ Θk,n be repetition-free.

(i) If g
c∼ f then g is repetition-free and Γ′(f) = Γ′(g).

(ii) If f has a double crossing at i ∈ [n] then f ′ := sifsi is repetition-free and

Γ′(f ′) = Γ′(f) \ {δ(f (i,i+1)
1 ), δ(f

(i,i+1)
2 )}.

For a point α = (a, b) ∈ [k − 1] × [n − 1], let slope(α) := a
b
. Part (iii) of the next lemma

confirms that Γ′(f) always contains all points on the main diagonal of [k − 1]× [n− 1].

Lemma 4.6. Let f ∈ Θk,n, α ∈ [k − 1]× [n− 1], and Q∞ := P∞ + α.

(i) If slope(α) ≤ slope(δ) then Q∞ contains integer points below P∞.
(ii) If slope(α) ≥ slope(δ) then Q∞ contains integer points above P∞.

(iii) If slope(α) = slope(δ) then α belongs to Γ′(f).

Proof. For r ∈ Z, let qf,r be the integer point of Q∞ with horizontal coordinate n(qf,r) = r.
Let δ⊥ := (1,−k/n) and denote by 〈·, ·〉 the standard dot product on R2. We have 〈δ⊥, δ〉 = 0,
and the sign of 〈δ⊥, α〉 coincides with the sign of slope(α)− slope(δ). Let

(4.2) 〈δ⊥, P∞〉 :=
n−1∑

r=0

〈δ⊥, pf,r〉 and 〈δ⊥, Q∞〉 :=
n−1∑

r=0

〈δ⊥, qf,r〉.

Since pf,r+n = pf,r + δ for all r ∈ Z, we have 〈δ⊥, P∞〉 =
∑j+n−1

r=j 〈δ⊥, pf,r〉 for all j ∈ Z, and

similarly for 〈δ⊥, Q∞〉. In particular, we have

〈δ⊥, Q∞〉 =
n−1∑

r=0

〈δ⊥, pf,r + α〉 = 〈δ⊥, P∞〉+ n〈δ⊥, α〉.

Observe that for each r ∈ Z, qf,r is above P∞ if and only if it is above pf,r, which happens
if and only if 〈δ⊥, qf,r − pf,r〉 > 0, since the vertical coordinate of δ⊥ is positive. Thus (i)–
(ii) follow, and (iii) follows by combining (i)–(ii) with (the proof of) Proposition 4.3, since if
slope(α) = slope(δ) then Q∞ contains integer points both below and above P∞, and therefore
intersects P∞. �
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5. Convexity of the inversion multiset

Similarly to Section 1.3, we say that Γ′(f) is convex if Γ̃′(f) contains all lattice points of
its convex hull. (These sets were defined in the beginning of Section 4.) The goal of this
section is to prove the following result.

Theorem 5.1. Let f ∈ Θk,n be repetition-free. Then the set Γ′(f) is convex.

We start by stating some consequences of the results obtained in Section 2. Let

Γmin
k,n = {α ∈ [k − 1]× [n− 1] | slope(α) = slope(δ)}.

By Lemma 4.6(iii), we have Γmin
k,n ⊆ Γ′(f) for all f ∈ Θk,n. The next two statements follow

directly from Proposition 2.3.

Corollary 5.2. Let f ∈ Θk,n be repetition-free. Then at least one of the following holds:

• Γ′(f) = Γmin
k,n .

• There exists g ∈ Θk,n such that f
c∼ g and g has a double crossing at some i ∈ Z.

Corollary 5.3. Suppose that f, g ∈ Θk,n are repetition-free and Γ′(f) = Γ′(g) = Γmin
k,n . Then

Cf = Cg.

Throughout the rest of this section, the following data is fixed:

• a repetition-free f ∈ Θk,n that has a double crossing at 0;

• a big path P∞ := P
(f)
∞ and a small path P := P (f) for f ;

• f1 := f
(0,1)
1 ∈ Θk1,n1 and f2 := f

(0,1)
2 ∈ Θk2,n2 obtained by resolving the crossing (0, 1)

as in Section 1.2;
• δ := (k, n), δ1 := (k1, n1), and δ2 := (k2, n2).

Notation 5.4. For each 0 ≤ r < n, let 0 ≤ jr < n be the unique index equal to f r(0)
modulo n. Then we label pf,r by P [jr] as in Figure 7. We extend this to all r ∈ Z using the
convention that jr+n := jr +n, and we label pf,r by P [jr] for r ∈ Z. Thus P [j+n] = P [j]+ δ
for all j ∈ Z. If P [i] appears to the left of P [j] for some i, j ∈ Z, we denote by P [i → j]
the subpath of P∞ connecting P [i] to P [j]. Thus P = P [0→ n] and we will be particularly
interested in the subpaths P [0 → 1] and P [1 → n] of P (under the above assumption that
f has a double crossing at 0).

We establish several elementary properties of Γ′(f). For a subset Γ′ ⊂ Z2, we let Γ′+Zδ :=
{α+ tδ | α ∈ Γ′, t ∈ Z}. Recall also that we set δ⊥ := (1,−k/n) and that the sign of 〈δ⊥, α〉
is positive if and only if α is above the line spanned by δ. Finally, we adopt the convention
that when we shift a (big or small) path, its labeling of points from Notation 5.4 is preserved;
for example, (P + α)[1→ n] := P [1→ n] + α, etc.

Lemma 5.5.

(i) Let α, β ∈ Z2 be such that 〈δ⊥, α〉 < 0, 〈δ⊥, β〉 < 0, and α, β /∈ (Γ̃′(f) + Zδ). Then
α + β /∈ (Γ̃′(f) + Zδ).

(ii) We have slope(δ1) < slope(δ) < slope(δ2).
(iii) Let α ∈ Γ′(f) be such that 〈δ⊥, α〉 < 0. Then for all β ∈ Z2 satisfying 〈δ⊥, β〉 ≤ 0,

n(β) ≤ n(α), and k(β) ≥ k(α), we have β ∈ Γ′(f).

Proof. (i): We showed in the proof of Lemma 4.6 that if 〈δ⊥, α〉 < 0 then P∞ + α contains
integer points below P∞. If in addition α /∈ (Γ̃′(f) + Zδ) then P∞ + α and P∞ do not
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P [1] + δ1

P [0] + δ1

P [n] + δ1

P [n]

P [1]

P [0]

P [0] + δ2

P [1] + δ2

P [n] + δ2

P [1]

P [0]

P [n]

P [n] ≈ P [1] + δ1 P [1] ≈ P [0] + δ2

Figure 8. We write P [n] ≈ P [1] + δ1 and P [1] ≈ P [0] + δ2; see Notation 5.7.

intersect. Thus P∞ + α and P∞ + β are both below P∞. But then P∞ + α + β is below
P∞ + α, and therefore it is below P∞, so α + β /∈ (Γ̃′(f) + Zδ).

(ii): The only integer points of P∞+δ1 above P∞ are P [1]+Zδ. Thus P∞+2δ1 is below P∞
(cf. Remark 5.6 below). By Lemma 4.6(ii), we must have slope(δ1) = slope(2δ1) < slope(δ).
Similarly, slope(δ) < slope(δ2).

(iii): If β = α then clearly β ∈ Γ′(f). Assume that β 6= α and let e := α − β. We have
e 6= 0, n(e) ≥ 0, and k(e) ≤ 0, so e /∈ Γ̃′(f) + Zδ and 〈δ⊥, e〉 < 0. If β /∈ (Γ̃′(f) + Zδ) then
by (i), we must have α /∈ (Γ̃′(f) + Zδ), a contradiction. Thus β ∈ (Γ̃′(f) + Zδ), and the
conditions on the coordinates of β ensure that in fact β ∈ Γ′(f). �

Remark 5.6. The proof of (i)–(ii) above shows the stronger statement that if 〈δ⊥, α〉 < 0,
〈δ⊥, β〉 < 0, and α, β /∈ ((Γ̃′(f) \ {δ1}) + Zδ) then α + β /∈ (Γ̃′(f) + Zδ).

Notation 5.7. Observe that the points P [1] and P [0] + δ2 differ by (1/n, 0). Moreover, the
two paths P∞ and P∞+δ2 form a double crossing at these two points, thus they form a small
region as in Figure 8. Therefore no shift of P∞ can contain an integer point in this region.
In our analysis, we usually treat this region as a “single point” and write P [1] ≈ P [0] + δ2
and P [n] ≈ P [1] + δ1. By an abuse of terminology, we will say that P∞ is below P∞+ δ2 and
above P∞ + δ1.

Lemma 5.8. The bounded affine permutations f1 and f2 are repetition-free.

Proof. Let us compare the big path P
(f1)
∞ with (P [1→ n])∞ :=

⋃
t∈Z(P [1→ n] + tδ1), where

we identify the points P [n] + (t− 1)δ1 ≈ P [1] + tδ1 for all t ∈ Z. It is easy to see that these
two paths are equivalent in the sense that for each α = (a, b) ∈ Z2, we have

|P (f1)
∞ ∩ (P (f1)

∞ + α)| = |(P [1→ n])∞ ∩ ((P [1→ n])∞ + α)|,
where the intersection points are counted modulo δ1. Thus we need to analyze the intersec-
tions of (P [1→ n])∞ with its shifts.

Let α ∈ [k1 − 1]× [n1 − 1] and Q := P + α. Let s := |(P [1→ n])∞ ∩ (Q[1→ n])∞|. Since
f is repetition-free, P [1 → n] intersects Q[1 → n] at most twice. Moreover, P [1 → n] can
intersect Q[1→ n] + tδ1 only for t ∈ {−1, 0}. Thus s ≤ 4.

Suppose that s > 2. Since s is even, we have s ≥ 4, and thus s = 4. We see that P [1→ n]
intersects each of Q[1→ n] and Q′ := Q[1→ n]− δ1 twice. Suppose first that Q[1] is above
P∞. Then Q[1 − n → 1] stays below Q′[1 → n] which intersects P [1 → n], and therefore
Q[1−n→ 1] intersects P [1→ n]. We have found three intersection points of P [1→ n] with
Q∞, a contradiction. Suppose now that Q[1] is below P∞. Then Q′[n → 2n] stays above
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Q[1]

Q[0]

P ′[1]

Q′[0]

P [1]

P ′[0]

P [1 + n]

P ′[n]

Figure 9. Proof of Proposition 5.9.

Q[1 → n] which intersects P [1 → n], and thus Q′[n → 2n] intersects P [1 → n]. We have
found three intersection points of P [1→ n] with Q′∞, a contradiction. We have shown that
f1 is repetition-free.

Similarly, we check that P
(f2)
∞ is equivalent to (P [0 → 1])∞ :=

⋃
t∈Z(P [0 → 1] + tδ2) and

use it to deduce that f2 is repetition-free. �

Note that P [1→ n] has low slope since it connects P [1] to P [n] ≈ P [1]+δ1 while P [0→ 1]
has high slope since it connects P [0] to P [1] ≈ P [0] + δ2; cf. Lemma 5.5(ii).The next result
states that a shifted segment of high slope cannot cross a segment of low slope from above.

Proposition 5.9. Let α ∈ Z2 and Q := P +α. Then Q[0→ 1] cannot cross P [1→ n] from
above.

Proof. Suppose otherwise that Q[0→ 1] crosses P [1→ n] from above. We consider the cases
according to the positions of Q[0] and Q[1] relative to P∞. First, assume that Q[0] is below
P∞ and Q[1] is above P∞. Then Q[0→ 1] intersects P∞ at least 3 times, a contradiction.

From now on we assume that Q[0] is above P∞. (The case of Q[1] being below P∞ is
completely analogous.) Let P ′ := P + δ2 and Q′ := Q + δ2. Since Q[0] is above P∞,
Q[1] ≈ Q′[0] are both above P ′∞. Moreover, Q crosses P [1→ n] from above, thus Q′ crosses
P ′[1→ n] from above.

Definition 5.10. For an integer point q of Q, we say that q is vertically above P if there
exists an integer point p of P with n(q) = n(p), and q is above p.

Since Q′[0→ 1] intersects P ′[1→ n], it follows that Q′[0] is vertically above P ′. Consider
the path Q[1 → 1 + n]. It crosses P∞ from above at a single point which belongs to
Q[n → 1 + n] ∩ P [1 + n → 2n]. Moreover, it stays below Q′ which crosses P ′[1 → n]
from above. Thus Q[1 → 1 + n] crosses P ′ from above. Since Q[1 → 1 + n] cannot cross
P [1→ 1 + n] from above, it must cross P ′ from below. The remaining part of Q[1→ 1 + n]
still has to cross P∞ from above, however, it cannot cross P ′∞ since it has already crossed P ′

twice. Since P∞ is below P ′∞, we get a contradiction. See Figure 9. �
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Lemma 5.11. Let α, β ∈ [k − 1] × [n − 1] be such that slope(α) > slope(β). Suppose that
there are two subpaths P [a→ b] and P [c→ d] of P∞ such that P [a→ b] crosses P [a→ b]+α
while P [c → d] crosses P [c → d] + β. Then there exist s, t ∈ Z such that P [a → b] + sα
crosses P [c→ d] + tβ from below.

Proof. Consider the two infinite unions Rα := P [a → b] + Zα and Rβ := P [c → d] + Zβ.
Observe that Rα (resp., Rβ) is a path-connected subset of R2. Thus it contains an infinite
piecewise linear curve Sα (resp., Sβ) such that for each r ∈ Z, Sα (resp., Sβ) contains a
unique point xα,r (resp., xβ,r) satisfying n(xα,r) = n(xβ,r) = r. Here, we are additionally
assuming that the vertical coordinates of xα,r and xβ,r are increasing functions of r.

When r � 0, xα,r is below xβ,r, and when r � 0, xα,r is above xβ,r. Let r ∈ Z be the
smallest integer such that xα,r is not below xβ,r. Thus xα,r−1 is below xβ,r−1 and either
xα,r = xβ,r or xα,r is above xβ,r. In each case, it is straightforward to check that a shift
P [a → b] + sα (passing through either xα,r or xα,r−1 or both) crosses a shift P [c → d] + tβ
(passing through either xβ,r or xβ,r−1 or both) from below. �

Remark 5.12. The same argument applies when either (a, b, α) = (1, n, δ1) or (c, d, β) =
(0, 1, δ2). (Since slope(δ1) < slope(δ2) by Lemma 5.5(ii), we cannot have both.) Suppose for
instance that (c, d, β) = (0, 1, δ2). Even though P [0 → 1] does not intersect P [0 → 1] + δ2,
since we identify P [1] ≈ P [0] + δ2, the union Rβ = P [0→ 1] + Zδ2 still contains an infinite
connected (modulo our identification) piecewise linear curve.

Given two paths Q,P , we say that Q is above P if whenever two integer points q ∈ Q and
p ∈ P satisfy n(q) = n(p), we have that q is above p. (This condition is vacuously true if
the projections of Q and P onto the horizontal axis do not overlap.)

Lemma 5.13. Let α ∈ [k − 1] × [n − 1] and Q := P + α. Assume that Q[1] is above P∞.
Then Q[1→ n] and P [1→ n] cannot intersect twice.

Proof. Assume otherwise that they intersect twice. Our temporary goal is to show that

(5.1) (P [0→ 1])∞ is below (Q[0→ 1])∞.

We observe that Q satisfies the following properties:

(a) Q[1] is above P∞;
(b) Q[1→ n] intersects P [1→ n] twice;
(c) n(Q[1]) ≥ n(P [1]).

Let Q′ := Q − δ2 so that Q′[1] ≈ Q[0]. In order to show (5.1), it suffices to prove that if Q
satisfies (a)–(c) then either

(i) Q′ satisfies (a)–(c), or
(ii) Q′[0→ 1] is above P [0→ 1] with n(Q′[0]) < n(P [0]).

If (i) holds for Q′ then we proceed by induction, applying the same argument to Q′− tδ2 for
t = 1, 2, . . . , until we find that (ii) holds for some Q − sδ2 with s > 0. But then all integer
points of P [0→ 1] are below

⋃s
t=0(Q− tδ2), which proves (5.1).

Assume that Q satisfies (a)–(c). Since Q[1 → n] and P [1 → n] intersect twice, Q[0 → 1]
is above P∞ and P [0 → 1] is below Q∞. Then Q′[0 → 1] is above P ′∞, where P ′ := P − δ2.
We have the following situation:

• apart from the double crossing, Q′[1− n→ 1] is below Q∞;
• Q′[1− n] and Q′[1] are above P∞;
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• Q′[1− n→ 0] intersects P ′[1− n→ 0] twice;
• P ′[1] ≈ P [0] is below Q′∞.

These statements imply that Q′[1 − n → 1] crosses P [−n → 0] twice, first from above and
then from below. Moreover, the second crossing (from below) must belong to P [1− n→ 0]
since it has to come after both crossings of Q[1− n→ 0] with P ′[1− n→ 0]. In particular,
no part of Q′[1− n→ 1] is below P [0→ 1], and thus Q′[0→ 1] is above P [0→ 1].

Suppose that n(Q′[1]) < n(P [1]). Then n(Q′[0]) < n(P [0]). We have just shown that
Q′[0→ 1] is above P [0→ 1], so we arrive at case (ii).

Suppose now that n(Q′[1]) ≥ n(P [1]). Then Q′ satisfies (a) and (c). Moreover, we also
have n(Q′[1 − n]) ≥ n(P [1 − n]) and n(Q[0]) ≥ n(P [0]). In view of the above statements,
this implies that Q′[1− n → 0] intersects P [1− n → 0] twice, i.e., Q′ also satisfies (b). We
arrive at case (i). We are done with the proof of (5.1), and now we will use it to finish off
the proof of the lemma.

Observe that if slope(α) ≤ slope(δ2) then we get a contradiction by Lemma 4.6(i) and (5.1).
Thus slope(α) > slope(δ2). By Lemma 5.11 and Remark 5.12, for some s, t,∈ Z, we have
that P [1→ n] + sα crosses P [0→ 1] + tδ2 from below, contradicting Proposition 5.9. �

Lemma 5.14. Let α ∈ Γ′(f).

(i) If slope(α) ≤ slope(δ1) then α ∈ Γ̃′(f1) + Zδ1.
(ii) If slope(α) ≥ slope(δ2) then α ∈ Γ̃′(f2) + Zδ2.

Proof. We prove (i). The proof of (ii) is completely analogous.
First, if slope(α) = slope(δ1) then α ∈ Γ̃′(f1) + Zδ1 by Lemma 4.6(iii). Assume that

slope(α) < slope(δ1). By Lemma 5.11 and Remark 5.12, there are s, t ∈ Z such that
P [1→ n] + sδ1 crosses P + tα from below. This crossing cannot belong to P [0→ 1] + tα by
Proposition 5.9. Thus it belongs to P [1→ n] + tα, so tα ∈ Γ̃′(f1) + Zδ1. By Lemma 5.5(i),
we get α ∈ Γ̃′(f1) + Zδ1. �

The following straightforward result describes a natural transformation that swaps the
notions of “above” and “below.” We refer to it as the 180◦-rotation.

Proposition 5.15. For f ∈ Θk,n, let g : Z→ Z be given by

g(j) := n− f−1(−j) for all j ∈ Z.

Then g ∈ Θk,n and the paths P (f) and P (g) are related as

(5.2) P (g) = δ − P (f).

For each point x ∈ R2, x is above (resp., below) P
(f)
∞ if and only if δ − x is below (resp.,

above) P
(g)
∞ . �

Given α, β ∈ R2, we say that α is weakly southwest of β and write α � β if n(α) ≤ n(β)
and k(α) ≤ k(β). We write α ≺ β if α � β and α 6= β.

Lemma 5.16. Let α ∈ Γ′(f) and β := δ − α.

(i) If slope(α) ≤ slope(δ1) and α ≺ δ1 then β /∈ Γ̃′(f2) + Zδ2.
(ii) If slope(β) ≥ slope(δ2) and β ≺ δ2 then α /∈ Γ̃′(f1) + Zδ1.

Proof. In view of Proposition 5.15, we only prove (i). By Corollary 4.4, we have β ∈ Γ′(f).
Let Q := P + α. By Lemma 5.14, α ∈ Γ̃′(f1) + Zδ1 and β ∈ Γ̃′(f2) + Zδ2, or equivalently,
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P [0 → 1]

P [1 → n]

L(0)

L(1)

L(−1)

L(−2)

Figure 10. The proof of Lemma 5.16.

Q[1→ n] intersects (P [1→ n])∞ twice and Q[0→ 1] intersects L := (P [n→ 1 +n])∞ twice.
Moreover, since (0, 0) ≺ α ≺ δ1, we see that

(5.3) P [0] ≺ Q[0] ≺ Q[1] ≺ P [n].

For t ∈ Z, we let P
(t)
∞ := P∞+tδ2 = P∞−tδ1 and L(t) := L∩P (t)

∞ ; see Figure 10. Thus there

exists a unique integer t ∈ Z such that Q[1] is above P
(t)
∞ and below P

(t+1)
∞ . We know that

Q[0 → 1] intersects L, and by (5.3), it can only intersect L(<0) :=
⋃
s<0 L

(s). Similarly, we
observe that Q[1→ n] must intersect P [1→ n]∪R[1→ n] exactly twice, where R := P + δ1
is a subpath of P

(−1)
∞ . We consider four cases.

Case 1: t ≥ 0 and Q[0] is above P∞. Since L(<0) is below P∞ and Q[0 → 1] intersects
it twice, we see that Q[0→ 1] intersects P∞ twice. Then Q[1→ n] cannot intersect P∞, so
it has to stay above P∞. Thus Q[1→ n] must intersect R[1→ n] twice, which is impossible
since R[1→ n] is below P∞.

Case 2: t ≥ 0 and Q[0] is below P∞. Thus Q[0 → 1] intersects P∞ once, and therefore
so does Q[1 → n]. Thus Q[1 → n] must also intersect R[1 → n]. Since Q[1] is above P∞,

Q[n] ≈ Q[1] + δ1 is above P
(−1)
∞ = P∞ + δ1. Since Q[1] is also above P

(−1)
∞ , we see that

Q[1→ n] intersects P
(−1)
∞ twice. Since Q[n] is above P

(−1)
∞ , so is Q[0]. In order for Q[0→ 1]

to intersect L(<0), it must intersect P
(−1)
∞ , since each point of L(<0) is either on or below

P
(−1)
∞ . Thus Q intersects P

(−1)
∞ at least three times, a contradiction.

Case 3: t < 0 and Q[1] is above L. Then Q[0] is above L. Recall that Q[1] is above

P
(t)
∞ and below P

(t+1)
∞ , thus Q[0] and Q[n] are above P

(t−1)
∞ and below P

(t)
∞ . We see that

each of Q[0 → 1] and Q[1 → n] intersects P
(t)
∞ exactly once. Let q be the first intersection

point of Q[0 → 1] with P
(t)
∞ ∪ P (t−1)

∞ . We claim that q belongs to P
(t−1)
∞ . Indeed, suppose

otherwise that q ∈ P
(t)
∞ . Since Q[0 → 1] has to intersect L but it can no longer intersect

P
(t)
∞ , the first intersection point ` of Q[0 → 1] with L has to belong to L(s) for some s > t.

In order for this to happen, Q[0→ 1] must intersect P
(s)
∞ twice (with the second crossing at

`), and therefore the remaining part of Q[0→ 1] will stay below P
(s)
∞ , and thus below L. We

see that Q[1] is below L, contradicting our assumption. Thus q ∈ P
(t−1)
∞ . Specifically, we



18 PAVEL GALASHIN AND THOMAS LAM

have q ∈ (P [1→ 1 + n] + (t− 1)δ2), which is the lower boundary of the region bounded by

P
(t−1)
∞ ∪ P (t)

∞ containing Q[0].

Consider Q′ := Q + δ2. The first intersection point q′ = q + δ2 of Q′ with P
(t)
∞ ∪ P (t+1)

∞
belongs to P

(t)
∞ . Since Q[1 → n] stays below Q′ and intersects P

(t)
∞ , we see that Q[1 → n]

stays below P
(t+1)
∞ , and the unique intersection point of Q[1 → n] with P

(t)
∞ belongs to

P [1 → 1 + n] + tδ2. Since t < 0, P [1 → n] stays above P
(t)
∞ , and thus Q[1 → n] must

intersect R[1 → n]. If t < −1 then R[1 → n] is above P
(t)
∞ and we get a contradiction. If

t = −1 then we have already shown that the only intersection point of Q[1→ n] with P
(−1)
∞

belongs to P [1→ 1 + n] + tδ2 which is disjoint from R[1→ n].
Case 4: t < 0 and Q[1] is below L. Then Q[0] is below L. It is still true that each of

Q[0→ 1] and Q[1→ n] intersects P
(t)
∞ exactly once. Thus the second point of Q[0→ 1] ∩ L

belongs to L(s) for some s > t. Thus Q[0→ 1] intersects P
(s)
∞ twice, so Q[1→ n] stays below

P
(s)
∞ . Since Q[0 → 1] can only intersect L(<0), we find that s < 0. Thus Q[1 → n] cannot

intersect P [1→ n] ∪R[1→ n], a contradiction. �

Using Lemma 5.16, the result of Lemma 5.14 can be strengthened as follows.

Corollary 5.17. Let α ∈ Γ′(f).

(i) If slope(α) ≤ slope(δ1) then α ∈ Γ′(f1) t {δ1}.
(ii) If slope(α) ≥ slope(δ2) then α ∈ Γ′(f2) t {δ2}.

Proof. Again, by Proposition 5.15, it suffices to prove (i). By Lemma 5.14(i), we have
α ∈ Γ̃′(f1) + Zδ1, and recall that α ∈ [k − 1] × [n − 1] since α ∈ Γ′(f). Let m ∈ Z be the
unique integer satisfying α ∈ Γ̃′(f1) +mδ1. Clearly, m ≥ 0. Our goal is to show that m = 0.
Assume for the sake of contradiction that m > 0. Thus δ1 ≺ α. Let β := δ− α, then β ≺ δ2
and slope(β) ≥ slope(δ2). We get a contradiction by Lemma 5.16(ii). �

Lemma 5.18. Let α ∈ Γ′(f) \ {δ1} be such that slope(α) ≤ slope(δ1). Then δ1 − α ∈ Γ′(f).

Proof. Let x := δ1 − α, and assume x /∈ Γ′(f). By Corollary 5.17(i), we have α ∈ Γ′(f1), so
there exists s ∈ Z such that for Q := P + α− sδ1, we have that Q[1→ n] crosses P [1→ n].
Since x /∈ Γ′(f), we cannot have s = 1. If s /∈ {0, 1} then Q[1 → n] and P [1 → n] cannot
intersect at all because α ∈ Γ′(f1) implies 0 ≺ α ≺ δ1.

Thus s = 0 and Q = P + α. So Q[1 → n] intersects P [1 → n], and also Q[1 → n] does
not intersect P [1→ n] + δ1 (because x /∈ Γ′(f)). Thus Q[1→ n] intersects P [1→ n] twice.
Assume first that Q[1] is below P . Let Q′ := Q + δ2. Thus Q′[0] ≈ Q[1] and Q′ is above
Q. Therefore, Q′ must intersect P [1 → n]. Since P = Q′ + x − δ, we see that x ∈ Γ′(f), a
contradiction. If Q[1] is above P then we get a contradiction by Lemma 5.13. �

Let ∆1 be the convex hull of {0, δ1, δ} and ∆2 be the convex hull of {0, δ2, δ}. Denote
(∆1 ∪∆2)Z := (∆1 ∪∆2) ∩ Z2.

Lemma 5.19. We have (∆1 ∪∆2)Z ⊂ Γ̃′(f).

Proof. Let x ∈ Z2 ∩∆1, and suppose that x /∈ Γ̃′(f). First, x cannot be northwest of δ1 by
Lemma 5.5(iii). Thus either x ≺ δ1 or δ1 ≺ x.

Assume first that x ≺ δ1. Then for α := δ1 − x, we have slope(α) ≤ slope(δ1) and
〈δ⊥, α〉 < 0. If α /∈ Γ′(f) then by Lemma 5.5(i), we get δ1 /∈ Γ′(f), a contradiction. Thus
α ∈ Γ′(f), in which case we are done by Lemma 5.18.
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Assume now that δ1 ≺ x. Applying the dual argument (cf. Proposition 5.15) to y := δ−x,
we find y ∈ Γ′(f), and thus x ∈ Γ′(f) by Corollary 4.4. Thus Γ̃′(f) contains all lattice points
of ∆1, and by Corollary 4.4 again, it contains all lattice points of ∆2 as well. �

Proposition 5.20. We have Γ′(f1) = G1 and Γ′(f2) = G2, where

G′1 := {α | α ∈ Γ′(f) \ {δ1} is such that slope(α) ≤ slope(δ1)},
G′2 := {β | β ∈ Γ′(f) \ {δ2} is such that slope(β) ≥ slope(δ2)},
G1 := G′1 ∪ (δ1 −G′1), and G2 := G′2 ∪ (δ2 −G′2).

See Figure 12 for an example.

Proof. By Proposition 5.15, it suffices to prove Γ′(f1) = G1. By Corollary 4.4, Γ′(f1) is
symmetric with respect to the map α 7→ δ1−α, so by Corollary 5.17, G1 ⊂ Γ′(f1). Conversely,
suppose that we have found α ∈ Γ′(f1) \G1. Since both sets are symmetric with respect to
the map α 7→ δ1 − α, we may assume that slope(α) ≤ slope(δ1). By the definition of G1, we
have α /∈ Γ′(f), so slope(α) < slope(δ1). By Lemma 4.6(i), Q := P + α is below P∞.

Since α ∈ Γ′(f1), Q[1 → n] intersects (P [1 → n])∞ twice, and both intersections must
belong to P [1→ n]∪ P ′[1→ n], where P ′ := P + δ1. Since α /∈ Γ′(f), we see that Q[1→ n]
cannot intersect P [1 → n], so it intersects P ′[1 → n] twice. Observe that P ′[1] ≈ P [n] is
above Q∞. We get a contradiction by Lemma 5.13 (applied to α′ := δ1−α, Q, and P ′). �

Corollary 5.21. We have

(5.4) Γ̃′(f) = (∆1 ∪∆2)Z ∪ Γ′(f1) ∪ Γ′(f2) ∪ (Γ′(f1) + δ2) ∪ (Γ′(f2) + δ1).

Proof. By Remark 5.6, Γ′(f) contains no points which are southeast of δ1 or northwest of δ2.
By Lemma 5.19, Γ̃′(f) contains (∆1∪∆2)Z. For any α ∈ [k−1]× [n−1] satisfying 0 ≺ α ≺ δ1
and slope(α) ≤ slope(δ1), we have α ∈ Γ′(f) if and only if α ∈ Γ′(f1) by Proposition 5.20.
The case 0 ≺ α ≺ δ2 and slope(α) ≥ slope(δ2) is handled similarly. The remaining two cases
follow from the observation that both sides of (5.4) are centrally symmetric. �

Lemma 5.22. For all α ∈ Γ′(f1) and β ∈ Γ′(f2), we have slope(α) < slope(β).

Proof. Assume otherwise that slope(α) ≥ slope(β) for some α ∈ Γ′(f1) and β ∈ Γ′(f2). We
will consider the cases slope(α) = slope(β) and slope(α) > slope(β) separately.

Suppose that slope(α) = slope(β). Denote α = (a, b) and let x := 1
gcd(a,b)

α. Thus each of

α and β is a positive integer multiple of x. By Lemma 5.5(i), we have x ∈ Γ′(f1) ∩ Γ′(f2).
Suppose first that slope(x) ≥ slope(δ1). Let y := δ1 − x, thus slope(y) ≤ slope(δ1) and
y ≺ δ1. By Lemma 5.16, δ − y /∈ Γ̃′(f2) + Zδ2. On the other hand, δ − y = δ2 + x
which clearly belongs to Γ̃′(f2) + Zδ2 since x ∈ Γ′(f2), a contradiction. Applying a dual
argument (cf. Proposition 5.15) yields a contradiction when slope(x) ≤ slope(δ2). Since
slope(δ1) < slope(δ2), we are done with the case slope(α) = slope(β).

Suppose now that slope(α) > slope(β). By Lemma 5.11, we find that for some s, t,∈ Z, we
have that P [1→ n]+sα crosses P [0→ 1]+tβ from below, contradicting Proposition 5.9. �

Corollary 5.23. The points δ1 and δ2 are vertices of the convex hull of Γ̃′(f).

Proof. Indeed, let α ∈ Γ′(f1) have the maximal slope and β ∈ Γ′(f2) have the minimal slope.
Then the convex hull of Γ̃′(f) is bounded from below by the rays δ1 − R≥0α and δ1 + R≥0β
and from above by the rays δ2 − R≥0β and δ2 + R≥0α. �
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Figure 11. Constructing a concave profile H and a repetition-free permu-
tation fH for a given convex set Γ′. See Proposition 6.2 and Definition 6.3.

Proof of Theorem 5.1. We proceed by induction on k and n. Suppose that the statement is
known for all smaller k and n, and consider some lattice point x /∈ Γ̃′(f) which belongs to
the convex hull of Γ̃′(f). By Lemma 5.19, we have x /∈ (∆1 ∪ ∆2)Z. By Corollary 5.23, δ1
and δ2 are vertices of the convex hull of Γ̃′(f). By the induction hypothesis, we know that
the sets Γ′(f1) and Γ′(f2) are convex. We obtain a contradiction with Corollary 5.21, so we
must have x ∈ Γ̃′(f). �

6. Concave profiles and the counting formula

By Corollary 4.4 and Theorem 5.1, if f ∈ Θk,n is repetition-free then Γ(f) is convex and
centrally symmetric. In this section, we show that each convex centrally symmetric set arises
in this way, as stated in Theorem 1.3(ii). We will use this construction to prove the counting
formula (1.2) in Section 6.2, completing the proof of Theorem 1.3.

6.1. Concave profiles.

Definition 6.1. A sequence H := (0 = H0, H1, . . . , Hn = k) of real numbers is called a
concave profile if

• 0 < Hi+1 −Hi < 1 for all 0 ≤ i < n,
• Hi+1 −Hi ≥ Hj+1 −Hj for all 0 ≤ i ≤ j < n, and
• hi 6= hj for 0 ≤ i 6= j < n, where we set

(6.1) hr := Hr − bHrc for 0 ≤ r ≤ n.

Given a concave profile H, we let

Γ′(H) := {(a, b) ∈ [k − 1]× [n− 1] | k −Hn−b ≤ a ≤ Hb}.
As before, we let Γ̃′(H) := Γ′(H) t {(0, 0), (k, n)}. We also let P (H) be the path connecting
the points (r,Hr) for r = 0, 1, . . . , n. Thus Γ̃′(H) consists of all lattice points weakly below
P (H) and weakly above the 180◦-rotation (k, n)− P (H) of P (H).

Denote
Γmax
k,n := {(a, a+ b) | (a, b) ∈ [k − 1]× [n− k − 1]}.

Proposition 6.2. Let Γ′ ⊂ Γmax
k,n be convex and centrally symmetric. Then there exists a

concave profile H satisfying Γ′ = Γ′(H).

Proof. Choose a nonnegative strictly concave sequence ~ε = (ε0, ε1, . . . , εn) whose values are
sufficiently small, and let H be such that the difference H − ~ε records the maximal vertical
coordinates of the intersection of the convex hull of Γ̃′ with the vertical line n(x) = i for



POSITROID CATALAN NUMBERS 21

i = 0, 1, . . . , n. Then clearly H is a concave profile and we have Γ′ = Γ′(H). See Figure 11
for an example. �

The following construction uses H to find a bounded affine permutation fH ∈ Θk,n satis-
fying the desired properties.

Definition 6.3. Given a concave profile H, let f = fH ∈ Θk,n be the unique bounded affine
permutation such that for all 0 ≤ i, j < n, we have f̄ i(0) < f̄ j(0) if and only hi < hj, where
hi, hj are defined in (6.1). In other words, writing f̄ = (0, j1, j2, . . . , jn−1) in cycle notation,
the indices (j1, j2, . . . , jn−1) have the same relative order as (h1, h2, . . . , hn−1). See Figure 11
for an example.

Proposition 6.4. Let H be a concave profile and f := fH . We have:

(i)
⌊
fr(0)
n

⌋
= bHrc for all 0 ≤ r ≤ n;

(ii) f ∈ Θk,n is repetition-free;
(iii) Γ′(f) = Γ′(H).

Proof. (i): We prove the result by induction on r. The base case r = 0 is clear. Suppose that
the result holds for 0 ≤ r < n. We have hr+1 6= hr. If hr+1 > hr then f̄ r+1(0) > f̄ r(0), and

thus
⌊
fr+1(0)

n

⌋
=
⌊
fr(0)
n

⌋
. It is also clear that hr+1 > hr implies bHr+1c = bHrc. Similarly, if

hr+1 < hr then f̄ r+1(0) < f̄ r(0), which implies
⌊
fr+1(0)

n

⌋
=
⌊
fr(0)
n

⌋
+1 and bHr+1c = bHrc+1.

(ii): Let P
(H)
∞ :=

⋃
t∈Z(P (H) + tδ) be the corresponding infinite path. Observe that for

each α = (a, b) ∈ Z2, we have |P (H)
∞ ∩ (P

(H)
∞ + α)| = |P (f)

∞ ∩ (P
(f)
∞ + α)|. Indeed, if p ∈ P (H)

and q ∈ P (H) + α have the same horizontal coordinate r ∈ Z then p is above q if and
only if Hr > a + Hr−b. This condition is equivalent to having either bHrc > a + bHr−bc or

bHrc = a+bHr−bc and hr > hr−b. By (i), this is equivalent to having fr(0)
n

> a+ fr−b(0)
n

, which

means that for the integer points p′ ∈ P (f) and q′ ∈ P (f) + α satisfying n(p′) = n(q′) = r,
the point p′ is above q′. Since the path P (H) is the plot of a concave function, it intersects

P (H) + α at most once for each α ∈ Z2. Thus P
(H)
∞ intersects P

(H)
∞ + α at most twice, and

therefore the same holds for P
(f)
∞ . The result follows by Proposition 4.3.

(iii): For α ∈ [k − 1] × [n − 1], P
(H)
∞ intersects P

(H)
∞ + α if and only if α is below P (H)

and (k, n) is below P (H) + α. This is equivalent to α ∈ Γ′(H). Since |P (H)
∞ ∩ (P

(H)
∞ + α)| =

|P (f)
∞ ∩ (P

(f)
∞ + α)|, this is equivalent to α ∈ Γ′(f). �

6.2. Counting formula for concave profiles. We prove (1.2) in two steps. We start
by treating the case where f = fH arises from a concave profile. The case of arbitrary
repetition-free f ∈ Θk,n is considered in Section 6.3 below.

Proposition 6.5. Let H be a concave profile and let f := fH . Then

Cf = # Dyck(Γ(f)).

Proof. Let us say that a slanted Dyck path is a lattice path connecting (0, 0) to (k, n) which
stays above the main diagonal and consists of right steps (0, 1) and up-right steps (1, 1).
Thus # Dyck(Γ(f)) counts the number of slanted Dyck paths which stay above P (H) (and
do not share any points with P (H) except for the endpoints (0, 0) and (k, n)).

In order to keep track of the size of the rectangle in which H lives, let us refer to H as a
(k, n)-concave profile. We proceed by induction on n using Proposition 3.2. The base case
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Dyck(Γ(f)) = Dyck(Γ(f1)) ·Dyck(Γ(f2)) + Dyck(Γ(f ′))

Figure 12. The Dyck path recurrence in the proofs of Proposition 6.5 and
Theorem 1.3(i). Here Γ(f ′) = Γ(f) t {(a, b), (n− k − a, k − b)} for some a, b.
Each Dyck path above Γ(f) either passes through (a, b) or stays above Γ(f ′).

n = 1 is clear. Suppose now that n > 1 and that the claim has been shown for all n′ < n
and also for all (k, n)-concave profiles H ′ satisfying Γ′(H ′) ) Γ′(H). Let 0 < r < n be the
index such that 0 < hr < 1 is maximal among h0, h1, . . . , hn. Thus f̄ r(0) = n − 1, and we
let ε := 1− hr.

Assume first that r = 1. Let g ∈ Θk−1,n−1 be given by ḡi(0) := f̄ i+1(0) for 0 < i < n, and
let H ′ := (0 = H ′0, H

′
1, . . . , H

′
n−1 = k − 1) be given by H ′i := Hi+1 + ε− 1 for 0 ≤ i < n− 1.

It is easy to check that g = fH′ and that removing the first step (which must be up-right)
of a slanted Dyck path above P (H) yields a slanted Dyck path above P (H′) and vice versa,
thus # Dyck(Γ(f)) = # Dyck(Γ(g)). Applying parts (b′)–(c′) of Proposition 3.2, we find
Cf = Cg.

Assume next that r = n− 1. Let g ∈ Θk,n−1 be given by ḡi(0) := f̄ i(0) for 0 ≤ i < n− 1,
and let H ′ := (0 = H ′0, H

′
1, . . . , H

′
n−1 = k) be given by H ′i := Hi + ε for 0 < i < n. Similarly

to the above, we have # Dyck(Γ(f)) = # Dyck(Γ(g)) and Cf = Cg.
Finally, assume that 1 < r < n−1. Let i := −1, j = 0, a := f−1(i), b := f−1(j), c := f(i),

d := f(j). By Definition 6.1, we have H1 − H0 ≥ Hr+1 − Hr, and since hr is maximal, we
get h1 ≥ 1 +hr+1−hr > hr+1. Similarly, using Hn−Hn−1 ≤ Hr−Hr−1 we get hn−1 > hr−1.
By Definition 6.3, this implies d > c and b > a. We thus have a < b < i < j < c < d.

Let f ′ := sifsi. Our goal is to relate Cf ′ to Cf1 , Cf2 , and Cf as shown in Figure 12. It
follows that f ′ ∈ Θk,n and that f ′ has a double crossing at i. Let f1, f2 be obtained from f
by resolving the crossing (i, i+ 1). By Corollary 3.6, we have

(6.2) Cf = Cf1Cf2 + Cf ′ .

Let g = σf ′ ∈ Θk,n be the cyclic shift of f ′ defined in (2.1). We have f r(0) ≡ n − 1 and
gr(0) ≡ 1 modulo n, and for 1 ≤ s ≤ n such that s 6= r, we have gs(0) = f s(0) + 1. Choose
ε′ > ε such that ε′ < 1 − hs for s 6= r and let H ′ := (0 = H ′0, H

′
1, . . . , H

′
n = k) be given by

H ′s := Hs + ε′ for all 0 < s < n. One easily checks that g = fH′ . Since Γ′(g) ) Γ′(f), by the
induction hypothesis, we have Cg = # Dyck(Γ(g)). By Proposition 3.7, we have Cf ′ = Cg
and Γ′(f ′) = Γ′(g), thus Cf ′ = # Dyck(Γ(f ′)). It is straightforward to check that there exist
concave profiles H(1) and H(2) such that f1 = fH(1) and f2 = fH(2) , thus by the induction
hypothesis, (6.2) becomes

(6.3) Cf = # Dyck(Γ(f1)) ·# Dyck(Γ(f2)) + # Dyck(Γ(f ′)).
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On the other hand, it is clear that Γ′(f ′) = Γ′(f)t{(k2, r), (k−k2, n−r)}, where k2 := fr(0)+1
n

.

The number of slanted Dyck paths above P (H) passing through the point (k2, r) equals
# Dyck(Γ(f1)) · # Dyck(Γ(f2)). The slanted Dyck paths above P (H) which do not pass
through (k2, r) must stay above P (H′). Therefore Cf = # Dyck(Γ(f)). �

6.3. Finishing the proof of Theorem 1.3.

Proof of Theorem 1.3(i). Let f ∈ Θk,n be repetition-free. By Corollary 4.4, Γ(f) is centrally
symmetric. By Theorem 5.1, Γ(f) is convex. It remains to show the counting formula (1.2).
Recall from Proposition 6.5 that the formula holds when f = fH arises from a concave profile.
In particular, we may choose H to be such that Γ′(H) = Γmin

k,n . We now proceed by induction.
By Corollary 5.3, the counting formula extends to all repetition-free f ∈ Θk,n satisfying
Γ′(f) = Γmin

k,n , which is the base case. Suppose now that Γ′(f) ) Γmin
k,n and that the result has

been shown for all n′ < n and for all repetition-free f ′ ∈ Θk,n such that Γ′(f ′) ( Γ′(f). (This
induction proceeds in the opposite direction to the one in the proof of Proposition 6.5.) By
Corollary 5.2, after applying some length-preserving simple conjugations, we may assume
that f has a double crossing at some i ∈ Z. Let f ′ := sifsi (thus `(f) = `(f ′) + 2) and f1, f2
be obtained from f by resolving the crossing (i, i+ 1). By Corollary 3.6, we have

(6.4) Cf ′ = Cf1Cf2 + Cf .

This is different from (6.2) in that f and f ′ are swapped. By induction, we have Cf1 =
# Dyck(Γ(f1)), Cf2 = # Dyck(Γ(f2)), and Cf ′ = # Dyck(Γ(f ′)). Similarly to the proof of
Proposition 6.5 (cf. Figure 12), we obtain the desired result Cf = # Dyck(Γ(f)). �

Proof of Theorem 1.3(ii). As explained in Section 6.1, for any convex centrally symmetric
set Γ′ ⊂ Γmax

k,n , there exists a concave profile H such that Γ′(H) = Γ′. The result follows from
Proposition 6.4. �

7. Other interpretations and further directions

Computer experimentation reveals many other remarkable properties of repetition-free
bounded affine permutations which we state below in conjectural form. We discuss them from
a knot-theoretic perspective and in relation to positroid varieties, motivated by our recent
results [GL20]. We also discuss the various interpretations of positroid Catalan numbers
mentioned in the introduction.

7.1. Euler characteristic of open positroid varieties. The relation between Defini-
tion 1.1 and (3.4) follows from [GL20]; here we give a brief explanation. When f ∈ Θk,n, the
torus T acts freely on Π◦f and the quotient X ◦f := Π◦f/T is a smooth affine variety, called the
positroid configuration space in [GL20]. The torus-equivariant Euler characteristic of Π◦f is

simply the usual Euler characteristic of X ◦f . The point count is given by #(X ◦f )(Fq) = R̃f (q).
By the Grothendieck–Lefschetz fixed-point formula, when a smooth variety X has polyno-
mial point count, its Euler characteristic is equal to #X(Fq)|q=1. This shows the agreement
of Definition 1.1 and (3.4).

When f ∈ Bk,n \ Θk,n, the torus T no longer acts freely on Π◦f , and the torus-equivariant
cohomology H∗T (Π◦f ) (or compactly supported cohomology H∗T,c(Π

◦
f )) is typically infinite-

dimensional. In this case, Definition 1.1 does not immediately apply, but a q, t-power series
is studied in [GL20]. In the present work, we use (3.4) for all f ∈ Bk,n, but caution the
reader that the situation is more subtle when f /∈ Θk,n.
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5

4

−→
λ(f) = (2, 1, 1, 0, 0)

a(f) = (1, 0, 1, 0)

Figure 13. Constructing a Young diagram λ(f) and the sequence a(f) from
Γ(f). Here f ∈ Θk,n for k = 5 and n = 9.

7.2. Generalized q, t-Catalan numbers. The most exciting computational evidence arises
when comparing our results to the constructions in [GHSR20, BHM+21].

Given a repetition-free f ∈ Θk,n, let λ(f) = (λ1, λ2, . . . , λk) be the partition consisting
of all boxes inside the k × (n − k) rectangle which are above the diagonal and are strictly
above all points of Γ(f); see Figure 13. Let a(f) = (a2, . . . , ak) be given by ai = λi−1 − λi
for 2 ≤ i ≤ k. To an arbitrary sequence a = (a2, . . . , ak) of nonnegative integers, the
authors of [GHSR20] associate a generalized q, t-Catalan number 2 Ca(q, t), which may be
explicitly described as a combinatorial sum over Tesler matrices. According to [GHSR20,
Conjecture 1.3] attributed to A. Neguţ, if a2 ≥ a3 ≥ · · · ≥ ak ≥ 0 then Ca(q, t) has positive
integer coefficients. If this condition is satisfied then we have a = a(f) for some repetition-
free f ∈ Θk,n in view of Theorem 1.3(ii). However, the convexity condition is more general:
for instance, the sequence a(f) = (1, 0, 1, 0) in Figure 13 is not weakly decreasing.

Each sequence a also gives rise to a Coxeter link β̂(a). See [GN15, GNR21, OR17,
GHSR20] and references therein for further details, such as an interpretation of Ca(q, t)
in terms of flag Hilbert schemes and a conjectural relation between Ca(q, t) and Khovanov–

Rozansky homology [KR08a, KR08b] of β̂(a).

In [GL20, Definition 1.9], we have associated a knot β̂f to each f ∈ Θk,n and we showed

in [GL20, Theorem 1.11] that R̃f (q) may be computed from the HOMFLY polynomial of β̂f .
More generally, we gave a simple relation between the mixed Hodge polynomial P(X ◦f ; q, t)

and Khovanov–Rozansky homology of β̂f in [GL20, Equation (1.25)].

Conjecture 7.1. Let f ∈ Θk,n be repetition-free.

(i) The knots β̂(a(f)) and β̂f are isotopic.
(ii) Up to a monomial in q and t, we have P(X ◦f ; q, t) = Ca(f)(q, t).

(iii) Up to a monomial in q, we have R̃f (q) = Ca(f)(q, t = 1/q).

(iv) The polynomials P(X ◦f ; q, t), Ca(f)(q, t), and R̃f (q) have positive integer coefficients.

Remark 7.2. Combining Theorem 1.3(i) with [GHSR20, Proposition 1.1], we see that
R̃f (1) = Ca(f)(1, 1), in agreement with Conjecture 7.1(iii).

Conjecture 7.1 becomes especially intriguing in view of [BHM+21, Section 7]. Namely, to
each sequence a = (a2, . . . , ak) of nonnegative integers, the authors of [BHM+21] associate
a symmetric function ω(Da · 1) and show that one of the coefficients in its Schur expansion
equals Ca(q, t). They conjecture that when a is obtained from a Young diagram above a
concave curve (that is, precisely when a = a(f) for some repetition-free f ∈ Θk,n) then

2What we denote by Ca(q, t) was denoted by F (a2, . . . , ak) in [GHSR20].
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maximal f -Deograms Dyck paths avoiding Γ(f)

Figure 14. For each repetition-free f ∈ Θk,n, the number of maximal f -
Deograms (left) equals the number of Dyck paths which stay above Γ(f)
(right); see Example 7.5 and Problem 7.6.

the function ω(Da · 1) is q, t Schur positive. The appearance of the convexity condition in
both of these settings suggests that the whole symmetric function ω(Da(f) · 1) may have
an interpretation in terms of the geometry of Π◦f , which may explain the Schur positivity
phenomenon.

A related promising direction would be to “categorify” the recurrence (3.1) to the level of
Khovanov–Rozansky homology, in the spirit of [Hog18, Mel17, HM19]. Conversely, it would
be interesting to “decategorify” the categorified Young symmetrizers of [Hog18] and interpret
them in the positroid language. We hope to return to these questions in future work.

7.3. c-equivalence classes. Our experiments indicate that the combinatorics of c-equivalence
classes has very rigid structure. Some statements describing this structure were shown in
Section 2.2. The following conjecture implies that the objects Cf , R̃f (q), P(Π◦f ; q, t), and β̂f
depend only on Γ′(f) when f ∈ Θk,n is repetition-free.

Conjecture 7.3. Let Γ ⊂ [k− 1]× [n− k− 1] be centrally symmetric and convex. Then the
set

(7.1) {f ∈ Θk,n | Γ′(f) = Γ}
is a union of gcd(k, n)-many c-equivalence classes. They are cyclically permuted by the map
σ from (2.1).

Remark 7.4. Let εk,n be equal to 1/2 if both k and n are even and to 0 otherwise. For
f ∈ Θk,n, denote

ν(f) := 〈δ⊥, P (f)
∞ 〉 − εk,n,

cf. (4.2). It is not hard to see that ν(f) is always an integer, so we let 0 ≤ ν̄(f) ≤ d− 1 be
obtained by taking ν(f) modulo d := gcd(k, n).

Let f ∈ Θk,n be repetition-free. Observe that if g := σf is the cyclic shift of f then

ν(g) − ν(f) = 1, however, if f ′
c∼ f then ν̄(f ′) = ν̄(f). We therefore see that the set (7.1)

contains at least d distinct c-equivalence classes, cyclically permuted by σ. The content of
Conjecture 7.3 is that if f, g ∈ Θk,n are repetition-free and satisfy (Γ(f), ν̄(f)) = (Γ(g), ν̄(g))

then f
c∼ g.

7.4. Deograms. In [GL20, Section 9], we explained that for each f ∈ Θk,n, the positroid
Catalan number Cf equals the number # Deomax

f of certain combinatorial objects called
maximal f -Deograms, see [GL20, Definition 9.3]. Here, Deomax

f denotes the set of maximal
f -Deograms, defined as follows. First, by [KLS13, Proposition 3.15], there exists a unique
pair (v, w) of permutations in Sn such that v ≤ w, w−1(1) < · · · < w−1(k), w−1(k + 1) <
· · · < w−1(n), and f̄ = wv−1. Thus w is k-Grassmannian, and each such permutation
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Figure 15. Associating a knot Kf inside T2 × R to f ∈ Θk,n. The dashed
rectangle on the right represents the fundamental domain of T2.

corresponds to a Young diagram λ(w) that fits inside a k× (n−k) rectangle. An f -Deogram

is obtained by placing a crossing or an elbow inside each box of λ(w) so that (i) the
resulting strand permutation is v, and (ii) a certain distinguished condition is satisfied. An
f -Deogram is maximal if it contains the maximal possible number of crossings, equivalently,
assuming f ∈ Θk,n, if it contains exactly n− 1 elbows. In view of Theorem 1.3(i), when f is
repetition-free, Cf = # Dyck(Γ(f)) also counts Dyck paths avoiding Γ(f).

Example 7.5. Let f̄ = (1, 4, 6, 2, 5, 7, 3) in cycle notation, and thus f ∈ Θk,n for k = 3 and

n = 7. The unique factorization f̄ = wv−1 as above is given by v =

(
1 2 3 4 5 6 7
1 2 4 3 5 6 7

)

and w =

(
1 2 3 4 5 6 7
4 5 6 1 7 2 3

)
in two-line notation. The three maximal f -Deograms are

shown in Figure 14(left). The three Dyck paths avoiding Γ(f) are shown in Figure 14(right).

The following problem extends [GL20, Problem 9.6].

Problem 7.6. Let f ∈ Θk,n be repetition-free. Find a bijection between Deomax
f and

Dyck(Γ(f)).

7.5. Fiedler invariant and knots in a thickened torus. Let T2 := R2/Z2 be a torus
and K : S1 ↪→ T2 × R be a knot inside a thickened torus. To this data, Fiedler [Fie93]
associates an isotopy invariant WK called the small state sum. Let us instead identify T2

with R2/〈(0, n), (1, 0)〉. For f ∈ Θk,n and P := P (f), let P̄ be the image of P ⊂ R2 under
the quotient map R2 → T2. The points where P̄ intersects itself correspond precisely to the
inversions of f . Thus we may define a knot Kf inside T2×R whose projection to T2 coincides
with P̄ , and for each inversion (i, j) of f , the line segment connecting P [i] to P [f(i)] lies
above the line segment connecting P [j] to P [f(j)]. See Figure 15.

It is straightforward to check that the formal sum WKf
contains essentially the same

information as the inversion multiset Γ′(f). This leads to the following question: which
parts of our story generalize to arbitrary repetition-free knots inside T2 × R? Here we say
that a knot K inside T2×R is repetition-free if each nonzero coefficient of WKf

is equal to ±1.
For example, it would be interesting to determine which subsets of Z2/Zδ may appear with
nonzero coefficients inside WK for a repetition-free K, and whether the HOMFLY polynomial
of K (or its Khovanov–Rozansky homology) have nice properties when K is repetition-free.
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