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Abstract. The amplituhedra arise as images of the totally nonnegative Grassmannians by projections
that are induced by linear maps. They were introduced in Physics by Arkani-Hamed & Trnka (Journal of
High Energy Physics, 2014) as model spaces that should provide a better understanding of the scattering
amplitudes of quantum field theories. The topology of the amplituhedra has been known only in a few
special cases, where they turned out to be homeomorphic to balls. The amplituhedra are special cases
of Grassmann polytopes introduced by Lam (Current Developments in Mathematics 2014, Int. Press).
In this paper we show that that some further amplituhedra are homeomorphic to balls, and that some
more Grassmann polytopes and amplituhedra are contractible.

1. Introduction and statement of the main result

1.1. Introduction. Let n and k be integers such that n ≥ k ≥ 1. If Matk,n denotes the space of all real
k × n matrices of rank k, then the real Grassmannian Gk(Rn) — the space of all k-dimensional linear
subspaces of Rn — can be defined as the orbit space Gk(Rn) = GLk \Matk,n. The totally nonnegative
part of the Grassmannian is defined quite analogously.

Definition 1.1 (Postnikov [20, Sec. 3]). Let n ≥ k ≥ 1 be integers, let Mat≥0
k,n be the space of all real

k×n matrices of rank k all whose maximal minors are nonnegative, and let GL+
k denote the group of all

real k× k matrices with positive determinant, which acts freely on Mat≥0
k,n by matrix multiplication from

the left. The totally nonnegative Grassmannian G≥0
k (Rn) is the orbit space G≥0

k (Rn) = GL+
k \Mat≥0

k,n.

The totally nonnegative Grassmannian was introduced and studied by Postnikov in 2006 [20, Sec. 3],
building on works by Lusztig [17] and by Fomin & Zelevinsky [9]. Subsequently, the geometric and
combinatorial properties of the totally nonnegative Grassmannian were studied intensively. Rietsch &
Williams showed that the totally nonnegative Grassmannian is contractible [22, Thm. 1.1]; an earlier
argument by Lusztig [18, Sec. 4.4] can also be adapted to prove the same. Galashin, Karp & Lam [10,
Thm. 1.1] proved that G≥0

k (Rn) is indeed homeomorphic to a closed k(n− k)-dimensional ball.
In 2014, the physicists Arkani-Hamed & Trnka [3, Sec. 9] introduced the amplituhedra as certain images

of the totally nonnegative Grassmannians. They conjectured that their geometry describes scattering
amplitudes in some quantum field theories. For a gentle introduction to amplituhedra in physics and
mathematics consult [5]. Shortly after, Lam introduced Grassmann polytopes [16], which generalize
amplituhedra.

Postnikov [20, Def. 3.2, Thm. 3.5] defined a CW structure on the totally nonnegative Grassmannian
G≥0
k (Rn) such that each cell, also called a positroid cell, is indexed by the associated matroid – a positroid

– of rank k on n elements, see also [21]. Furthermore, Rietsch & Williams [22] showed that the closures
of positroid cells are contractible and that their boundaries are homotopy equivalent to spheres.

Definition 1.2. Let k ≥ 1, m ≥ 0 and n ≥ k + m be integers, and let Z be a real (k + m) × n matrix
such that the assignment

Z̃(span(V )) = span(V Z>) (1)
induces a map

Z̃ : G≥0
k (Rn) −→ Gk(Rk+m).

Here V ∈ Mat≥0
k,n, span denotes the row span of a matrix, and Z> is the transpose of the matrix Z.

The image Z̃(ē) of a closed positroid cell ē in the CW decomposition of the nonnegative Grassmannian
G≥0
k (Rn) is called a Grassmann polytope, denoted by PZ(e). If e is the maximal cell, which for this CW
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decomposition means ē = G≥0
k (Rn), and all (k +m)× (k +m) minors of the matrix Z are positive, then

the Grassmann polytope PZ(e) is called an amplituhedron and is denoted by An,k,m(Z).

The previous definition in particular means that if v1, . . . , vk ∈ Rn are linearly independent row vectors,
then

Z̃(span{v1, . . . , vk}) = span{v1Z
>, . . . , vkZ

>}.
The map Z̃ is, said to be well defined, if span(V Z>) is a k-dimensional subspace of Rk+m for every
V ∈ Mat≥0

k,n. The fact that the map Z̃ is well defined when Z is a matrix with positive maximal minors
was established by Arkani-Hamed & Trnka in [3] and by Karp in [14, Thm. 4.2]. Lam [16, Prop. 15.2],
however, considers a larger class of matrices Z for which the map Z̃ is still well defined.

The structure of the amplituhedron is known only in a few cases. In the case m = 0 all amplituhedra
An,k,0(Z) are the point Gk(Rk), whereas when m = 1 Karp & Williams [15, Cor. 6.18] have shown that
the amplituhedron is homeomorphic to a ball. For k = 1 the amplituhedron is a cyclic polytope of
dimension m on n vertices [24], and for n = k +m the map Z is a linear isomorphism, and consequently
the amplituhedron is homeomorphic to the totally nonnegative Grassmannian G≥0

k (Rn), which is a ball
by [10, Thm. 1.1]. Finally, Galashin, Karp & Lam [10, Thm. 1.2] proved that the cyclically symmetric
amplituhedra, amplituhedra arising from particularly chosen matrices Z, are homeomorphic to balls
whenever m is even. The topology of other Grassmann polytopes is unknown.

1.2. Main results. Our first result gives a family of contractible Grassmann polytopes.

Theorem 1.3. Let k ≥ 1 and m ≥ 0 be integers, and let Z be a real (k +m)× (k +m+ 1) matrix such
that the map Z̃ : G≥0

k (Rk+m+1) −→ Gk(Rk+m) is well defined. Then the Grassmann polytope PZ(e) is
contractible for every positroid cell e in the CW decomposition of G≥0

k (Rk+m+1).

The proof of Theorem 1.3 relies on classical results of Smale [23, Main Thm.] and Whitehead [25,
Thm. 1].

The following is a consequence of Smale’s result [23, Main Thm.].

Theorem 1.4 (Smale). Let X and Y be path connected, locally compact, separable metric spaces, and in
addition let X be locally contractible. Let f : X −→ Y be a continuous surjective proper map, that is, any
inverse image of a compact set is compact. If for every y ∈ Y the inverse image f−1({y}) is contractible,
then the induced homomorphism

f# : πi(X) −→ πi(Y )

is an isomorphism for all i ≥ 0.

Recall that a continuous map f : X −→ Y between topological spaces X and Y is a weak homotopy
equivalence if the induced map on the path connected components f# : π0(X) −→ π0(Y ) is bijective, and
for every point x0 ∈ X and for every integer n ≥ 1 the induced map f# : πn(X,x0) −→ πn(Y, f(x0)) is
an isomorphism.

Theorem 1.5 ([25, Thm. 1]). Let X and Y be topological spaces that are homotopy equivalent to CW
complexes. Then a continuous map f : X −→ Y is a weak homotopy equivalence if and only if it is a
homotopy equivalence.

Since Theorem 1.5 requires that spaces have the homotopy type of a CW complex, the following
theorem is a necessary ingredient in the proof of Theorem 1.3.

Theorem 1.6. Let k ≥ 1, m ≥ 0 and n ≥ k + m be integers, and let Z be a real (k + m) × n matrix
such that the map Z̃ is well defined. Then for every positroid cell e in G≥0

k (Rn), the Grassmann polytope
PZ(e) is homotopy equivalent to a countable CW complex. Moreover, if n = k + m + 1, the Grassmann
polytope PZ(e) is homotopy equivalent to a finite CW complex.

In order to apply Theorem 1.4 to the map Z̃, we need to understand its fibers. Thus we prove the
following theorem.

Theorem 1.7. Let k ≥ 1 and m ≥ 0 be integers, and let Z be a real (k +m)× (k +m+ 1) matrix such
that the map Z̃ is well defined. Then for every positroid cell e and for every point y ∈ PZ(e), the inverse
image (Z̃|ē)−1({y}) = Z̃−1({y}) ∩ ē under the restriction map Z̃|ē : ē −→ PZ(e) is contractible.

The proof of Theorem 1.7 is postponed to the next section, whereas the proof of Theorem 1.6 is given
in Section 4. Here we show that Theorem 1.7 in combination with Theorem 1.4 and Theorem 1.5 implies
our main result.



SOME MORE AMPLITUHEDRA ARE CONTRACTIBLE 3

Proof of Theorem 1.3. Let e be a positroid cell in the CW decomposition of G≥0
k (Rk+m+1). We apply

Theorem 1.4 to the map Z̃ : ē −→ PZ(e). The spaces ē and PZ(e), as well as the map Z̃, satisfy
assumptions of Theorem 1.4. Furthermore, Theorem 1.7 implies that for every y ∈ ē, the fiber Z̃−1({y})
is contractible. Thus, from Theorem 1.4 we have that the map Z̃ is a weak homotopy equivalence.

The closed positroid cell ē is a CW complex. Furthermore, the Grassmann polytope PZ(e) is homotopy
equivalent to a CW complex, by Theorem 1.6. Thus, from Theorem 1.5 we conclude that the map Z̃
is a homotopy equivalence. Hence, the Grassmann polytope PZ(e) is homotopy equivalent to the closed
positroid cell ē, which is contractible, see [22]. �

In Theorem 1.6, we show that Grassmann polytopes are homotopy equivalent to CW complexes, using
classical topological results. However, an even stronger result holds.

Theorem 1.8. Every Grassmann polytope is a semialgebraic set. In particular, it admits a triangulation.

Note that Theorem 1.8 claims that every Grassmann polytope PZ(e) can be triangulated in a classical
sense, thus there exists a simplicial complex T and a homeomorphism T −→ PZ(e). This is, however,
not a triangulation in terms of [16].

In particular, the above theorem gives an implicit answer to [16, Problem15.9], which asks to describe
a Grassmann polytope by inequalities. A related question in the case m = 2 was investigated in [2].

The proof of Theorem 1.8 is given in Section 5. We note that a very similar argument to ours was also
given by Arkani-Hamed, Bai & Lam in [1, Appendix J].

Theorem 1.3 in particular implies that all amplituhedra Ak+m+1,k,m(Z) are contractible. Our next
result shows that if in addition m is even, they are homeomorphic to balls.

Theorem 1.9. Let k ≥ 1 be an integer, let m ≥ 0 be an even integer, and let Z ∈ Matk+m,k+m+1 be a
matrix with all (k + m) × (k + m) minors positive. Then the amplituhedron Ak+m+1,k,m(Z) induced by
the matrix Z is homeomorphic to a km-dimensional ball.

The proof of Theorem 1.9 is presented in Section 3. We remark that the combinatorics of the ampli-
tuhedron in the case n = k +m+ 1 with m even has been recently studied in detail in [11].

Acknowledgement. We are grateful to Rainer Sinn for sharing the knowledge about semialgebraic sets,
to Thomas Lam, whose great observations improved the generality of this paper, and to Steven Karp for
helpful comments.

2. Proof of Theorem 1.7

Let k ≥ 1,m ≥ 0 and n ≥ k + m be integers and let Z be a real (k + m) × (k + m + 1) matrix such
that the map Z̃ is well defined. Since the action of the group GL+

k on Mat≥0
k,n is free, there is a fibration

GL+
k −→ Mat≥0

k,n −→ G≥0
k (Rn). (2)

The matrix Z, as in Definition 1.2, induces a map

Ẑ : Mat≥0
k,n −→ Matk,k+m,

V 7−→ V Z>,

which is again well defined, see for example [16, Prop. 15.2].
Let e be a positroid cell in the CW decomposition of G≥0

k (Rn), and let Ie ⊆
(

[n]
k

)
be the family of

nonbases (dependent sets) of cardinality k of the matroid that defines the cell e. The maximal minors of
a k×n matrix are indexed by the set

(
[n]
k

)
. Denote by Mat≥0

k,n(e) the set of all matrices V ∈ Mat≥0
k,n whose

minors indexed by elements of Ie are equal to zero. Then every point in ē ⊆ G≥0
k (Rn) is represented by a

matrix in Mat≥0
k,n(e), and the row span of every such matrix lies in ē. In other words, ē = GL+

k \Mat≥0
k,n(e).

Thus the restriction of the fibration (2) is a fibration

GL+
k −→ Mat≥0

k,n(e) −→ ē. (3)

Note that if e is the maximal positroid cell, the set Mat≥0
k,n(e) is the whole set Mat≥0

k,n.

Denote by P̂Z(e) the image of the set Mat≥0
k,n(e) under the map Ẑ. With a usual abuse of notation, we

consider maps Ẑ : Mat≥0
k,n(e) −→ P̂Z(e) and Z̃ : ē −→ PZ(e). Then there exists a commutative diagram
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of spaces and continuous maps

Mat≥0
k,n(e) P̂Z(e)

ē PZ(e),

Ẑ

Z̃

where vertical maps send any matrix to its row span.

The proof of Theorem 1.7 splits into the following two lemmas.

Lemma 2.1. Let k ≥ 1 and m ≥ 0 be integers, n = k + m + 1, and let Z be a real (k + m) × n matrix
such that the map Z̃ is well defined. Then for every positroid cell e in the CW decomposition of G≥0

k (Rn)

and for every W ∈ P̂Z(e), the inverse image Ẑ−1({W}) ⊆ Mat≥0
k,n(e) is nonempty and convex.

Proof. The matrix Z induces a linear map

Rn −→ Rk+m (4)
v 7−→ vZ>,

where v ∈ Rn is a row vector. Since n = k + m + 1, the kernel of the map (4) is 1-dimensional. Fix a
generator a ∈ Rn of that kernel.

Choose an arbitrary point W ∈ P̂Z(e), and let U and V be any two points in Ẑ−1({W}). Our goal is
to show that for every λ ∈ [0, 1] the convex combination (1− λ)U + λV also belongs to Ẑ−1({W}).

Since UZ> = V Z> = W , the rows of the matrix V − U belong to ker(Z). Consequently, there exists
a row vector x ∈ Rk such that V − U = x>a, where a is also considered as a row vector. Thus we have
to show that for every λ ∈ [0, 1] the convex combination

(1− λ)U + λV = U + λx>a (5)

belongs to the space Mat≥0
k,n(e), this means that every k × k minor of the matrix (5) is nonnegative,

and in addition that all the minors of the matrix (5) indexed by the nonbases Ie ⊆
(

[n]
k

)
of the matroid

corresponding to e are equal to zero.
A k × k submatrix of the matrix (5) is of the formu1i1 + λx1ai1 . . . u1ik + λx1aik

...
...

uki1 + λxkai1 . . . ukik + λxkaik

 , (6)

where

U =

u11 . . . u1n

...
...

uk1 . . . ukn

 , x = (x1 . . . xk), a = (a1 . . . an),

and 1 ≤ i1 < · · · < ik ≤ n. The matrix (6) can be transformed using row operations into a matrix that
contains the variable λ only in one row. Therefore, every k × k minor of the matrix (5) is a polynomial
of degree at most 1 in the variable λ. Since it takes nonnegative values for λ = 0 and λ = 1, it is also
nonnegative for all λ ∈ [0, 1]. Thus for every λ ∈ [0, 1], the point (1 − λ)U + λV belongs to Mat≥0

k,n.
Similarly, if {i1, . . . , ik} is a nonbasis of the matroid corresponding to e, then the determinant of the
matrix (6) is zero for λ = 0 and λ = 1, so it is a constant zero-polynomial, meaning that the matrix (5)
belongs to Mat≥0

k,n(e) for every λ ∈ [0, 1]. Consequently the set Ẑ−1({W}) is convex. �

Lemma 2.2. Let k ≥ 1,m ≥ 0 and n ≥ k + m be integers. For every positroid cell e and for every
W ∈ P̂Z(e), the inverse images

Ẑ−1({W}) ⊆ Mat≥0
k,n(e) ⊆ Mat≥0

k,n and Z̃−1({span(W )}) ⊆ ē ⊆ G≥0
k (Rn)

are homeomorphic.

Proof. Let ϕ : Ẑ−1({W}) −→ Z̃−1({span(W )}) be defined by ϕ(U) = span(U), where U ∈ Ẑ−1({W}),
and span denotes the row span. We prove that ϕ is a homeomorphism.

Clearly, ϕ is continuous, so it suffices to find a continuous map ψ : Z̃−1({span(W )}) −→ Ẑ−1({W})
such that ϕ ◦ ψ is the identity map on Z̃−1({span(W )}) and ψ ◦ ϕ is the identity map on Ẑ−1({W}).
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Let L ∈ Z̃−1({span(W )}). Then there exists a matrix K ∈ Mat≥0
k,n(e) whose rows span the subspace L.

Since
span(KZ>) = span(W ),

there exists a unique C ∈ GLk such that KZ> = CW . Now define ψ as ψ(L) = C−1K. Clearly,
C−1K ∈ Mat≥0

k,n(e). Even though we have defined the map ψ using an arbitrarily chosen matrix K such
that span(K) = L, it can be checked directly that the definition of ψ does not depend on a choice of K.

In order to prove that the map ψ is continuous, we need to show that the choice of a matrix K can
be made continuously on Z̃−1({span(W )}). The choice of a matrix K is equivalent to the choice of a
positively oriented basis for the subspace L ⊆ Rn. Therefore, we need a continuous section of the fiber
bundle (3) restricted to the set Z̃−1({span(W )}). Since the base space ē is contractible, the fiber bundle
(3) is trivial. In particular, its restriction on Z̃−1({span(W )}) is also trivial, so it admits a continuous
section. Therefore, the bases for elements of Z̃−1({span(W )}) can be chosen continuously. On the other
hand, the matrix C is a solution of the linear system KZ> = CW , which depends continuously on K,
thus it also depends continuously on L.

Lastly,
ϕ(ψ(L)) = ϕ(C−1K) = span(C−1K) = span(K) = L,

holds for every L ∈ Z̃−1({span(W )}), and

ψ(ϕ(U)) = ψ(span(U)) = UC−1,

for every U ∈ Ẑ−1({W}), where C is the unique k × k matrix such that W = Ẑ(U) = UZ> = CW ,
hence C is the identity matrix. �

Finally, Lemma 2.1 and Lemma 2.2 complete the proof of Theorem 1.7.

3. Proof of Theorem 1.9

Let k ≥ 1, m ≥ 0 and n ≥ k + m be integers, and suppose in addition that m is even. Let S ∈ GLn
be given by

S(x1, . . . , xn) = (x2, . . . , xn, (−1)k−1x1).

Denote by Z0 ∈ Matk+m,n the matrix whose rows are the eigenvectors of the matrix S + S> that
correspond to the largest k+m eigenvalues. It was shown in [10, Lemma 3.1] that all (k+m)× (k+m)
minors of the matrix Z0 are positive, thus it defines an amplituhedron An,k,m(Z0), called cyclically
symmetric amplituhedron. Galashin, Karp & Lam [10, Thm. 1.2] showed thatAn,k,m(Z0) is homeomorphic
to a closed km-dimensional ball whenever the parameter m is even.

We conclude the proof of Theorem 1.9 by showing that the amplituhedra An,k,m(Z) and An,k,m(Z0)
are homeomorphic.

From [14, Cor. 1.12(ii)] we know that entries of every nonzero vector of ker(Z0) and of ker(Z) are
nonzero, and they alternate in sign. Since n = k + m + 1, the kernels of matrices Z and Z0 are 1-
dimensional. Let a = (a1, . . . , an) ∈ Rn be a generator of the kernel of Z and let b = (b1, . . . , bn) ∈ Rn
be a generator of the kernel of Z0

1. Choose them in such a way that a1 and b1 have the same sign.
Consequently, for every 1 ≤ i ≤ n, the entries ai and bi have the same sign. Let D be an n× n diagonal
matrix D = diag(a1b1 , . . . ,

an
bn

). The matrix ZD has the same kernel as the matrix Z0, and since the
diagonal entries of the matrix D are positive, all maximal minors of the matrix ZD are positive. The
fact that the matrices ZD and Z0 have the same kernel implies that they have the same row spans, as
well. In particular, there exists a matrix C ∈ GL+

k+m such that Z0 = CZD.
Multiplication by D on the right gives a homeomorphism D̂ : Mat≥0

k,n −→ Mat≥0
k,n, which induces a

homeomorphism D̃ : G≥0
k (Rn) −→ G≥0

k (Rn). Furthermore, multiplication by C> on the right gives a
homeomorphism Ĉ : Matk,k+m −→ Matk,k+m, thus the induced map C̃ : Gk(Rk+m) −→ Gk(Rk+m) is
also a homeomorphism. Hence, we obtain the commutative diagram of spaces and maps

Mat≥0
k,n Mat≥0

k,n Matk,k+m Matk,k+m

G≥0
k (Rn) G≥0

k (Rn) Gk(Rk+m) Gk(Rk+m).

D̂ Ẑ Ĉ

D̃ Z̃ C̃

1It follows from the cyclic symmetry of Z0 that bi = (−1)i−1 for 1 ≤ i ≤ n. See [10] for details.
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The image of the composition C̃ ◦ Z̃ ◦ D̃ of the maps in the lower row of the diagram is the cyclically
symmetric amplituhedron An,k,m(Z0) and the image of the map Z̃ is the amplituhedron An,k,m(Z). Since
the maps C̃ and D̃ are homeomorphisms, these two amplituhedra are homeomorphic. Finally, the fact
that the cyclically symmetric amplituhedron An,k,m(Z0) is homeomorphic to a km-dimensional ball [10,
Thm. 1.2], whenm is even, concludes the argument that every amplituhedron An,k,m(Z) is homeomorphic
to a km-dimensional ball whenever n = k +m+ 1 and m is even.

4. Proof of Theorem 1.6

Let e be a positroid cell in the nonnegative Grassmannian G≥0
k (Rn), and let Z be a matrix that defines

the Grassmann polytope PZ(e). By [19, Thm. 1], the Grassmann polytope PZ(e) has the homotopy type
of a countable CW complex if and only if it has the homotopy type of an absolute neighborhood retract
(ANR). Furthermore, by [4, p. 240] the space PZ(e) is an ANR if it is compact and locally contractible,
see also [12, p. 389]. Since the closed positroid cell ē is compact, the Grassmann polytope PZ(e) is also
compact. Thus, it remains to show that PZ(e) is locally contractible.

Applying the Gram-Schmidt orthogonalization on the fibration (3), we obtain a fibration

SO(k) −→ E1 −→ ē, (7)

where the total space E1 is a subspace of the orthonormal Stiefel manifold. Similarly, we obtain a fibration

SO(k) −→ E2 −→ PZ(e). (8)

We also consider a commutative diagram of spaces and continuous maps

E1 E2

ē PZ(e),

Ẑ

Z̃

where the horizontal maps are induced by the matrix Z, and the vertical maps send any frame to its
span.

By [8, p. 81], every Euclidean neighborhood retract (ENR) is locally contractible. On the other hand,
if E2 is an SO(k)-ENR, then the orbit space PZ(e) is an ENR, [7, Prop. II.8.9]. Finally, since E2 is
a compact space with a free SO(k)-action, it is an SO(k)-ENR, [13, Thm. 2.1], which completes the
argument that the Grassmann polytope PZ(e) has a homotopy type of a countable CW complex.

Finally, if n = k + m + 1 by Theorem 1.7 and Theorem 1.4, PZ(e) is simply connected, so by [19,
Prop. 1 + Remark] it is homotopy equivalent to a finite CW complex.

5. Proof of Theorem 1.8

Let e be a positroid cell in the CW decomposition of the nonnegative Grassmannian G≥0
k (Rn). Set

d =
(
k+m
k

)
, and consider the Veronese embedding

ν : RPd−1 −→ Rd×d

that maps every point x = (x1 : . . . : xd) ∈ RPd−1 to the matrix(
xixj

x2
1 + · · ·+ x2

d

)
ij

∈ Rd×d.

The embedding ν maps every linear line x ∈ Rd to the matrix of the projection Rd → x.
Consider also the map

ν : Rd −→ Rd×d

given by

(x1, . . . , xd) 7−→
(

xixj
x2

1 + · · ·+ x2
d

)
ij

∈ Rd×d.

Now we obtain the commutative diagram of spaces and maps

Mat≥0
k,n Matk,k+m Rd \ {0} Rd×d

G≥0
k (Rn) Gk(Rk+m) RPd−1 Rd×d,

Ẑ γ

π

ν

id

Z̃ γ ν
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where γ : Gk(Rk+m) −→ RPd−1 is the Plücker embedding, γ : Matk,k+m −→ Rd \ {0} maps every matrix
to the tuple of its k × k minors, and π : Rd \ {0} −→ RPd−1 is the quotient map.

Since the Grassmann polytope PZ(e) is embedded into RPd−1 via γ, and the projective space RPd−1 is
embedded in Rd×d via ν, we show that ν(γ(PZ(e))) is semialgebraic. The commutativity of the diagram
above implies that

ν(γ(PZ(e))) = ν(π(γ(P̂Z(e)))) = ν(γ(P̂Z(e))) = ν(γ(Ẑ(Mat≥0
k,n(e)))).

The set Mat≥0
k,n(e) ⊆ Rk×n is semialgebraic. Since the map Ẑ is multiplication by a matrix, the set

P̂Z(e) is also semialgebraic. Furthermore, every coordinate of the map γ is given by a polynomial, thus
γ(P̂Z(e)) ⊆ Rd \ {0} is semialgebraic, as well. Finally, the map ν : Rd −→ Rd×d is a regular rational
map, thus it maps semialgebraic sets to semialgebraic sets, see [6, Sec. 2.2.1].
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