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Abstract. We show that Zamolodchikov dynamics of a recur-
rent quiver has zero algebraic entropy only if the quiver has a
weakly subadditive labeling, and conjecture the converse. By as-
signing a pair of generalized Cartan matrices of affine type to each
quiver with an additive labeling, we completely classify such quiv-
ers, obtaining 40 infinite families and 13 exceptional quivers. This
completes the program of classifying Zamolodchikov periodic and
integrable quivers.
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Introduction

Given a bipartite quiver Q which is just a directed bipartite graph
without directed cycles of length 1 and 2, one can define a certain
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discrete dynamical system called the T -system associated with Q. It
assigns a multivariate rational function Tv(t) to each vertex v of Q and
each integer t and satisfies the following recurrence relation

(0.1) Tv(t+ 1)Tv(t− 1) =
∏
u→v

Tu(t) +
∏
v→w

Tw(t).

For certain quivers Q, this relation specializes to various well studied
objects such as the octahedron recurrence of Speyer [39] when Q is
an orientation of the square grid, or Conway–Coxeter frieze patterns
(see [2, Section 2] for a definition) when Q is acyclic.

When a bipartite quiver Q satisfies a certain simple local condi-
tion (we call such quivers recurrent), the T -system dynamics can be
viewed as a special case of a cluster algebra, see [9]. A particularly
well-studied class of T -systems is related to Zamolodchikov periodicity.
It was conjectured by Zamolodchikov [45] that if Q is an orientation
of an ADE Dynkin diagram of finite type then the T -system is peri-
odic. This conjecture was later generalized by Kuniba-Nakanishi [27]
and Ravanini-Valleriani-Tateo [37] to the case when Q is a tensor prod-
uct of two finite ADE Dynkin diagrams. The conjecture stayed open
for around twenty years with various special cases being completed
in [37, 27, 28, 10, 18, 44, 42]. It was finally resolved for all pairs of
finite ADE Dynkin diagrams by Keller [24].

For the connections of T -systems with thermodynamic Bethe ansatz
[45] as well as their other appearances in physics and representation
theory, see [28, 25, 38, 34, 12, 26, 33], and see [29] for a survey. Of
special note is the work of Hernandez [21], where he studied the oc-
currence of T -systems in representation theory for simply-laced quivers
beyond Dynkin quivers.

This is the third and final paper in the series [14, 15] of works that
classify bipartite recurrent quivers for which the T -system satisfies a
certain algebraic property. In [14], we have shown that the T -system
associated to a bipartite recurrent quiver Q is periodic if and only if Q
admits a strictly subadditive labeling. Such quivers turn out to exactly
correspond to commuting pairs of Cartan matrices which have been
classified earlier by Stembridge [41]. In particular, tensor products of
finite ADE Dynkin diagrams belong to this family, so the result of [14]
is a generalization of the result of [24].

Next, we showed in [15] that the values of the T -system satisfy a
linear recurrence only if Q admits a subadditive labeling. We gave an
analogous classification for quivers admitting a subadditive labeling.
In particular, it includes tensor products of an affine ADE Dynkin di-
agram with a finite ADE Dynkin diagram. This classification allowed
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an extensive computational verification of the conjecture that the con-
verse is also true, i.e., for every bipartite recurrent quiver Q admitting
a subadditive labeling, the associated T -system satisfies a linear re-
currence. We proved this claim for the case when Q has type Â ⊗ A
using a combinatorial formula due to Speyer [39] for the octahedron
recurrence.

In this text, we classify (Section 6) bipartite recurrent quivers ad-
mitting a weakly subadditive labeling. We use algebraic entropy as a
motivating property of the T -system that conjecturally characterizes
such quivers. Having zero algebraic entropy is a frequently used crite-
rion for checking integrability of a discrete dynamical system. It was
introduced in [8] and further developed in [3, 22]. Roughly speak-
ing, the fact that the algebraic entropy of a discrete dynamical system
is nonzero means that its values grow doubly exponentially, i.e., as
exp(exp(ct)) for some positive constant c. We show in Section 3 that
for any bipartite recurrent quiver that does not admit a weakly subad-
ditive labeling, the T -system has nonzero algebraic entropy. Using our
classification again we get rich computational evidence suggesting that
for the remaining bipartite recurrent quivers (that is, the ones from
our classification), the values of the T -system grow quadratic exponen-
tially, i.e. as exp(ct2). Thus there seems to be a big gap in the rate of
growth that separates the T -systems associated to the quivers in our
classification from all other T -systems.

For two special cases (quivers of type Â ⊗ Â and twists Λ̂ × Λ̂ of
affine ADE Dynkin diagrams) we prove in Sections 3.2 and 8 respec-
tively that the growth is quadratic exponential. The former again is
a consequence of Speyer’s formula for the octahedron recurrence. We
finish the text (Section 9) by giving some refinements of the rate of
growth conjecture. In particular, we conjecture that the Y -systems
associated to the quivers from our classification are Arnold-Liouville
integrable.

1. Main results

Let us start by introducing some notions necessary to formulate our
results. As we have mentioned, a quiver Q is a directed graph without
loops and pairs of arrows forming a directed 2-cycle.

Given a quiver Q with vertex set Vert(Q), a vertex v ∈ Vert(Q),
and a family T∗ = (Tu)u∈Vert(Q) of rational functions in some set x
of variables, one can define the mutation operation µv that produces
a new quiver µv(Q) with the same set Vert(Q) of vertices and a new
family µv(T∗) = (T ′u)u∈Vert(Q) according to a certain set of combinatorial
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rules. The definition of the quiver µv(Q) is given in Definition 2.14 and
µv(T∗) is defined as follows. For u 6= v, we set T ′u := Tu, and for u = v
we put

(1.1) T ′v =

∏
u→v Tu +

∏
v→w Tw

Tv
.

Here the product is taken over all arrows in Q. It follows from the
definition that the operations µv and µw commute when there are no
arrows between v and w in Q.

We say that a quiver Q is bipartite if there exists a map ε : Vert(Q)→
{0, 1}, v 7→ εv called a bipartition such that for every arrow u → v of
Q we have εu 6= εv. It follows that for a bipartite quiver, the operations

(1.2) µ0 =
∏

u:εu=0

µu; µ1 =
∏
v:εv=1

µv

are well defined since the results of products are independent of the
order. We are now ready to introduce a crucial notion of a recurrent
quiver.

Definition 1.1. We say that a bipartite quiverQ is recurrent if µ0(Q) =
µ1(Q) = Qop where Qop is the quiver obtained from Q by reversing all
of its arrows.

We give an alternative simpler definition for bipartite recurrent quiv-
ers in Corollary 2.15.

Let us now define the T -system. The main part of the definition will
be equation (0.1). Note that for each of the terms Tv(t + 1), Tv(t −
1), Tu(t), Tw(t) involved in (0.1), the numbers

εv + t+ 1, εv + t− 1, εu + t, εw + t

all have the same parity. Thus it makes sense to restrict the values of
the T -system to only pairs (v, t) such that t ≡ εv (mod 2).

Definition 1.2. Given a bipartite recurrent quiverQ with a bipartition
ε, the T -system associated with Q is a family Tv(t) of rational functions
in variables x = {xv}v∈Vert(Q) defined for any v ∈ Vert(Q) and any t ∈ Z
satisfying t ≡ εv (mod 2). For any v ∈ Vert(Q) and t 6≡ εv (mod 2),
the values of the T -system are required to satisfy (0.1). Finally, for
each v ∈ Vert(Q), we impose an initial condition

(1.3) Tv(εv) = xv.

One easily observes that (1.3) and (0.1) determine Tv(t) uniquely for
any t ≡ εv (mod 2).

Since the T -system is defined for only bipartite recurrent quivers, it
can be viewed as a composition of mutations µ0µ1, see (1.1) and (1.2).
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As a consequence, it follows from the Laurent phenomenon property
of cluster algebras [9] that for any t ≡ εv (mod 2), the value Tv(t) is
actually a Laurent polynomial in x: Tv(t) ∈ Z[x±1].

For v, u ∈ Vert(Q) and t ≡ εv (mod 2), define degmax(xu;Tv(t)) to
be the maximal degree of the variable xu in the Laurent polynomial
Tv(t).

Definition 1.3. We say that Q has algebraic entropy zero if for any
two vertices u, v ∈ Vert(Q) we have

(1.4) lim
t→∞

log (degmax(xu, Tv(εv + 2t)))

t
= 0.

Before we state our main results, let us give one more definition.

Definition 1.4. Given a quiver Q, we say that a map λ : Vert(Q) →
R>0 is a weakly subadditive labeling if for any vertex v ∈ Vert(Q), we
have

(1.5) 2λ(v) ≥ max

(∑
u→v

λ(u),
∑
v→w

λ(v)

)
.

This is a generalization of Vinberg’s additive functions [43]. We
recall the analogous definitions of strictly subadditive and subadditive
labelings in Definition 2.19.

Theorem 1.5. Suppose that Q is a bipartite recurrent quiver. If Q
does not admit a weakly subadditive labeling then Q does not have zero
algebraic entropy.

Our second main result is the classification (Theorem 6.1) of bipartite
recurrent quivers that admit weakly subadditive labelings.

By Theorem 1.5, every quiver Q that has algebraic entropy zero ad-
mits a weakly subadditive labeling and therefore is necessarily one of
the quivers in our classification. According to our computer experi-
ments, we give a precise conjecture describing the asymptotics of the
T -system.

Definition 1.6. Let f(0), f(1), . . . be a sequence of positive real num-
bers. We say that f

(1) is bounded if there exists a constant M such that f(t) < M for
all t ≥ 0;

(2) grows exponentially if there exists a positive limit of

log(f(t))

t
;
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(3) grows quadratic exponentially if there exists a positive limit of

log(f(t))

t2
;

(4) grows doubly exponentially if there exists a positive limit of

log log(f(t))

t
.

Conjecture 1.7. Let Q be a bipartite recurrent quiver. Substitute
some positive real numbers for each variable in x. Let f(t) = Tv(εv +
2t), t ≥ 0 be the sequence of values of the T -system at vertex v that
we get after such a substitution.

(1) If Q admits a strictly subadditive labeling then f is bounded
(and in fact is periodic);

(2) otherwise, if Q admits a subadditive labeling then f grows ex-
ponentially (and satisfies a linear recurrence);

(3) otherwise, if Q admits a weakly subadditive labeling then f
grows quadratic exponentially;

(4) otherwise f grows doubly exponentially.

Some parts of this conjecture are already proven. For example, we
proved part (1) in [14]. A weaker version of part (2) was shown in [15].
In this paper, we prove part (4) and a weaker version of part (3). When
all components of the bigraph associated with Q (see Definition 2.3) are

of type A or Â, we prove all parts of Conjecture 1.7 in full generality.
We do the same when Q is a twist (see Definition 5.1) of a finite or
affine ADE Dynkin diagram.

Remark 1.8. Discrete dynamical systems exhibiting only bounded,
linear, quadratic, or exponential growth of the degrees appear in sur-
prisingly many diverse contexts. One example is the analogous re-
sult for cluster mutation-periodic quivers with period 1, see [11, Theo-
rem 3.12]. Other instances include [13, 6]. We thank Andrew Hone for
bringing these references to our attention.

2. Preliminaries

2.1. Bigraphs. We follow very closely the exposition in [15]. We start
by briefly recalling the correspondence between bipartite quivers and
bipartite bigraphs introduced by Stembridge [41].

Definition 2.1. A bigraph is a pair G = (Γ,∆) of simple undirected
graphs on the same vertex set that do not share any edges. A bigraph
is called bipartite if there is a map ε : V → {0, 1} such that for every
edge (u, v) of Γ or ∆ we have εu 6= εv.
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The graphs Γ and ∆ are allowed to have multiple edges but no loops.
Throughout, we assume all bigraphs to be bipartite.

Since our main result is a classification of certain bigraphs, we write
down the obvious definition of an isomorphism between two such ob-
jects.

Definition 2.2. Two bigraphs G = (Γ,∆) and G′ = (Γ′,∆′) are called
isomorphic if there is a map φ : Vert(G)→ Vert(G′) such that for any
u, v ∈ Vert(G) we have

• (u, v) ∈ Γ⇔ (φ(u), φ(v)) ∈ Γ′, and
• (u, v) ∈ ∆⇔ (φ(u), φ(v)) ∈ ∆′.

There is a simple correspondence between bipartite quivers and bi-
partite bigraphs that we now explain.

Definition 2.3. Given a bipartite quiverQ with bipartition ε : Vert(Q)→
{0, 1}, define the bigraph G(Q) = (Γ(Q),∆(Q)) with the same vertex
set as follows:

• For every directed edge u → v of Q with εu = 0, εv = 1, Γ(Q)
contains an undirected edge (u, v).
• For every directed edge u → v of Q with εu = 1, εv = 0, ∆(Q)

contains an undirected edge (u, v).

Thus every arrow of Q corresponds to precisely one edge of G(Q).
Note also that this is a bijection: given a bipartite bigraph G with a
bipartition ε, one can easily reconstruct the bipartite quiver Q = Q(G)
such that G = G(Q).

We represent a bigraph G = (Γ,∆) as a simple graph with the edges
of Γ colored red and the edges of ∆ colored blue.

Let us recall the definition of a tensor product of two bipartite graphs:

Definition 2.4. Let S and T be two bipartite undirected graphs. Then
their tensor product S⊗T is a bipartite bigraph G = (Γ,∆) with vertex
set Vert(S)× Vert(T ) and the following edge sets:

• for each edge {u, u′} ∈ S and each vertex v ∈ T there is an edge
between (u, v) and (u′, v) in Γ;
• for each vertex u ∈ S and each edge {v, v′} ∈ T there is an edge

between (u, v) and (u, v′) in ∆;

An example of a tensor product is given in Figure 1.

2.1.1. T -systems for bipartite bigraphs. Just as in [14, 15], we reformu-
late the definition of the T -system in the language of bigraphs that is
more convenient for us to work with.
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Figure 1. A tensor product of a hexagon (type Â5)

and a 2-cycle (type Â1). Tensor products are listed as
family #1 in our classification in Section 6.

Name Finite diagram h(Λ)
A` (` ≥ 1) `+ 1

D` (` ≥ 4) 2`− 2

E6 12

E7 18

E8 30

Figure 2. Finite ADE Dynkin diagrams and their
Coxeter numbers. Each diagram whose name contains
index ` has ` vertices.

Definition 2.5. Let G = (Γ,∆) be a bipartite bigraph with vertex set
V . Then the associated T -system for G is defined as follows:

Tv(t+ 1)Tv(t− 1) =
∏

(u,v)∈Γ

Tu(t) +
∏

(v,w)∈∆

Tw(t);

Tv(εv) = xv.

It is easy to see that we have Tv(t) = T ′v(t) where T ′v(t) is the value
of the T -system associated with Q(G) via Definition 1.2.

2.2. Finite and affine ADE Dynkin diagrams.
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Name Affine diagram h(2)(Λ̂)

Â` (` ≥ 1)
1

1 1 1
1

111
`+ 1

D̂` (` ≥ 4) 1

1
2 2 2

1

1

4(`− 2)

Ê6

12
1 2

3
21

24

Ê7

2
123

4
3 2 1

48

Ê8

3

2 4 6 5 4 3 2 1 120

Figure 3. Affine ADE Dynkin diagrams together with
their additive functions and McKay numbers. Each dia-
gram whose name contains index ` has `+ 1 vertices.

Definition 2.6. Given an undirected graph G = (V,E) with possibly
multiple edges, we say that a map λ : V → R>0 is an additive function
if for all v ∈ V we have

(2.1) 2λ(v) =
∑

(u,v)∈E

λ(u).

The following characterization of affine ADE Dynkin diagrams is
due to Vinberg [43]:

Theorem 2.7. Let G = (V,E) be an undirected graph with possibly
multiple edges. Then G is an affine ADE Dynkin diagram if and only
if there exists an additive function for G.

Finite and affine ADE Dynkin diagrams are given in Figures 2 and 3
respectively. The affine diagrams are drawn together with the values
of their additive functions. We scale the values of the additive function
so that they are relatively prime positive integers. Note that the only
affine ADE Dynkin diagram that is not a bipartite graph is Â2n for
n ≥ 1.

For each finite ADE Dynkin diagram Λ there is an associated integer
h(Λ) called the Coxeter number. We list Coxeter numbers of finite
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ADE Dynkin diagrams in Figure 2. If Λ̂ is an affine ADE Dynkin
diagram, we set h(Λ̂) =∞.

The Coxeter number has various nice interpretations, we list some
of them below.

Proposition 2.8.

• If Λ is a finite ADE Dynkin diagram then the dominant eigen-
value of its adjacency matrix equals 2 cos(π/h(Λ)) [5, Exer-
cise V.6.4];

• if Λ̂ is an affine ADE Dynkin diagram then the dominant eigen-
value of its adjacency matrix equals 2 [23, Theorem 4.3].
• The Coxeter element of the Coxeter group associated with Λ has

period h(Λ) [5, Chapter V, §6].

• If Λ̂ is the affine ADE Dynkin diagram corresponding to a finite
ADE Dynkin diagram Λ then h(Λ) equals the sum of the values

of the additive function for Λ̂ [23, Chapter 6]. �

In particular, the first three claims justify setting h(Λ̂) :=∞. Moti-
vated by the last claim, we introduce the following affine analog of the
Coxeter number that will come into play in the proof of our classifica-
tion in Section 7.

Definition 2.9. Given an affine ADE Dynkin diagram Λ̂, its McKay
number h(2)(Λ̂) is the sum of squares of the values of the additive

function for Λ̂.

The values of h(2)(Λ̂) are given in Figure 3. The motivation for

the name comes from the fact that h(2)(Λ̂) is the size of the subgroup

of SU(2) associated with Λ̂ via the McKay correspondence, see [32]
or [40].1

2.3. Generalized Cartan matrices. In this section, we review Kac’s
classification [23] of generalized Cartan matrices of affine type. We will
however need to consider a slightly more general class of matrices.

Definition 2.10. An n × n matrix A = (aij)
n
i,j=1 is called a weak

generalized Cartan matrix if it satisfies the following axioms:

(C1) aii ∈ Z and aii ≤ 2 for i = 1, . . . , n;
(C2) aij are non-positive integers for i 6= j;
(C3) aij = 0 implies aji = 0.

Thus a generalized Cartan matrix is a weak generalized Cartan ma-
trix satisfying aii = 2 for all i ∈ [n] := {1, 2, . . . , n}. We note that weak

1We thank Christian Gaetz for pointing out this connection to us.
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generalized Cartan matrices give rise to special cases of Borcherds gen-
eralized Kac-Moody algebras [4]. Following [23, §4.7], to each weak
generalized Cartan matrix A we associate its Dynkin diagram S(A)
with vertex set [n] as follows. We connect each vertex i to itself by
2 − aii self-loops. Two vertices i 6= j ∈ [n] such that |aij| ≥ |aji|
are connected by |aij| lines in S(A) which are equipped with an ar-
row pointing toward i if |aij| > 1. We say that A is indecomposable
if S(A) is a connected graph. For a column vector u with coordinates
uT = (u1, u2, . . . ), we write u > 0 (resp., u ≥ 0) if all ui > 0 (resp., all
ui ≥ 0).

Theorem 2.11 ([23, Theorem 4.3]). Let A be a real n×n indecompos-
able weak generalized Cartan matrix. Then exactly one of the following
holds:

(Fin) There exists u > 0 such that Au > 0.
(Aff) There exists u > 0 such that Au = 0.
(Ind) There exists u > 0 such that Au < 0.

In cases (Fin), (Aff), (Ind), we will say that A is of finite, affine, or
indefinite type, respectively.

Theorem 2.12.

(1) If A is an indecomposable weak generalized Cartan matrix of
finite type then S(A) is one of the diagrams in Figure 4.

(2) If A is an indecomposable weak generalized Cartan matrix of
affine type then S(A) is one of the diagrams shown in Figure 5.

(3) The labels in Figure 5 are the coordinates of the unique vec-
tor δ = (δ1, . . . , δn) such that Aδ = 0 and the δi are positive
relatively prime integers.

Proof. Most of the statements follow from [23, Theorem 4.8]. The
only additional work one needs to do is the case where we have aii <
2 for some i ∈ [n]. Suppose that A is a weak generalized Cartan
matrix of finite (resp., affine) type such that aii < 2 for some i ∈ [n].
Introduce a 2n× 2n weak generalized Cartan matrix B with indexing
set [n] ∪ [n′] = {1, 2, . . . , n, 1′, 2′, . . . , n′} is obtained from A as follows.
For i 6= j ∈ [n], put bij = bi′j′ = aij and put bij′ = bi′j = 0. For
i ∈ [n], set bii = bi′i′ = 2 and bii′ = bi′i = 2 − aii. It follows that B is
a generalized Cartan matrix of finite (resp., affine) type. Thus S(A) is
obtained from S(B) by taking a quotient with respect to a fixed-point-
free involutive automorphism of order 2, and it is straightforward to
check that the only Dynkin diagrams in Figures 4 and 5 that admit

such an automorphism are A2n, A
(1)
2n+1, C

(1)
2n+1, D

(1)
2n+1, and D

(2)
2n+3. We
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A` ◦ — ◦ — · · · — ◦ — ◦ B` ◦ — ◦ — · · · — ◦ ⇒ ◦

C` ◦ — ◦ — · · · — ◦ ⇐ ◦
D` ◦ — ◦ — · · · — ◦ — ◦

—

◦

E6 ◦ — ◦ — ◦ — ◦ — ◦

—

◦

E7 ◦ — ◦ — ◦ — ◦ — ◦ — ◦

—

◦

E8 ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦

—

◦
F4 ◦ — ◦ ⇒ ◦ — ◦

G2 ◦ V ◦ 1
2
A2`(` ≥ 1) ◦ — ◦ — · · · — ◦ — ◦

Figure 4. Dynkin diagrams of weak generalized Car-
tan matrices of finite type. Each diagram whose name
contains index ` has ` vertices.

denote the corresponding diagram S(A) by 1
2
A2n (Figure 4), 1

2
A

(1)
2n+1,

1
2
C

(1)
2n+1, 1

2
D

(1)
2n+1, and 1

2
D

(2)
2n+3 (Figure 5) respectively. �

Note that a 1× 1 matrix A with a11 ≤ 2 is an indecomposable weak
generalized Cartan matrix for any a11 including a11 = 0. This zero

1 × 1 matrix corresponds to the diagram 1
2
A

(1)
2`+1 for ` = 0 which is a

single vertex with two self-loops. We also denote this diagram by A
(1)
0 .

Remark 2.13. The diagrams in Figure 2 also appear in Figure 4.
Similarly, the diagrams in Figure 3 also appear (with slightly different
names) in Figure 5. This is done intentionally since we treat diagrams
in Figures 2 and 3 as color components of bigraphs (see next section)
while we get diagrams in Figures 4 and 5 as component graphs of
bigraphs (see Theorem 4.7).

2.4. Bipartite recurrent quivers and bigraphs.

Definition 2.14. Let Q be a quiver. For a vertex v of Q one can define
the quiver mutation µv at v as follows:

(1) for each pair of arrows u → v and v → w, create an arrow
u→ w;

(2) reverse the direction of all arrows incident to v;
(3) if some directed 2-cycle is present, remove both of its arrows;

repeat until there are no more directed 2-cycles.

It is straightforward to check that the resulting quiver µv(Q) is well
defined and that µv is an involution. See Figure 6 for an example of
each step.
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A
(1)
` (` ≥ 2) 1 — 1 — · · · — 1 — 1

D
(1)
` (` ≥ 4) 1 — 2 — 2 — · · · — 2 — 1

—

1

—

1

E
(1)
6 1 — 2 — 3 — 2 — 1

—

2

—

1

E
(1)
7 1 — 2 — 3 — 4 — 3 — 2 — 1

—

2

D
(2)
`+1(` ≥ 2) 1 ⇐ 1 — · · · — 1 ⇒ 1

E
(1)
8 2 — 4 — 6 — 5 — 4 — 3 — 2 — 1

—

3

A
(1)
1 1 ⇔ 1 A

(2)
2 2 1 G

(1)
2 1 — 2 V 3 D

(3)
4 1 — 2 W 1

B
(1)
` (` ≥ 3) 1 — 2 — · · · — 2 ⇒ 2

—

1

A
(2)
2`−1(` ≥ 3) 1 — 2 — · · · — 2 ⇐ 1

—

1

C
(1)
` (` ≥ 2) 1 ⇒ 2 — · · · — 2 ⇐ 1 A

(2)
2` (` ≥ 2) 2 ⇐ 2 — · · · — 2 ⇐ 1

F
(1)
4 1 — 2 — 3 ⇒ 4 — 2 E

(2)
6 1 — 2 — 3 ⇐ 2 — 1

1
2
A

(1)
2`+1(` ≥ 0) 1 — 1 — · · · — 1 — 1

1
2
C

(1)
2`+1(` ≥ 1) 1 ⇒ 2 — · · · — 2 — 2

1
2
D

(1)
2`+1(` ≥ 2) 1 — 2 — · · · — 2 — 2

—

1

1
2
D

(2)
2`+3(` ≥ 1) 1 ⇐ 1 — · · · — 1 — 1

Figure 5. Dynkin diagrams of weak generalized Car-
tan matrices of affine type. Each diagram whose name
contains index ` has ` + 1 vertices. The names of the
diagrams are taken from [23].

Now, let Q be a bipartite quiver. Recall that µ0 (resp., µ1) is the
simultaneous mutation at all white (resp., all black) vertices of Q, and
that Q is recurrent if µ0(Q) = µ1(Q) = Qop, see Definition 1.1.

Corollary 2.15. A bipartite quiver Q is recurrent if and only if the
associated bipartite bigraph G(Q) has commuting adjacency matrices
AΓ, A∆.

Equivalently, this means that for any two vertices u,w ∈ Vert(Q),
the number of directed 2-paths u → v → w in Q equals the number
of directed 2-paths w → v → u in Q. In other words, the number of
red-blue paths (u, v) ∈ Γ, (v, w) ∈ ∆ in G equals the number of blue-red
paths (u, v) ∈ ∆, (v, w) ∈ Γ in G.

Let us now recall a few facts from [15].



14 PAVEL GALASHIN AND PAVLO PYLYAVSKYY

a b

dc

a b

dc

a b

dc

a b

dc

Quiver Q Step 1 Step 2 Step 3. This is µa(Q)

Figure 6. Mutating a quiver Q at vertex a. The edges
changed at the corresponding step are highlighted in or-
ange.

Lemma 2.16 ([15, Lemma 1.1.8]). Let G = (Γ,∆) be a connected bi-
graph and assume that the adjacency matrices AΓ, A∆ commute. Then
the dominant eigenvalues of all components of Γ are equal to the same
value µΓ > 0, and the dominant eigenvalues of all components of ∆ are
equal to the same value µ∆ > 0. Matrices AΓ and A∆ have a common
dominant eigenvector v > 0 such that

AΓv = µΓv; A∆v = µ∆v.

�

Applying the well known characterization of affine and finite ADE
Dynkin diagrams by their eigenvalues (see Proposition 2.8), we get the
following:

Corollary 2.17. Suppose that a bipartite bigraph G = (Γ,∆) has com-
muting adjacency matrices. Then exactly one of the following is true:

(i) all components of Γ are finite ADE Dynkin diagrams;
(ii) all components of Γ are affine ADE Dynkin diagrams;

(iii) every component of Γ is neither a finite nor an affine ADE Dynkin
diagram.

A similar claim holds for the components of ∆.

This motivates us to define three families of bipartite bigraphs that
will be of the most importance to us.

Definition 2.18 ([15, Definition 1.1.7]). Let G = (Γ,∆) be a bipartite
bigraph with commuting adjacency matrices. We say that:

(1) G is a finite � finite ADE bigraph if both Γ and ∆ satisfy (i);
(2) G is an affine � finite ADE bigraph if Γ satisfies (ii) and ∆

satisfies (i);
(3) G is an affine � affine ADE bigraph if both Γ and ∆ satisfy (ii).
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The finite � finite ADE bigraphs have been introduced by Stem-
bridge [41] under the name admissible ADE bigraphs.

Let G = (Γ,∆) be a bipartite bigraph on vertex set V . A labeling
of its vertices is a function ν : V → R>0, which assigns a positive real
number ν(v) to each vertex v of G.

Definition 2.19 ([15, Definition 1.1.4]). A labeling ν : V → R>0 is
called

• strictly subadditive if for any vertex v ∈ V ,

2ν(v) >
∑

(u,v)∈Γ

ν(u), and 2ν(v) >
∑

(v,w)∈∆

ν(w).

• subadditive if for any vertex v ∈ V ,

2ν(v) ≥
∑

(u,v)∈Γ

ν(u), and 2ν(v) >
∑

(v,w)∈∆

ν(w).

• weakly subadditive if for any vertex v ∈ V ,

2ν(v) ≥
∑

(u,v)∈Γ

ν(u), and 2ν(v) ≥
∑

(v,w)∈∆

ν(w).

• additive if for any vertex v ∈ V ,

2ν(v) =
∑

(u,v)∈Γ

ν(u), and 2ν(v) =
∑

(v,w)∈∆

ν(w).

Examples of each type can be found in Figure 7.

Thus any additive labeling is not subadditive but is weakly subaddi-
tive. As we will see later, the converse is also true: additive labelings
are precisely the weakly subadditive labelings that are not subadditive.

Strictly subadditive, subadditive and weakly subadditive labelings of
quivers have been introduced by the second author in [36].

The connection between Definitions 2.18 and 2.19 is as follows.

Proposition 2.20 ([15, Proposition 1.1.10]). Let Q be a bipartite re-
current quiver Q and G(Q) = (Γ,∆) be the corresponding bipartite
bigraph. Then

(1) Q admits a strictly subadditive labeling if and only if G(Q) is a
finite � finite ADE bigraph;

(2) Q admits a subadditive labeling which is not strictly subadditive
if and only if G(Q) is an affine � finite ADE bigraph;

(3) Q admits a weakly subadditive labeling which is not subadditive
if and only if G(Q) is an affine � affine ADE bigraph, in which
case Q admits an additive labeling. �
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3

2

3

4

3

2

3

2
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3

3
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3

3

1

2

1

2

3

2

1

2

2

2

2

2

2

Figure 7. A strictly subadditive labeling (left). A sub-
additive labeling (middle). A weakly subadditive label-
ing which is also an additive labeling (right).

2.5. Tropical T -systems. In this section, we recall how to tropicalize
the T -system. We again follow the exposition of [15].

Given a bipartite recurrent quiver Q, we call the associated T -system
from Definition 1.2 the birational T -system associated with Q in order
to distinguish it from another discrete dynamical system which we in-
troduce in this section.

Definition 2.21. Let Q be a bipartite recurrent quiver, and let λ :
Vert(Q) → R be any assignment of real numbers to the vertices of Q.
Then the tropical T -system associated with Q and λ is a family of real
numbers tλv(t) ∈ R defined for every v ∈ Vert(Q), t ∈ Z with t ≡ εv
(mod 2) satisfying the following relations:

tλv(t+ 1) + tλv(t− 1) = max

(∑
u→v

tλu(t),
∑
v→w

tλw(t)

)
;

tλv(εv) = λ(v).

(2.2)

The defining recurrence (2.2) can be translated into the language of
bigraphs in a similar way: if G = (Γ,∆) is a bipartite recurrent bigraph
then the relation becomes

tλv(t+ 1) + tλv(t− 1) = max

 ∑
(u,v)∈Γ

tλu(t),
∑

(v,w)∈∆

tλw(t)

 .

Let P (x) ∈ Z[x±1] be a multivariate Laurent polynomial in variables
x = (xv)v∈Vert(Q). Define P |x=qλ∈ Z[q±1] to be the (univariate) Laurent

polynomial in q obtained from P by substituting xv = qλ(v) for all
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v ∈ Vert(Q). Further, define degmax(q, P |x=qλ) to be the maximal
degree of q in P |x=qλ . The following claim gives a connection between
the birational and tropical T -systems:

Proposition 2.22 ([14, Lemma 6.3]). For every v ∈ Vert(Q), t ∈ Z
with t+ εv even and any λ : Vert(Q)→ R, we have

tλv(t) = degmax

(
q, Tv(t) |x=qλ

)
.

Thus the fact that Q has algebraic entropy zero can be deduced from
the limiting behavior of the tropical T -system associated with Q.

3. Algebraic entropy

In this section, we prove Theorem 1.5 that motivates us to classify
affine � affine ADE bigraphs.

3.1. Proof of Theorem 1.5. Let G = (Γ(Q),∆(Q)) be the bigraph
associated to Q. By Lemma 2.16, there exist positive real numbers
µΓ, µ∆ and a map λ : Vert(Q) → R>0 given by λ(v) = vv for any
vertex v of Q such that for any vertex v ∈ Vert(Q) we have

(3.1)
∑

(u,v)∈Γ

λ(u) = µΓλ(v),
∑

(v,w)∈∆

λ(w) = µ∆λ(v).

By symmetry we may assume that µΓ ≥ µ∆. We claim that µΓ > 2.
Suppose that this is not the case: 2 ≥ µΓ ≥ µ∆ > 0. Then λ is a
weakly subadditive function for Q which contradicts the assumption
of the theorem. Thus we have µΓ > 2. Now consider the tropical
T -system tλ. Combining (2.2) with (3.1) yields

tλv(t+ 1) + tλv(t− 1) = max
(
µΓt

λ
v(t− 1), µ∆t

λ
v(t− 1)

)
= µΓt

λ
v(t− 1).

Here we are using the fact that tλv(t − 1) > 0 which easily follows by
induction as well as the fact that∑

(u,v)∈Γ

tλu(t) = µΓt
λ
v(t− 1),

∑
(v,w)∈∆

tλw(t) = µ∆t
λ
v(t− 1).

Therefore the values of the tropical T -system tλv(t) for this special choice
of λ are given by

tλv(εv + 2t) = λ(v)(µΓ − 1)t.

Since µΓ > 2, it follows that

lim
t→∞

log
(
tλv(εv + 2t)

)
t

= log(µΓ − 1) > 0.

Now it remains to note that any point p = (pu)u∈Vert(Q) of the Newton
polytope (see [14, Section 6.1]) of Tv(εv+2t) satisfies pu ≤ degmax(xu, Tv(εv+
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2t)). Since tλv(εv + 2t) is just the maximum of the dot product 〈p, λ〉
over all points p of the Newton polytope and since λ(u) > 0 for all
u ∈ Vert(Q), it follows by the Cauchy-Schwartz inequality that

tλv(εv + 2t) ≤ |λ| ·
√ ∑

u∈Vert(Q)

(degmax(xu, Tv(εv + 2t)))2,

where |λ| =
√∑

u∈Vert(Q) λ(u)2 does not depend on t. In particular,

tλv(εv + 2t) ≤ |λ|
√
|Vert(Q)| max

u∈Vert(Q)
|degmax(xu, Tv(εv + 2t))|.

Taking the logarithm of both sides and dividing by t yields that for at
least one u ∈ Vert(Q), (1.4) must fail. We are done with the proof of
the theorem. �

3.2. Algebraic entropy for quivers of type Â⊗Â. It turns out that
the statement of Conjecture 1.7 applied to the quivers of type Â ⊗ Â
can be easily proven using Speyer’s formula [39] for the octahedron
recurrence, which can be viewed as a T -system associated with the
infinite quiver of type A∞ × A∞, where A∞ is a bipartite quiver with
vertex set Z and edges 2i→ 2i− 1, 2i→ 2i + 1 for i ∈ Z. Let us give
a precise definition.

Definition 3.1. The octahedron recurrence is a family Ti,j,k of rational
functions in some set of variables x indexed by all triples (i, j, k) ∈ Z3

of integers. The values Ti,j,k are required to satisfy

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k + Ti+1,j,kTi−1,j,k.

Again, the parity of i+ j + k in each term is the same so the system
splits into two independent parts. One imposes various initial condi-
tions that define the values Ti,j,k uniquely for all triples (i, j, k), and
we will be interested in assigning Ti,j,0 = Ti,j,1 = xi,j for some family
x = (xi,j)i,j∈Z of variables.

Theorem 3.2 ([39]). For k > 1, the value Ti,j,k is a Laurent polynomial

in x. More specifically, it is a sum of 2(k2) monomials, and the power
of every variable xi′,j′ in every monomial belongs to the set {−1, 0, 1}.

The fact that Ti,j,k is a Laurent polynomial in x can be easily de-
duced from the Laurent phenomenon property for cluster algebras [9].
Consider an infinite quiver Q∞ with vertex set Z2 such that for each
vertex (i, j) with i+ j even, we have arrows

(i−1, j)→ (i, j), (i+1, j)→ (i, j), (i, j)→ (i, j−1), (i, j)→ (i, j+1).
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For each vertex with (i, j) odd we therefore have the reverses of the
above arrows in Q∞.

Fix two linearly independent vectors A = (a1, a2) and B = (b1, b2) in
Z2 such that a1 + a2 and b1 + b2 are even. Suppose that the variables
xi,j satisfy

(3.2) xi,j = xi+a1,j+a2 = xi+b1,i+b2

One can take a quotient of Q∞ by the lattice generated by A and B,
we denote the resulting quiver by QA,B. Thus the vertices of QA,B

correspond to equivalence classes (i, j) + ZA + ZB and there is an
arrow from one such class to another in QA,B if there is an arrow from
a vertex of the first class to a vertex of the second class in Q∞. It is
clear that QA,B is a bipartite recurrent affine � affine quiver since all

components of both Γ(Q) and ∆(Q) are of type Â. In particular, if

A = (2n, 0) and B = (0, 2m) then QA,B has type Â2n−1 ⊗ Â2m−1. We
will consider these quivers more closely in Section 5.2.1.

One easily observes that if the initial conditions of the octahedron
recurrence satisfy (3.2) then the values of the octahedron recurrence
coincide with the values of the T -system associated with the quiver
QA,B that we have just constructed. Substituting the values into The-
orem 3.2 yields the following:

Corollary 3.3. The T -system associated with QA,B grows quadratic
exponentially.2

Proof. Indeed, the number of terms grows quadratic exponentially, and
since we have substituted periodic variables into Theorem 3.2, the de-
gree of a variable in a monomial now grows quadratically as well. �

4. The general structure of ADE bigraphs

In this section, we prove some general properties of affine� affine and
affine � finite ADE bigraphs. The main result of this section will be
the construction of a weak generalized Cartan matrix A(G) associated
to G which will later help us with the classification. We assume that the
red components of G are affine ADE Dynkin diagrams while the blue
components of G are either affine or finite ADE Dynkin diagrams. If G
has one red connected component then we say that G is a self binding.
If G has two red connected components then we say that G is a double
binding.

2As it was pointed out to us by Andrew Hone, the quadratic growth for the
octahedron recurrence has been shown recently by Mase [31, Theorem 6.8].
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4.1. The structure of self bindings.

Proposition 4.1. Let G be a self binding. If G is an affine � finite
ADE bigraph, set mult(G) := 1, and if G is an affine � affine ADE
bigraph, set mult(G) = 2. Let v be the additive function for the unique
red connected component of G.Then we have

(4.1) mult(G)v(v) =
∑

(u,v)∈∆

v(u).

Proof. It follows that v is the common eigenvector for AΓ and A∆ from
Lemma 2.16. Thus for any v we have∑

(u,v)∈∆

v(u) = µ∆v(v),

which shows that µ∆ is an integer and therefore is either equal to 1 (in
which case all components of ∆ are of type A2) or to 2 (in which case
all components of ∆ are affine ADE Dynkin diagrams). �

4.2. Double bindings: scaling factor. Throughout this section, we
assume that G = (Γ,∆) is a double binding, and that Vert(G) = XtY ,
where X and Y are the two connected components of Γ, and recall that
they are affine ADE Dynkin diagrams. We also assume that every edge
of ∆ connects a vertex of X to a vertex of Y . Again, we do not assume
here that h(Γ) =∞.

A parallel binding is a bigraph of type Λ̂ ⊗ A2. We let v be the
common eigenvector for AΓ and A∆ from Lemma 2.16, and we denote
by vX and vY the additive functions for Γ(X) and Γ(Y ) from Figure 3.

Proposition 4.2. There exist two integers scfX(G) and scfY (G) such
that ∑

(v,w)∈∆

vY (w) = scfX(G)vX(v), ∀ v ∈ X;(4.2)

∑
(v,w)∈∆

vX(v) = scfY (G)vY (w), ∀w ∈ Y.(4.3)

The pair (scfX(G), scfY (G)) is denoted scf(G) and is called the scaling
factor of G. Exactly one of the following holds:

• scf(G) = (1, 1) and connected components of ∆ are of type A2;
• scf(G) = (2, 1) or scf(G) = (1, 2) and connected components of

∆ are of type A3;
• scf(G) = (3, 1) or scf(G) = (1, 3) and connected components of

∆ are either of type A5 or of type D4;
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• scf(G) = (4, 1) or scf(G) = (1, 4) and connected components of
∆ are affine ADE Dynkin diagrams;
• scf(G) = (2, 2) and connected components of ∆ are affine ADE

Dynkin diagrams.

Proof. We copy the proof of [15, Proposition 2.1.4] with slight mod-

ifications. We view maps τ : Vert(G) → R as pairs

(
τX
τY

)
where

τX : Vert(X) → R and τY : Vert(Y ) → R are restrictions of τ to

the corresponding subsets. Let τ =

(
τX
τY

)
be the common dominant

eigenvector for AΓ and A∆ from Lemma 2.16, thus τ(v) = v(v) for all
v ∈ Vert(G).3 We may rescale it so that τX = αvX and τY = vY for
some α ∈ R. Since the entries of the dominant eigenvector are positive,
we may assume α > 0. Now, let µ∆ := 2 cos(π/h(∆)) be the dominant
eigenvalue for A∆, including the case h(∆) = ∞. Since A∆τ = µ∆τ ,
we have ∑

(v,w)∈∆

vY (w) = µ∆αvX(v), ∀ v ∈ X;

∑
(v,w)∈∆

αvX(v) = µ∆vY (w), ∀w ∈ Y.

In particular, the second equation can be rewritten as∑
(v,w)∈∆

vX(v) =
µ∆

α
vY (w), ∀w ∈ Y.

If we substitute v ∈ X such that vX(v) = 1 in the first equation,
we will get that µ∆α ∈ Z>0. Similarly, if we substitute w ∈ X such
that vY (w) = 1 in the second equation, we will get that µ∆/α ∈ Z>0.
Therefore their product µ2

∆ belongs to Z>0 as well. This proves the first
part of the proposition: we have scfX(G) = µ∆α and scfY (G) = µ∆/α.

In particular, their product scfX(G) scfY (G) = µ2
∆ is an integer which

can only happen when h(∆) = 3, 4, 6, or ∞ corresponding to µ2
∆ =

1, 2, 3, or 4. This makes the second part of the proposition obvious. �

Definition 4.3. When X is an affine ADE Dynkin diagram of type Λ̂
and Y is an affine ADE Dynkin diagram of type Λ̂′ then we say that
G is a double binding of type Λ̂ ∗ Λ̂′.

Note that Proposition 4.2 is not symmetric in X and Y , so if G is a
double binding of type Λ̂∗Λ̂′ then necessarily X has type Λ̂, Y has type

3Recall that vX denotes the additive function for Γ(X) from Figure 3. On the
other hand τX denote the restriction of τ = v to X.
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Λ̂′ and (4.2) and (4.3) hold. In other words, we treat double bindings

of types Λ̂ ∗ Λ̂′ and Λ̂′ ∗ Λ̂ differently.
We now show how the McKay number defined in Section 2.2 comes

into play.

Proposition 4.4. Suppose G is a double binding of type Λ̂ ∗ Λ̂′ and
scaling factor (a, b). Then we have

(4.4)
a

b
=
h(2)(Λ̂′)

h(2)(Λ̂)
.

Proof. Recall that a = scfX(G) and b = scfY (G). By Equations (4.2)
and (4.3), we have

scfX(G)h(2)(Λ̂) =
∑
v∈X

scfX(G)vX(v)2 =
∑
v∈X

vX(v)
∑

(v,w)∈∆

vY (w)

=
∑

(v,w)∈∆

vX(v)vY (w) =
∑
w∈Y

vY (w)
∑

(v,w)∈∆

vX(v)

=
∑
w∈Y

scfY (G)vY (w)2 = scfY (G)h(2)(Λ̂′).

�

This simple double counting argument dramatically reduces the num-
ber of options one needs to consider in the proof of the classification in
Section 7.

4.3. The weak generalized Cartan matrix of an ADE bigraph.
We are now ready to define the matrix A(G) for an arbitrary affine �
affine or affine � finite ADE bigraph G. Given a subset C of vertices
of G, denote by G(C) the restriction (induced subgraph) of G to C.
Denote by G◦ the bigraph obtained from G by removing all blue edges
that connect two vertices from the same red connected component (thus
G◦ is obtained from G by removing all self bindings). It is easy to see
that if G is an affine � affine or affine � finite ADE bigraph then the
same is true for G◦.

Definition 4.5. Let G be an affine � affine or affine � finite ADE bi-
graph, and let C1, C2, . . . , Cn be its red connected components. Define
an n× n matrix A(G) = (aij) as follows.

• For i ∈ [n], set aii = 2−mult(G(Ci)).
• For i 6= j ∈ [n], set aij = 0 if there is no blue edge in G

connecting a vertex of Ci to a vertex of Cj.
• For all other pairs of i 6= j ∈ [n], let scf(G◦(Ci ∪ Cj)) = (p, q)

and we set aij = −p, aji = −q.
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Thus, given two connected components Ci and Cj that form a dou-
ble binding with scaling factor (1, 1), (1, 2), (1, 3), (1, 4), or (2, 2), we
connect i and j in S(A(G)) by an edge of the form i—j, i⇒ j, iV j,
i j, or i⇔ j respectively.

Let v be the common eigenvector for AΓ and A∆ from Lemma 2.16,
and let vCi be the additive function for Γ(Ci) from Figure 3.

Lemma 4.6. For each i ∈ [n], there exists a positive real number δi
such that for any v ∈ Ci we have

δi =
v(v)

vCi(v)
.

Proof. Since v is the common eigenvector for AΓ and A∆, it must be
proportional to vCi on Ci. �

Theorem 4.7. For an affine � finite (resp., affine � affine) ADE
bigraph G, the matrix A = A(G) is a weak generalized Cartan matrix of
finite (resp., affine) type. The vector δ = (δ1, . . . , δn) from Lemma 4.6
satisfies Aδ > 0 (resp., Aδ = 0).

Proof. Since the matrix A is clearly indecomposable, by Theorems 2.11
and 2.12, we only need to show that Aδ > 0 (resp., Aδ = 0).

Recall that v is an eigenvector for A∆ with eigenvalue µ∆ which is
either less than 2 (if h(∆) <∞) or equal to 2 (if h(∆) =∞). Now let
v ∈ Ci be a vertex. Using (4.1), (4.2), and (4.3), we get

µ∆v(v) =
∑

(u,v)∈∆

v(u) = −
∑
j 6=i

aijδjvCi(v) + (2− aii)δivCi(v).

Using the fact that µ∆ < 2 (resp., µ∆ = 2) and v(v) = δivCi(v), we
get Aδ > 0 (resp., Aδ = 0), as desired. �

We let S(G) := S(A(G)) be the Dynkin diagram of A(G) from Fig-
ure 5.

Let us now introduce a convenient way to encode G that often de-
termines G uniquely.

Definition 4.8. Let G be an affine � finite or an affine � affine ADE
bigraph. The description descr(G) of G is the Dynkin diagram S(G) of
A(G) with each vertex i ∈ [n] labeled by type(Γ(Ci)). Here type(Γ(Ci))
is the type of Γ(Ci) as an affine ADE Dynkin diagram, in other words,
type(Γ(Ci)) belongs to the set

{Â2m−1, D̂m, Ê6, Ê7, Ê8}.

For example, for the bigraph G = D̂5 ⊗ Â2, descr(G) is equal to

D̂5 ⇔ D̂5.
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Figure 8. An affine � finite self-binding S4n+1 for n = 2.

4.4. Affine � finite self and double bindings. In this section, we
review some of our results from [15].

For n ≥ 1, the bigraph S4n+1 is defined as follows. Its unique red
connected component is a (4n + 2)-gon and the blue edges of S4n+1

connect pairs of opposite vertices of this (4n + 2)-gon. See Figure 8.
We have

descr(S4n+1) = Â4n+1 ,

that is, descr(S4n+1) is the Dynkin diagram 1
2
A2 from Figure 4 with one

vertex and one edge connecting this vertex to itself, and this vertex is
labeled by Â4n+1.

Theorem 4.9 ([15]).

• The only possible affine � finite self bindings are S4n+1, n ≥ 1.
• all the double bindings with scaling factor (1, 2) are listed in

Figure 9;
• all the double bindings with scaling factor (1, 3) are listed in

Figure 10;
• the only other affine � finite double bindings are parallel bind-

ings Λ̂—Λ̂.

Definition 4.10. We say that a Dynkin diagram of a weak generalized
Cartan matrix of affine type (see Figure 5) is ambiguous if it either has

at most two vertices (with the exception of 1
2
A

(1)
1 ) or it is a path with

two double arrows at the ends. Otherwise, we call it unambiguous. The
set of ambiguous diagrams is equal to

{A(1)
1 , A

(1)
` (` ≥ 2), A

(2)
2 ,

1

2
A

(1)
1 }

⋃
{D(2)

`+1, C
(1)
` , A

(2)
2` }.
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D̂n+2 ⇒ Â2n−1 Â4n−1 ⇒ Â2n−1 D̂2n+2 ⇒ D̂n+2 Ê7 ⇒ Ê6

for n = 4 for n = 3 for n = 4

Figure 9. Three infinite and one exceptional family of
double bindings with scaling factor (1, 2). All blue com-
ponents have type A3.

D̂3n+2 V D̂n+2 Â6n−1 V Â2n−1 D̂5 V Â3 Ê7 V D̂6 Ê6 V D̂4

for n = 3 for n = 3

Figure 10. Two infinite and three exceptional families
of double bindings with scaling factor (1, 3). All blue
components have types A5 or D4.

The terminology is motivated by the following proposition which is
a variation on [41, Remark 2.1].

Proposition 4.11. Let G be an affine � finite or an affine � affine
ADE bigraph and suppose that its Dynkin diagram S(G) is unambigu-
ous. Then G is uniquely determined by descr(G).

Proof. This is easy to see because if S(G) is not one of the ambiguous
Dynkin diagrams then S(G) is a tree (with possibly some loops) and at
most one affine� finite double binding. As it follows from Theorem 4.9,
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Figure 11. A twist D̂8 × D̂8. Twists are listed as
family #2 in the classification.

each of them is uniquely determined by its description, and the result
follows since an automorphism of the double binding always induces
an automorphism of the rest of G. This is slightly non-trivial to see
when G has a loop but in this case the result easily follows from our
considerations in Section 5.3.1. �

5. Many affine � affine ADE bigraphs

In this section we give several constructions that produce affine �
affine ADE bigraphs. As we will see in the next section, they will be
sufficient for us to state our classification theorem which is the main
result of this paper.

5.1. Twists. The following construction is due to Stembridge [41].

Definition 5.1. Given a bipartite undirected graph H with vertex set
V , we define the twist H ×H = (Γ,∆) to be a bipartite bigraph with
vertex set V ′ ∪ V ′′ and edge sets defined as follows.

• For any edge (u, v) of H, Γ contains edges (u′, v′) and (u′′, v′′).
• For any edge (u, v) of H, ∆ contains edges (u′, v′′) and (u′′, v′).

In particular, if H is a bipartite affine ADE Dynkin diagram Λ̂ then
H × H is an affine � affine ADE bigraph (see Corollary 8.4) which

is called a twist of type Λ̂ × Λ̂. For G = Λ̂ × Λ̂, we have descr(G) =

descr(Gop) = Λ̂ ⇔ Λ̂ thus by Proposition 4.11, twists may not be
uniquely determined by their description. See Figure 11 (or Figure 21)
for an example.

5.2. Toric bigraphs. Let Λ̂ be a bipartite affine ADE Dynkin dia-
gram and let η be its automorphism (not necessarily of order two or
color-preserving). For an integer n ≥ 1, we define a toric bigraph

T (Λ̂, η, n) = (Γ,∆) as follows. The red connected components of

T (Λ̂, η, n) are C1, C2, . . . , Cn, and the restriction of Γ on each Ci has
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type Λ̂. In particular, for each i ∈ [n], let us fix a map φi : Vert(Λ̂)→ Ci
that induces an isomorphism between Λ̂ and Γ(Ci). Now, for ev-

ery i = 1, 2, . . . , n − 1 and every vertex v of Λ̂, ∆ contains an edge
(φi(v), φi+1(v)). Also, for every v ∈ Vert(Λ̂), ∆ contains an edge
(φn(v), φ1(η(v))). Thus if one starts at some vertex v ∈ C1 and follows
the blue path that traverses the components C1, C2, C3, . . . , Cn, C1, one
arrives at η(v).

Lemma 5.2. In the following cases, T (Λ̂, η, n) is an affine � affine
ADE bigraph:

(1) η is color-reversing and n ≥ 3 is odd;
(2) η is color-preserving and n ≥ 2 is even;
(3) n = 1, η is color-reversing and does not send any vertex to one

of its neighbors.

Proof. The fact that T (Λ̂, η, n) is always recurrent is trivial to check,
thus we only need to make sure that it is bipartite and that Γ and ∆
do not share edges. This is easy to see and the result follows since the
components of Γ and ∆ are affine ADE Dynkin diagrams by construc-
tion. �

If G = T (Λ̂, η, n) is an affine � affine ADE bigraph and n > 1 then

S(G) = A
(1)
n−1 and descr(G) equals

Λ̂ — Λ̂ — · · · — Λ̂ — Λ̂ ,

where the number of components is n. If n = 1 then S(G) = 1
2
A

(1)
1 and

descr(G) equals

Λ̂ .

Even though the main purpose of this section is to produce many
affine � affine ADE bigraphs and not worry about which of them are
isomorphic, we give a simple criterion for when two toric bigraphs are
isomorphic.

Proposition 5.3. Let Λ̂ be an affine ADE Dynkin diagram and let
Aut(Λ̂) be the automorphism group of Λ̂. Let η, η′ ∈ Aut(Λ̂) be two

automorphisms of Λ̂. Then the bigraphs G = T (Λ̂, η, n) and G =

T (Λ̂, η′, n) are isomorphic if and only if η is conjugate to either η′ or

its inverse in Aut(Λ̂).
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Proof. Suppose that there exists g ∈ Aut(Λ̂) such that η′ = gηg−1.
Consider a map from G to G′ that applies g to each red connected
component of G. It is clear that this map provides an isomorphism
between G and G′.

Suppose now that η and η′ are inverses of each other. Then consider
a map from G to G′ that reverses the order of the red connected com-
ponents. Again, this map clearly gives an isomorphism between G and
G′.

Conversely, suppose that there is an isomorphism ψ between G and
G′. Then it must either preserve or reverse the cyclic ordering of the
red connected components C1, C2, . . . , Cn. But note that reversing their
ordering just corresponds to replacing η with its inverse, and cyclically
permuting the components does not change η, so we may assume that
ψ sends Ci to C ′i for all i ∈ [n]. It follows that (φ′i)

−1 ◦ ψ ◦ φi is the

same element of Aut(Λ̂) for all i ∈ [n] where φi and φ′i are the maps

used in the definitions of T (Λ̂, η, n) and T (Λ̂, η′, n). The result follows
since conjugating by this element takes η to η′. �

Let us say that a weak conjugacy class of an element g in a group
H is the union of the conjugacy class of g with the conjugacy class of
g−1.

Thus in order to classify affine � affine toric ADE bigraphs it suf-
fices to list representatives of weak conjugacy classes in Aut(Λ̂) for

each affine ADE Dynkin diagram Λ̂. Since for any even n we have
T (Λ̂, id, n) = Λ̂⊗Ân−1, we only list non-identity weak conjugacy classes

of Aut(Λ̂) in each case. Thus we do not consider the case η = id to be
a toric bigraph in what follows.

Remark 5.4. Whenever Λ̂ is a diagram from Figure 4 and η ∈ Aut(Λ̂),

there is another diagram in Figure 4 which we denote Λ̂/η. It is ob-

tained from Λ̂ by folding via η. This notion is standard but we do not
define it rigorously here. Note that if G = T (Λ̂, η, n) then S(G∗) is

exactly Λ̂/η, and the label of a vertex v of Λ̂/η in descr(G∗) is Arn−1

where r is the size of the preimage of v in Λ̂ (i.e. v corresponds to an

orbit of some vertex of Λ̂ under η and r is the size of this orbit).

5.2.1. The case Λ̂ = Â2m−1. In this case, Aut(Λ̂) is isomorphic to
Dih(4m), the dihedral group of the 2m-gon with 4m elements. It con-
tains a subgroup Z/2mZ whose elements we represent by exp(πik/m)
for every residue k modulo 2m (that is, for every k = 0, 1, . . . , 2m −
1). There are m + 2 non-identity weak conjugacy classes in Aut(Λ̂).
The representatives of the first m of them are exp(πik/m) for k =
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k = 0, n = 2 k = 1, n = 3

k = 2, n = 2 k = 3, n = 3

Figure 12. The family T (Â2m−1, exp(πik/m), n) for
m = 6, k = 0, 1, 2, 3, and n = 2 or n = 3 depending on
the parity of k. In the classification in Section 6, this is
family #3.

1, 2, . . . ,m, see Figure 12. The other two are a reflection about a di-
agonal (denoted η(1)) and a reflection about a line joining the mid-
points of two opposite edges (denoted η(2)), see Figure 13. For k ∈ [m],
exp(πik/m) is color-preserving if and only if k is even. Additionally,
η(1) is color-preserving while η(2) is color-reversing.

5.2.2. The case Λ̂ = D̂m+2, m ≥ 3. Let us describe the group Aut(Λ̂) in

this case. Let u+, u− be two leaves of Λ̂ that have a common neighbor,
and let v+, v− be the other two leaves of Λ̂. Let σ be the automorphism
of Λ̂ that switches u+ and u− and fixes the rest of Λ̂. Similarly, let τ
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T (Â2m−1, η
(1), n) (#4) T (Â2m−1, η

(2), n) (#5)
for m = 6 and n = 2 for m = 6 and n = 3

Figure 13. The other two families of toric bigraphs of
type Â.

be the automorphism of Λ̂ that switches u+ with v+ and u− with v−.
It is non-trivial to see that Aut(Λ̂) is isomorphic to the group Dih(8)

of symmetries of the square.4 It is clear that Aut(Λ̂) is generated by σ

and τ . There are four non-identity weak conjugacy classes in Aut(Λ̂),
and their representatives are

σ, στστ, τ, στ.

The first three elements have order 2 and the last element has order 4.
The first two elements are always color-preserving while the last two
elements are color-preserving if and only if m is even. If m is odd, the
last two elements send some vertex to its neighbor. See Figure 14 for
some examples.

5.2.3. The case Λ̂ = D̂4. In this case Aut(Λ̂) = S4, the symmetric
group on four elements. Two permutations belong to the same (weak)
conjugacy class if and only if they have the same cycle type, thus the
weak conjugacy classes are in bijection with partitions λ of 4 which we
denote by

(1 + 1 + 1 + 1), (2 + 1 + 1), (2 + 2), (4), (3 + 1).

Since (1 + 1 + 1 + 1) corresponds to the identity permutation, we only
need to consider the other four cases. The only case that we have
not considered in the previous section is (3 + 1), however, note that

4The vertices of the square are u+, v+, u−, v− in this cyclic order.
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T (D̂m+2, σ, n) (#6) T (D̂m+2, στστ, n) (#7)
for m = 4 and n = 2 for m = 4 and n = 2

T (D̂m+2, τ, n) (#8) T (D̂m+2, τ, n) (#9)
for m = 4 and n = 2 for m = 3 and n = 3

T (D̂m+2, στ, n) (#10) T (D̂m+2, στ, n) (#11)
for m = 4 and n = 2 for m = 3 and n = 3

Figure 14. Toric bigraphs of type D̂m+2.

the permutations στστ and τ were not conjugate for m ≥ 3 but are
conjugate for m = 2 since they both have cycle type (2 + 2). In the
classification, we treat σ as a representative of (2+1+1) and στστ as a

representative of (2+2) which naturally includes D̂4 as a special m = 2

case of D̂m+2. The cases (4) and (3 + 1) are listed in the classification
as separate items, see also Figure 15.



32 PAVEL GALASHIN AND PAVLO PYLYAVSKYY

T (D̂4, (4), n) (#12) T (D̂4, (3 + 1), n) (#13)
for n = 2 for n = 2

Figure 15. Additional toric bigraphs of type D̂4.

T (Ê6, (2 + 1), n) (#14) T (Ê6, (3), n) (#15)
for n = 2 for n = 2

T (Ê7, θ, n) (#16)
for n = 4

Figure 16. Toric bigraphs of type Ê.

5.2.4. The case Λ̂ = Ê6. In this case Aut(Λ̂) = S3 so the non-identity
weak conjugacy classes correspond precisely to partitions (2 + 1) and
(3), see Figure 16 (top).

5.2.5. The case Λ̂ = Ê7. The only non-trivial automorphism θ of Λ̂
has order 2 and thus the only affine � affine toric ADE bigraphs of
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the form T (Ê7, η, n) have n even and coincide with G = T (Ê7, θ, n),
see Figure 16 (bottom).

5.2.6. The case Λ̂ = Ê8. In this case Aut(Λ̂) = {id} so there are no
non-identity conjugacy classes.

5.3. Path bigraphs. In this section, we would like to give a list of
bigraphs G with S(G) being a path with two double arrows at the
ends, that is,

S(G) ∈ {D(2)
`+1, C

(1)
` , A

(2)
2` }.

Let us revisit the classification of affine � finite double bindings with
scf = (2, 1) classified in Figure 9. Consider such a double binding G

with red components X of type Λ̂ and Y of type Λ̂′ so that descr(G)

equals Λ̂ ⇒ Λ̂′. Thus every blue component of G has type A3, in
particular, every vertex v of X either has blue degree 2 (in which case
we set v′ := v) or there exists a unique other vertex v′ ∈ X that
belongs to the same blue connected component of v. One easily checks
that this construction defines a color-preserving involution α ∈ Aut(Λ̂)
via α(v) = v′. Similarly, we define a color-preserving involution β ∈
Aut(Λ̂′).

One easily checks that for every affine ADE Dynkin diagram Λ̂ and
every color-preserving involution α ∈ Aut(Λ̂) (except for the identity

in types D̂ and Ê), the pair (Λ̂, α) appears in Figure 9 exactly once
in this way. Here we consider α up to conjugation. In particular, let
us rewrite for each double binding in Figure 9 the corresponding pairs
(Λ̂, α) that it involves (we use the description of conjugacy classes from
the previous section):

(D̂m+2, στστ)⇒ (Â2m−1, η
(1)); (D̂2m+2, τ)⇒ (D̂m+2, σ);

(Â4m−1, exp(πi))⇒ (Â2m−1, id); (Ê7, θ)⇒ (Ê6, (2 + 1)).
(5.1)

Definition 5.5. Let Λ̂ be an affine ADE Dynkin diagram and consider
two color-preserving non-identity involutions α, β ∈ Aut(Λ̂). Given a

positive integer n ≥ 2, The path bigraph P(Λ̂, α, β, n) is an affine �
affine ADE bigraph G obtained from the tensor product Λ̂⊗ An−1 by
attaching on the left a double binding from (5.1) involving (Λ̂, α) and

attaching on the right a double binding from (5.1) involving (Λ̂, β).

See Figures 17–20 for examples. It is clear that any path bigraph is
always an affine � affine ADE bigraph since all the blue components
are of types Â or D̂. Just as in the previous section, we give a simple
criterion for when two path bigraphs are isomorphic.
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Proposition 5.6. Two path bigraphs G = P(Λ̂, α, β, n) and G′ =

P(Λ̂′, α′, β′, n′) are isomorphic if and only if Λ̂ = Λ̂′, n = n′, and there

exists an element g ∈ Aut(Λ̂) such that at least one of the following
holds:

• gαg−1 = α′ and gβg−1 = β′, or
• gαg−1 = β′ and gβg−1 = α′.

Proof. Let C1, . . . , Cn+1 be the red components of G and C ′1, . . . , C
′
n+1

be the red components of G′. Since the red component graph of G
is a path, an isomorphism φ : Vert(G) → Vert(G′) either flips it or
preserves it. In the former case, φ sends Ci to C ′i and in the former
case φ sends Ci to C ′n+2−i isomorphically in both cases. Suppose that φ
sends Ci to C ′i for all i ∈ [n+ 1]. Consider a vertex v ∈ C2. If α(v) = v
then v has blue degree 2 in G(C1, C2) so φ(v) must have blue degree
2 in G(C ′1, C

′
2) and thus α′(φ(v)) = φ(v). Similarly, if there is a blue

path of length 2 from v to u = α(v) ∈ C2 through C1 then there must
be a blue path of length 2 from φ(v) to φ(u) in C ′2 through C ′1. The
conclusion is that φ ◦α = α′ ◦φ. Similarly we get that φ ◦β = β′ ◦φ so
we can just put g to be the restriction of φ to C2 or Cm (they have to
coincide). The case when φ sends Ci to Cn+2−i is completely analogous.
This shows one direction of the proposition. The converse direction is
shown in a way similar to the proof of Proposition 5.3 and we leave it
as an exercise for the reader. �

Thus isomorphism classes of path bigraphs correspond to (unordered)
pairs of color-preserving involutions modulo simultaneous conjugation.
Let us say that two pairs (α, β) and (α′, β′) related by these transfor-
mations are equivalent. Note that we can always conjugate α to be
a specific fixed representative of a conjugacy class from the previous
section, and after that β will be determined up to conjugation by an
element from the centralizer of α, that is, by an element g ∈ Aut(Λ̂)
(not necessarily color-preserving) that commutes with α. We are ready
to list all pairs of involutions from (5.1) that give non-isomorphic path
bigraphs.

Remark 5.7. We list descr(G) and descr(G∗) for path bigraphs in Sec-
tion 6. We give the following informal explanation on how to quickly
compute descr(G∗) when G = P(Λ̂, α, β, n). Since α and β are in-

volutions, they define a matching on Vert(Λ̂). Superimposing these
matchings yields several cycles and paths. Each path with r vertices
corresponds to a node labeled D̂rn+2 in descr(G∗). Each cycle with r

vertices corresponds to a node labeled Ârn−1 in descr(G∗). The Dynkin
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p = 0 p = 1

p = 2 p = 3

Figure 17. Path bigraphs of the form
P(Â2m−1, η

(1), ηp, n) for m = 6, n = 3, and p = 0, 1, 2, 3.
The case p = 1 belongs to family #18, the remaining
cases p = 0, 2, 3 belong to family #17.

diagram S(G∗) is obtained from Λ̂ by folding via the subgroup gener-
ated by α and β.

5.3.1. The case Λ̂ = Â2m−1. There are three color-preserving involu-
tions in (5.1) for type Â2m−1:

• a reflection about a diagonal η(1) for m ≥ 2,
• a 180◦ rotation exp(πi) for even m, and
• the identity id for m ≥ 1.

Note that for the last two cases, the size of the conjugacy class is equal
to 1. For the case η(1), the conjugacy class consists of m reflections
which we denote η0 = η(1), η1, . . . , ηm−1 in the cyclic order. The ele-
ments that commute with η(1) are id, η(1), exp(πi), and a reflection η⊥0
that switches the two fixed points of η(1). Conjugating ηp for p ∈ [m−1]
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P(Â4m−1, η
(1), exp(πi), n) (#20)

for m = 3 and n = 3

P(Â3, η
(1), exp(πi), n) (#21) P(Â2m−1, η

(1), id, n) (#22)
for n = 3 for m = 3 and n = 2

Figure 18. The remaining (non-toric) path bigraphs

of type Â.

by η(1) or by η⊥0 produces the reflection ηm−p. Thus the list of all the
non-equivalent pairs in this case is:

• (η(1), ηp) for 1 ≤ p ≤ m/2;
• (η(1), exp(πi)) when m is even;
• (η(1), id);
• (exp(πi), exp(πi)) when m is even;
• (exp(πi), id) when m is even;
• (id, id).

All the cases are possible for m ≥ 2 except for the last case which is
possible for m ≥ 1. For the last three cases, G∗ is a toric bigraph and
thus G will not be listed as a path bigraph in the classification. The
first case is shown in Figure 17, and the second and third cases are
shown in Figure 18.
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P(D̂m+2, σ, σ, n) (#23) P(D̂m+2, σ, σ
⊥, n) (#24)

for m = 3 and n = 3 for m = 3 and n = 3

P(D̂m+2, σ, στστ, n) (#25) P(D̂2m+2, σ, τ, n) (#26)
for m = 3 and n = 3 for m = 2 and n = 3

P(D̂m+2, στστ, στστ, n) (#27) P(D̂m+2, στστ, τ, n) (#28)
for m = 3 and n = 2 for m = 2 and n = 2

P(D̂m+2, τ, τ, n) (#29) P(D̂4, (12), (13), n) (#30)
for m = 2 and n = 2 for n = 3

P(D̂4, (12), (13)(24), n) (#31) P(D̂4, (12)(34), (13)(24), n) (#32)
for n = 3 for n = 3

Figure 19. Path bigraphs of type D̂.
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5.3.2. The case Λ̂ = D̂m+2, m ≥ 3. The three involutions from (5.1)
in this case are σ, στστ , and τ when m is even. We see that σ has
conjugacy class {σ, σ⊥} of size 2, στστ has conjugacy class of size 1,
and τ has conjugacy class τ, τ⊥ of size 2. Conjugating τ by σ gives τ⊥.
Thus in this case the list of all non-equivalent pairs is as follows:

• (σ, σ);
• (σ, σ⊥);
• (σ, στστ);
• (σ, τ) when m is even;
• (στστ, στστ);
• (στστ, τ) when m is even;
• (τ, τ) when m is even.
• (τ, τ⊥) when m is even.

The last case will not appear in the classification as the bigraph P(D̂2m+2, τ, τ
⊥, n)

is dual to P(Â2n−1, η
(1), id,m). The rest of the cases are shown in Fig-

ure 19.

5.3.3. The case Λ̂ = D̂4. In this case, Aut(D̂4) is the symmetric group
S4 so we write elements in the cycle notation. For example, the permu-
tation (12) is the transposition of 1 and 2. The involutions from (5.1)
now split into two conjugacy classes: (2 + 1 + 1) of size 6 and (2 + 2) of
size 3 with respective representatives (12) and (12)(34). The central-
izer of each of the permutations is generated by the transpositions (12)
and (34). Therefore we get the following list of non-equivalent pairs:

• ((12), (12));
• ((12), (34));
• ((12), (13));
• ((12), (12)(34));
• ((12), (13)(24));
• ((12)(34), (12)(34));
• ((12)(34), (13)(24)).

Just as for toric bigraphs, the case of D̂4 naturally becomes a special
case of D̂m+2 when all the permutations involved belong to the set

{σ = (12), σ⊥ = (34), στστ = (12)(34)}.

See Figure 19 for examples.

5.3.4. The case Λ̂ = Ê6. In this case Aut(Λ̂) = S3 so there is just one
conjugacy class (2 + 1) from (5.1) with three permutations (12), (13),
and (23). The centralizer of (12) is just {id, (12)} and conjugating (13)
by (12) produces (23). Thus we get only two non-equivalent pairs:
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P(Ê6, (12), (12), n) (#33) P(Ê6, (12), (13), n) (#34) P(Ê7, θ, θ, n) (#35)
for n = 3 for n = 3 for n = 2

Figure 20. Path bigraphs of type Ê.

p = 1 p = 2 p = 3 p = 4

Figure 21. Pseudo twists D̂m+2opD̂m+2 for m = 8 and
p = 1, 2, 3, 4. The cases p = 1, 3 belong to family #19
while the cases p = 2, 4 belong to family #18.

• ((12), (12));
• ((12), (13)).

See Figure 20.

5.3.5. The case Λ̂ = Ê7. The only involution in (5.1) is θ so the only
pair that we can have here is (θ, θ), see Figure 20.

5.4. Pseudo twists of type D̂m+2op D̂m+2. Let X and Y be two red

components of type D̂m+2. Label the vertices of X by

u+
0 , u

−
0 , u1, u2, . . . , um−1, u

+
m, u

−
m

so that the leaves u+
0 and u−0 are connected to u1 and the leaves u+

m and
u−m are connected to um−1. Let p ∈ [m − 1] be an integer. We denote
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by X0, X1, X2, . . . , Xm+p a sequence of subsets of X defined as follows:

X0 = {u+
0 , u

−
0 }, X1 = {u1}, . . . , Xm−1 = {um−1}, Xm = {u+

m, u
−
m},

Xm+1 = Xm−1, Xm+2 = Xm−2, . . . , Xm+p = Xm−p.

We similarly label the vertices of Y by

v+
0 , v

−
0 , v1, v2, . . . , vm−1, v

+
m, v

−
m

and introduce the subsets Y0, Y1, Y2, . . . , Ym+p.

Definition 5.8. The bigraph D̂m+2 op D̂m+2 = (Γ,∆) is a double
binding with two red components X and Y as above and blue edges
as follows: for every i ∈ {0, 1, . . . ,m}, connect every vertex in Xi with
every vertex in Yi+p and every vertex in Yi with every vertex in Xi+p

by an edge of ∆.

An example is given in Figure 21. It is easy to see that for every
p ∈ [m − 1], G = D̂m+2 op D̂m+2 is an affine � affine ADE bigraph

with S(G) = A
(1)
1 and

descr(G) = D̂m+2 ⇔ D̂m+2 .

Note that the case p = 1 recovers the twist D̂m+2 × D̂m+2.

5.5. Five exceptional affine � affine double bindings. In this
section we list five affine � affine ADE bigraphs G such that both

S(G) and S(G∗) are equal to either A
(1)
1 or A

(2)
2 . This is equivalent

to saying that both G and G∗ are affine � affine double bindings. As
we will see later in Section 7, these five bigraphs are the only affine �
affine ADE bigraphs with this property that do not belong to any of
the infinite families that we have already constructed in the previous
sections. The five bigraphs are shown in Figure 22.

6. The classification of affine � affine ADE bigraphs

Theorem 6.1. Let G be an affine � affine ADE bigraph. Then either
of the following is true.

• Both G and G∗ appear exactly once in the below list. They are
members of the same self-dual family.
• The below list contains a unique bigraph that is isomorphic to

either G or G∗.

Here we say that a self-dual family of bigraphs is a collection of
bigraphs that is closed under taking duals. In the below list, such
families are marked with [SD] .
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Ê6 Â5 (#37) D̂6 Â3 (#39) D̂4 Â1 (#40)

Figure 22. Five exceptional affine � affine double
bindings given together with their subadditive functions.
Each double binding G is sefl-dual, i.e., is isomorphic
to G∗.

For each affine � affine ADE bigraph G, define the Kac quadruple
of G to be one of the following tables:

S(G) descr(G)
S(G∗) descr(G∗)

OR S(G) descr(G) S(G∗) descr(G∗)
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We list each family of affine � affine ADE bigraphs together with
its parameters and the corresponding Kac quadruples, except that we
do not list the Kac quadruples for tensor products. For exceptional
families, we just give Kac quadruples (KQ for short) and omit the
name and parameters.

#1. [SD] (Fig. 1) Name: a tensor product Λ̂ ⊗ Λ̂′. Parameters: Λ̂,

Λ̂′ — two bipartite affine ADE Dynkin diagrams.
#2. [SD] (Fig. 11) Name: a twist Λ̂ × Λ̂. Parameters: a bipartite

affine ADE Dynkin diagram Λ̂. KQ:

A
(1)
1 Λ̂ ⇔ Λ̂ A

(1)
1 Λ̂ ⇔ Λ̂

#3. [SD] (Fig. 12) Name: T (Ârd−1, exp(2πip/r), n) . Parameters:
r ≥ 1 and 1 ≤ p ≤ r/2 coprime with r; n, d ≥ 1 such that either
n, d are both even or n, d, p are odd and r is even. The forbidden
cases are n = d = p = 1, r even (in which case Γ and ∆ share
edges) and n = d = 2, p = 1, r ≥ 1 (in which case G is a twist

Â2r−1 × Â2r−1). KQ:

A
(1)
n−1 Ârd−1 — Ârd−1 — · · · — Ârd−1 — Ârd−1

A
(1)
d−1 Ârn−1 — Ârn−1 — · · · — Ârn−1 — Ârn−1

The dual bigraph is T (Ârn−1, exp(2πiq/r), d), where 1 ≤ q ≤ r/2
is the unique integer satisfying pq ≡ ±1 (mod r). For the case
n = 1 (resp., d = 1), we have

descr(G) = Ârd−1 , resp., descr(G∗) = Ârn−1 .

#4. (Fig. 13) Name: T (Â2m−1, η
(1), n). Parameters: m ≥ 2; n ≥ 2

even. KQ:

A
(1)
n−1 Â2m−1 — Â2m−1 — · · · — Â2m−1 — Â2m−1

D
(2)
m+1 Ân−1 ⇐ Â2n−1 — · · · — Â2n−1 ⇒ Ân−1

The dual bigraph is P(Â2n−1, exp(πi), exp(πi),m).
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#5. (Fig. 13) Name: T (Â2m−1, η
(2), n). Parameters: m ≥ 2; n ≥ 3

odd. KQ:

A
(1)
n−1 Â2m−1 — Â2m−1 — · · · — Â2m−1 — Â2m−1

1
2
A

(1)
2m−1 Â2n−1 — Â2n−1 — · · · — Â2n−1 — Â2n−1

#6. (Fig. 14) Name: T (D̂m+2, σ, n). Parameters: m ≥ 2; n ≥ 2
even. KQ:

A
(1)
n−1 D̂m+2 — D̂m+2 — · · · — D̂m+2 — D̂m+2

A
(2)
2m+1 Ân−1 — Ân−1 — · · · — Ân−1 ⇐ Â2n−1

—

Ân−1

#7. (Fig. 14) Name: T (D̂m+2, στστ, n). Parameters: m ≥ 2; n ≥ 2
even. KQ:

A
(1)
n−1 D̂m+2 — D̂m+2 — · · · — D̂m+2 — D̂m+2

C
(1)
m Â2n−1 ⇒ Ân−1 — · · · — Ân−1 ⇐ Â2n−1

The dual bigraph is P(Ân−1, id, id,m).

#8. (Fig. 14) Name: T (D̂2m+2, τ, n). Parameters: m ≥ 2; n ≥ 2
even. KQ:

A
(1)
n−1 D̂2m+2 — D̂2m+2 — · · · — D̂2m+2 — D̂2m+2

B
(1)
m+1 Â2n−1 — Â2n−1 — · · · — Â2n−1 ⇒ Ân−1

—

Â2n−1

#9. (Fig. 14) Name: T (D̂2m+1, τ, n). Parameters: m ≥ 2; n ≥ 3
odd. KQ:
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A
(1)
n−1 D̂2m+1 — D̂2m+1 — · · · — D̂2m+1 — D̂2m+1

1
2
D

(1)
2m+1 Â2n−1 — Â2n−1 — · · · — Â2n−1 — Â2n−1

—

Â2n−1

#10. (Fig. 14) Name: T (D̂2m+2, στ, n). Parameters: m ≥ 2; n ≥ 2
even. KQ:

A
(1)
n−1 D̂2m+2 — D̂2m+2 — · · · — D̂2m+2 — D̂2m+2

A
(2)
2m Ân−1 ⇐ Â2n−1 — · · · — Â2n−1 ⇐ Â4n−1

The dual bigraph is P(Â2n−1, exp(πi), id,m).

#11. (Fig. 14) Name: T (D̂2m+3, στ, n). Parameters: m ≥ 1; n ≥ 3
odd. KQ:

A
(1)
n−1 D̂2m+3 — D̂2m+3 — · · · — D̂2m+3 — D̂2m+3

1
2
C

(1)
2m+1 Â4n−1 ⇒ Â2n−1 — · · · — Â2n−1 — Â2n−1

#12. (Fig. 15) Name: T (D̂4, (4), n). Parameters: n ≥ 2 even. KQ:

A
(1)
n−1 D̂4 — D̂4 — · · · — D̂4 — D̂4

A
(2)
2 Ân−1 Â4n−1

#13. (Fig. 15) Name: T (D̂4, (3 + 1), n). Parameters: n ≥ 2 even.
KQ:

A
(1)
n−1 D̂4 — D̂4 — · · · — D̂4 — D̂4

D
(3)
4 Ân−1 — Ân−1 W Â3n−1
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#14. (Fig. 16) Name: T (Ê6, (2 + 1), n). Parameters: n ≥ 2 even.
KQ:

A
(1)
n−1 Ê6 — Ê6 — · · · — Ê6 — Ê6

E
(2)
6 Ân−1 — Ân−1 — Ân−1 ⇐ Â2n−1 — Â2n−1

#15. (Fig. 16) Name: T (Ê6, (3), n). Parameters: n ≥ 2 even. KQ:

A
(1)
n−1 Ê6 — Ê6 — · · · — Ê6 — Ê6

G
(1)
2 Â3n−1 — Â3n−1 V Ân−1

#16. (Fig. 16) Name: T (Ê7, θ, n). Parameters: n ≥ 2 even. KQ:

A
(1)
n−1 Ê7 — Ê7 — · · · — Ê7 — Ê7

F
(1)
4 Â2n−1 — Â2n−1 — Â2n−1 ⇒ Ân−1 — Ân−1

#17. [SD] (Fig. 17) Name: P(Â2rd−1, η
(1), ηpd, n). Parameters: n, d ≥

2; r ≥ 1; 1 ≤ p ≤ r/2 coprime with r ≥ 2 or p = 0 if r = 1. KQ:

C
(1)
n D̂rd+2 ⇒ Â2rd−1 — · · · — Â2rd−1 ⇐ D̂rd+2

C
(1)
d D̂rn+2 ⇒ Â2rn−1 — · · · — Â2rn−1 ⇐ D̂rn+2

The dual bigraph is P(Â2rn−1, η
(1), ηqn, d), where 1 ≤ q ≤ r/2 is

defined by pq ≡ ±1 (mod r).

#18. (Fig. 17) Name: P(Â2r−1, η
(1), ηp, n). Parameters: n ≥ 2; r ≥

1; 1 ≤ p ≤ r/2 coprime with r. KQ:

C
(1)
n D̂r+2 ⇒ Â2r−1 — · · · — Â2r−1 ⇐ D̂r+2

A
(1)
1 D̂rn+2 ⇔ D̂rn+2

The dual bigraph is D̂rn+2oqn D̂rn+2, where 1 ≤ q ≤ r/2 is defined
by pq ≡ ±1 (mod r).

#19. [SD] (Fig. 21) Name: D̂m+2 op D̂m+2. Parameters: m ≥ 2;
2 ≤ p ≤ m/2 coprime with m. KQ:

A
(1)
1 D̂m+2 ⇔ D̂m+2 A

(1)
1 D̂m+2 ⇔ D̂m+2
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The dual bigraph is D̂m+2 oq D̂m+2 where 2 ≤ q ≤ m/2 is the
unique integer such that pq ≡ ±1 (mod m). The case p = q = 1

is not included here as it corresponds to the twist D̂m+2 × D̂m+2.
#20. [SD] (Fig. 18) Name: P(Â4m−1, η

(1), exp(πi), n). Parameters:
n,m ≥ 2. KQ:

A
(2)
2n Â2m−1 ⇐ Â4m−1 — · · · — Â4m−1 ⇐ D̂2m+2

A
(2)
2m Â2n−1 ⇐ Â4n−1 — · · · — Â4n−1 ⇐ D̂2n+2

The dual bigraph is P(Â4n−1, η
(1), exp(πi),m).

#21. (Fig. 18) Name: P(Â3, η
(1), exp(πi), n). Parameters: n ≥ 2.

KQ:

A
(2)
2n Â1

⇐ Â3 — · · · — Â3
⇐ D̂4

A
(2)
2 Â2n−1 D̂2n+2

#22. (Fig. 18) Name: P(Â2m−1, η
(1), id, n). Parameters: n,m ≥ 2.

KQ:

C
(1)
n Â4m−1 ⇒ Â2m−1 — · · · — Â2m−1 ⇐ D̂m+2

D
(2)
m+1 D̂n+2 ⇐ D̂2n+2 — · · · — D̂2n+2 ⇒ D̂n+2

The dual bigraph is P(D̂2n+2, τ, τ
⊥,m).

#23. (Fig. 19) Name: P(D̂m+2, σ, σ, n). Parameters: n,m ≥ 2. KQ:

C
(1)
n D̂2m+2 ⇒ D̂m+2 — · · · — D̂m+2 ⇐ D̂2m+2

B
(1)
m+1 D̂n+2 — D̂n+2 — · · · — D̂n+2 ⇒ Â2n−1

—

D̂n+2

#24. [SD] (Fig. 19) Name: P(D̂m+2, σ, σ
⊥, n). Parameters: n,m ≥ 2.

KQ:

C
(1)
n D̂2m+2 ⇒ D̂m+2 — · · · — D̂m+2 ⇐ D̂2m+2

C
(1)
m D̂2n+2 ⇒ D̂n+2 — · · · — D̂n+2 ⇐ D̂2n+2

The dual bigraph is P(D̂n+2, σ, σ
⊥,m).
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#25. [SD] (Fig. 19) Name: P(D̂m+2, σ, στστ, n). Parameters: n,m ≥
2. KQ:

A
(2)
2n Â2m−1 ⇐ D̂m+2 — · · · — D̂m+2 ⇐ D̂2m+2

A
(2)
2m Â2n−1 ⇐ D̂n+2 — · · · — D̂n+2 ⇐ D̂2n+2

The dual bigraph is P(D̂n+2, σ, στστ,m).

#26. [SD] (Fig. 19) Name: P(D̂2m+2, σ, τ, n). Parameters: n,m ≥ 2.
KQ:

A
(2)
2n D̂m+2 ⇐ D̂2m+2 — · · · — D̂2m+2 ⇐ D̂4m+2

A
(2)
2m D̂n+2 ⇐ D̂2n+2 — · · · — D̂2n+2 ⇐ D̂4n+2

The dual bigraph is P(D̂2n+2, σ, τ,m).

#27. [SD] (Fig. 19) Name: P(D̂m+2, στστ, στστ, n). Parameters:
n,m ≥ 2. KQ:

D
(2)
n+1 Â2m−1 ⇐ D̂m+2 — · · · — D̂m+2 ⇒ Â2m−1

D
(2)
m+1 Â2n−1 ⇐ D̂n+2 — · · · — D̂n+2 ⇒ Â2n−1

The dual bigraph is P(D̂n+2, στστ, στστ,m).

#28. [SD] (Fig. 19) Name: P(D̂2m+2, στστ, τ, n). Parameters: n,m ≥
2. KQ:

D
(2)
n+1 Â4m−1 ⇐ D̂2m+2 — · · · — D̂2m+2 ⇒ D̂m+2

D
(2)
m+1 Â4n−1 ⇐ D̂2n+2 — · · · — D̂2n+2 ⇒ D̂n+2

The dual bigraph is P(D̂2n+2, στστ, τ,m).

#29. (Fig. 19) Name: P(D̂2m+2, τ, τ, n). Parameters: n,m ≥ 2. KQ:

D
(2)
n+1 D̂m+2 ⇐ D̂2m+2 — · · · — D̂2m+2 ⇒ D̂m+2

A
(2)
2m+1 Â2n−1 — Â2n−1 — · · · — Â2n−1 ⇐ D̂n+2

—

Â2n−1

#30. (Fig. 19) Name: P(D̂4, (12), (13), n). Parameters: n ≥ 2. KQ:
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C
(1)
n D̂6

⇒ D̂4 — · · · — D̂4
⇐ D̂6

D
(3)
4 D̂n+2 — D̂n+2 W D̂3n+2

#31. (Fig. 19) Name: P(D̂4, (12), (13)(24), n). Parameters: n ≥ 2.
KQ:

A
(2)
2n Â3

⇐ D̂4 — · · · — D̂4
⇐ D̂6

A
(2)
2 D̂n+2 D̂4n+2

#32. (Fig. 19) Name: P(D̂4, (12)(34), (13)(24), n). Parameters: n ≥
2. KQ:

D
(2)
n+1 Â3

⇐ D̂4 — · · · — D̂4
⇒ Â3

A
(1)
1 A4n−1 ⇔ Dn+2

#33. (Fig. 20) Name: P(Ê6, (12), (12), n). Parameters: n ≥ 2. KQ:

C
(1)
n Ê7

⇒ Ê6 — · · · — Ê6
⇐ Ê7

F
(1)
4 D̂n+2 — D̂n+2 — D̂n+2 ⇒ Â2n−1 — Â2n−1

#34. (Fig. 20) Name: P(Ê6, (12), (13), n). Parameters: n ≥ 2. KQ:

C
(1)
n Ê7

⇒ Ê6
— · · · — Ê6

⇐ Ê7

G
(1)
2 D̂3n+2 — D̂3n+2 V D̂n+2

#35. (Fig. 20) Name: P(Ê7, θ, θ, n). Parameters: n ≥ 2. KQ:

D
(2)
n+1 Ê6

⇐ Ê7 — · · · — Ê7
⇒ Ê6

E
(2)
6 Â2n−1 — Â2n−1 — Â2n−1 ⇐ D̂n+2 — D̂n+2

#36. [SD] (Fig. 22) KQ:

A
(1)
1 Ê8

⇔ Ê8 A
(1)
1 Ê8

⇔ Ê8

#37. [SD] (Fig. 22) KQ:

A
(2)
2 Â5 Ê6 A

(2)
2 Â5 Ê6

#38. [SD] (Fig. 22) KQ:



QUIVERS WITH ADDITIVE LABELINGS 49

A
(2)
2 D̂5 Ê7 A

(2)
2 D̂5 Ê7

#39. [SD] (Fig. 22) KQ:

A
(2)
2 Â3 D̂6 A

(2)
2 Â3 D̂6

#40. [SD] (Fig. 22) KQ:

A
(2)
2 Â1 D̂4 A

(2)
2 Â1 D̂4

#41. (Fig. 23) KQ:

D
(3)
4 Â3 — Â3 W D̂5 A

(1)
1 D̂6

⇔ D̂6

#42. (Fig. 23) KQ:

G
(1)
2 D̂5 — D̂5 V Â3 A

(1)
1 Ê7

⇔ Ê7

#43. [SD] (Fig. 23) KQ:

D
(3)
4 D̂6 — D̂6 W Ê7 D

(3)
4 D̂6 — D̂6 W Ê7

#44. [SD] (Fig. 23) KQ:

G
(1)
2 Ê7 — Ê7 V D̂6 G

(1)
2 Ê7 — Ê7 V D̂6

#45. [SD] (Fig. 23) KQ:

D
(3)
4 D̂4 — D̂4 W Ê6 D

(3)
4 D̂4 — D̂4 W Ê6

#46. [SD] (Fig. 23) KQ:

G
(1)
2 Ê6 — Ê6 V D̂4 G

(1)
2 Ê6 — Ê6 V D̂4

#47. [SD] (Fig. 24) Name: (D̂2m+2)n+1D̂m+2. Parameters: n,m ≥ 2.
KQ:

B
(1)
n+1 D̂2m+2 — D̂2m+2 — · · · — D̂2m+2 ⇒ D̂m+2

—

D̂2m+2

B
(1)
m+1 D̂2n+2 — D̂2n+2 — · · · — D̂2n+2 ⇒ D̂n+2

—

D̂2n+2
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The dual bigraph is (D̂2n+2)m+1D̂n+2.

#48. [SD] (Fig. 24) Name: (D̂m+2)n+1D̂2m+2. Parameters: n,m ≥ 2.
KQ:

A
(2)
2n+1 D̂m+2 — D̂m+2 — · · · — D̂m+2 ⇐ D̂2m+2

—

D̂m+2

A
(2)
2m+1 D̂n+2 — D̂n+2 — · · · — D̂n+2 ⇐ D̂2n+2

—

D̂n+2

The dual bigraph is (D̂n+2)m+1D̂2n+2.

#49. (Fig. 24) Name: (Ê7)n+1Ê6. Parameters: n ≥ 2. KQ:

B
(1)
n+1 Ê7 — Ê7 — · · · — Ê7

⇒ Ê6

—

Ê7

F
(1)
4 D̂2n+2 — D̂2n+2 — D̂2n+2 ⇒ D̂n+2 — D̂n+2

#50. (Fig. 24) Name: (Ê6)n+1Ê7. Parameters: n ≥ 2. KQ:

A
(2)
2n+1 Ê6 — Ê6 — · · · — Ê6

⇐ Ê7

—

Ê6

E
(2)
6 D̂n+2 — D̂n+2 — D̂n+2 ⇐ D̂2n+2 — D̂2n+2

#51. [SD] (Fig. 25) KQ:

F
(1)
4 Ê7 — Ê7 — Ê7

⇒ Ê6 — Ê6

F
(1)
4 Ê7 — Ê7 — Ê7

⇒ Ê6 — Ê6

#52. [SD] (Fig. 25) KQ:

E
(2)
6 Ê6 — Ê6 — Ê6

⇐ Ê7 — Ê7

E
(2)
6 Ê6 — Ê6 — Ê6

⇐ Ê7 — Ê7
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Â3—Â3 W D̂5 (#41) D̂6—D̂6 W Ê7 (#43) Ê7—Ê7 V D̂6 (#44)

D̂5—D̂5 V Â3 (#42) D̂4—D̂4 W Ê6 (#45) Ê6—Ê6 V D̂4 (#46)

Figure 23. Bigraphs G such that S(G) contains a
triple arrow.

#53. [SD] (Fig. 26) Name: D̂2m+3(Â4m+1)n. Parameters: n,m ≥ 1.
KQ:

1
2
C

(1)
2n+1 D̂2m+3 ⇒ Â4m+1 — · · · — Â4m+1 — Â4m+1

1
2
C

(1)
2m+1 D̂2n+3 ⇒ Â4n+1 — · · · — Â4n+1 — Â4n+1

The dual bigraph is D̂2n+3(Â4n+1)m.

Note that for families #1–#40, the illustrations have been given in
Section 5 (and in Figure 1). The rest of the families are shown in
Figures 23–26. The exceptional bigraphs are #36–#46, #51, and #52.
Thus there are 13 of them, and the rest 40 items in the classification
are infinite families (including two 3-parameter families #3 and #17).

7. Proof of the classification

First, it is straightforward to check that each of #1–#53 is an affine
� affine ADE bigraph. One helpful result [41, Lemma 2.4] of Stem-
bridge states that G has commuting adjacency matrices if and only if
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(D̂2m+2)n+1D̂m+2 (#47) (D̂m+2)n+1D̂2m+2 (#48)
for m = 2 and n = 4 for m = 2 and n = 4

(Ê7)n+1Ê6 (#49) (Ê6)n+1Ê7 (#50)
for n = 5 for n = 5

Figure 24. Bigraphs G such that S(G) is of type D
with a double arrow at the end.

Ê7—Ê7—Ê7 ⇒ Ê6—Ê6 (#51) Ê6—Ê6—Ê6 ⇐ Ê7—Ê7 (#52)

Figure 25. Bigraphs #51 and #52.
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Figure 26. The family D̂2m+3(Â4m+1)n (#53) for m =
2 and n = 4.

all of the self and double bindings involved have commuting adjacency
matrices. From this it follows almost immediately that each of #1–#53
has commuting adjacency matrices; one needs to check this fact sepa-
rately for affine � affine and affine � finite self and double bindings.
The fact that all red and blue components are affine ADE Dynkin
diagrams is clear from looking at descr(G) and descr(G∗).

Second, it is easy to verify that no two of the bigraphs #1–#53 are
isomorphic. Indeed, the only cases where we can have both descr(G1) =
descr(G2) and descr(G∗1) = descr(G∗2) without G1 and G2 being isomor-
phic arise when both G1 and G2 belong to one of the following families:
#2, #3, #17, #18, #19, and in each case the fact that they are not
isomorphic follows from the results of Section 5.

Thus it remains to prove that we listed all possible affine � affine
ADE bigraphs.

Suppose that G is an affine � affine ADE bigraph and consider
the diagram S(G) which by Theorem 4.7 is a diagram from Figure 5.
According to whether S(G) is ambiguous (see Proposition 4.11), we
will consider the following disjoint cases:

(i) S(G) = A
(1)
` for ` ≥ 2;

(ii) S(G) is either one of D
(2)
`+1, C

(1)
` , or A

(2)
2` for ` ≥ 2;

(iii) S(G) is either one of A
(1)
1 , A

(2)
2 , or 1

2
A

(1)
1 ;

(iv) S(G) is none of the above, i.e. is unambiguous.

For the case (i), we showed in Section 5.2 that such graphs are clas-
sified by weak conjugacy classes of automorphisms of diagrams in Fig-
ure 5. One can verify directly that these graphs are exactly the ones
listed in families #3–#16 together with tensor products Λ̂⊗Â from #1.

Similarly, for the case (ii), we showed in Section 5.3 that such graphs
are classified by pairs of color-preserving involutions of affine ADE
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Dynkin diagrams up to simultaneous conjugation. Since we have listed
all such pairs in Section 5.3, it is straightforward to check that these
graphs are exactly the ones listed in families #17, #18, #20–#35,
together with the duals of #4, #7, #10, and #22.

Suppose now that (iv) holds. By Proposition 4.11 then G is uniquely
determined by descr(G). It remains to go through all the possible un-
ambiguous diagrams S in Figure 5 and for each of them list all possible
assignments of double bindings with scf = (2, 1), double bindings with
scf = (3, 1), and self bindings to double arrows, triple arrows, and loops
in S(G) respectively that yield affine ADE Dynkin diagrams as blue
components. This can be done in a straightforward way producing the
families #41–#53 and their duals, together with the duals of some toric
and path bigraphs. Note also that family #1 of tensor products falls
into this category as well.

Similarly, if G∗ falls into categories (i), (ii), or (iv) then G∗ appears
in the list.

It remains to consider the case when both G and G∗ satisfy (iii).

7.1. Affine � affine self bindings. In this section, we consider the

case S(G) = 1
2
A

(1)
1 which means that G is an affine � affine self binding.

Let v : Vert(G) → R be the common eigenvector for AΓ and A∆

from Lemma 2.16. Thus AΓv = 2v and A∆v = 2v. Since Γ has just
one connected component, we may rescale v so that it is equal to vΓ.
By Proposition 4.1, we have that for every v ∈ Vert(G),

(7.1)
∑

(v,w)∈∆

v(w) =
∑

(v,w)∈Γ

v(w) = 2v(v).

Theorem 7.1. The only possible affine � affine self bindings are

T (Â2n−1, exp(πi(2m− 1)/n), 1), for n ≥ 2 and 1 < 2m− 1 ≤ n,

and any two such bigraphs are non-isomorphic.

Proof. Let G be an affine � affine self binding, thus Γ is an affine ADE
Dynkin diagram. We are first going to eliminate the cases when Γ has
type Ê6, Ê7, or Ê8. Suppose Γ is of one of these exceptional types.
Consider the vertex u ∈ Vert(G) with the maximum value of vu. Thus

vu = 3 for Ê6, vu = 4 for Ê7, and vu = 6 for Ê8, see Figure 3. Note
that since G is a bigraph, Γ and ∆ do not share edges. In particular,
the neighbors of u in Γ cannot be the neighbors of u in ∆. It remains to
note that the sum of vw over w ∈ Vert(G) with εw 6= εu and (u, v) 6∈ Γ is
less than 2vu so (7.1) cannot hold even if u is connected to all available
vertices of G.
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Let us now assume that Γ is of type D̂n+2 for n ≥ 2. Thus G
has n + 3 vertices which we denote v+

0 , v
−
0 , v1, . . . , vn−1, v

+
n , v

−
n . Here

Γ consists of edges (vi, vi+1) for i ∈ [n − 2] together with four edges
(v±0 , v1), (vn−1, v

±
n ).

Suppose ∆ contains an edge (vk, vk+m) for k, k+m ∈ [n−1]. Among
all such edges, choose the one with the minimal value of m. Since
vk and vk+m are not neighbors in Γ, we have m ≥ 2. There is a
red-blue path from vk+1 to vk+m so there must be a blue-red path as
well by Corollary 2.15. Since vk+1 cannot be connected to vk+m−1 by
a blue edge, we have either k + m = n − 1 or (vk+1, vk+m+1) ∈ ∆.
Similarly, we have either k = 1 or (vk−1, vk+m−1) ∈ ∆. Thus for every
i = 1, 2, . . . , n −m − 1, we have an edge (vi, vi+m) ∈ ∆. Consider the
blue edge (v1, v1+m). There is a red-blue path from vm to v1 so without
loss of generality we may assume that (v+

0 , vm) ∈ ∆. But then there
is a blue-red path from v0 to vm−1 so there must be a red-blue path
which necessarily passes through v1, the only red neighbor of v+

0 . Thus
(v1, vm−1) ∈ ∆, a contradiction. This shows that ∆ has no edges of the
form (vk, vk+m) for k, k +m ∈ [n− 1]. Now, consider any vertex vk for
k ∈ [n − 1]. It can only be connected by a blue edge to v±0 and v±n ,
and by (7.1), it is connected to all these four vertices. This holds for
any k ∈ [n− 1] but by (7.1) applied to v+

0 , there can be only one such
vertex. It follows that n = 2 in which case the edge (v+

0 , v1) belongs
to both Γ and ∆ which is impossible. Thus there are no self bindings
with Γ being of type D̂n+2.

Finally, suppose Γ is of type Â2n−1 Let v1, . . . , v2n be the vertices of Γ,
and we label them cyclically so that v2n+1 = v1, etc. Let (vk, vk+2m−1) ∈
∆ be an edge with the minimal positive value of m, where again m ≥ 1
(in fact, m ≥ 2 because (vk, vk+1) is already an edge of Γ). Then
by the above reasoning, we have (vi, vi+2m−1) ∈ ∆ for every i ∈ [2n].
By (7.1), there are no other edges in ∆. We get precisely the bigraph

T (Â2n−1, exp(πi(2m−1)/n), 1). The fact that any two of these bigraphs
are not isomorphic follows from Proposition 5.3. �

Thus every affine � affine self binding appears as a special case for
n = 1 in family #3.

7.2. Affine � affine double bindings: preliminaries. We are left
with the case (iii) where both S(G) and S(G∗) belong to the set

{A(1)
1 , A

(2)
2 }. This implies that each of G and G∗ is an affine � affine

double binding. Proving Theorem 6.1 reduces to showing the following.
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Theorem 7.2. Suppose that both S(G) and S(G∗) belong to the set

{A(1)
1 , A

(2)
2 }. Then either G or G∗ belongs to one of the families #1,

#2, #3, #12, #19, or #36–#40.

Proof. We use the notation of Section 4.2: let X and Y be the two red
connected components of G, every edge of ∆ connects a vertex of X
to a vertex of Y . We let v be the common eigenvector for AΓ and A∆

from Lemma 2.16, and we denote by vX and vY the additive functions
for Γ(X) and Γ(Y ) from Figure 3.

Recall that G is a double binding of type Λ̂ ∗ Λ̂′ if X has type Λ̂ and
Y has type Λ̂′.

Definition 7.3. We say that G is a double binding of type Λ̂ ⇔ Λ̂′

if X has type Λ̂ and Y has type Λ̂′ and scf(G) = (2, 2). We similarly

introduce double bindings of type Λ̂ Λ̂′ and of type Λ̂ Λ̂′ for the
cases scf(G) = (1, 4) and scf(G) = (4, 1) respectively.

As it follows from (4.4), the values of v, vX , and vY are related as
follows. For any u ∈ X and v ∈ Y , we have

• v(u) = vX(u),v(v) = vY (v) if G is of type Λ̂⇔ Λ̂′;

• v(u) = 2vX(u),v(v) = vY (v) if G is of type Λ̂ Λ̂′;

• v(u) = vX(u),v(v) = 2vY (v) if G is of type Λ̂ Λ̂′.

Thus if we know descr(G) then we know v.

Definition 7.4. Given an affine ADE Dynkin diagram Λ̂, denote by
M(Λ̂) the multiset of values of vΛ̂. We also define M0(Λ̂) and M1(Λ̂)
to be the multisets of values of vΛ̂ restricted to the set of black (resp.,

white) vertices of Λ̂. For example, M(Ê6) = {1, 1, 1, 2, 2, 2, 3} which

splits into M0(Ê6) = {1, 1, 1, 3} and M1(Ê6) = {2, 2, 2}.

We denote X = X0 t X1 and Y = Y0 t Y1 the partitions of X and
Y into sets of vertices that have the same color. Thus either of the
following is true:

• every edge of ∆ connects a vertex of Xi to a vertex of Y1−i for
i = 0, 1;
• every edge of ∆ connects a vertex of Xi to a vertex of Yi for
i = 0, 1.

We denote by M(X0) the multiset of values of v restricted to X0.
We similarly define M(X1),M(Y0),M(Y1). We identify two multisets
if one of them is obtained from another one via rescaling every element
by a positive real number. The following lemma is immediate.
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Lemma 7.5. Suppose that G and G∗ are both double bindings and
suppose that G∗ has type Λ̂ ∗ Λ̂′. Then after a possible swapping of Λ̂
with Λ̂′, one of the following holds:

• M(X0) = Mi(Λ̂) and M(Y0) = M1−i(Λ̂) for some i ∈ {0, 1};
• M(X0) = Mi(Λ̂) and M(Y1) = M1−i(Λ̂) for some i ∈ {0, 1}.

Let us sum up these observations. Suppose that both G and G∗ are
double bindings and let G∗ have type Λ̂ ∗ Λ̂′. If we know descr(G) then
we know v and this gives us the multisetsM(X0),M(X1),M(Y0),M(Y1).

There are two options for the components Λ̂ and Λ̂′ of ∆ described in
the above lemma. Since an affine ADE Dynkin diagram can be re-
covered from its additive function, we get that knowing descr(G) gives
two possibilities for the types of its blue components. In each case, we
recover descr(G∗).

We now finish the proof with a simple case analysis according to the
types of X and Y .

7.3. Affine � affine double bindings involving type Ê.

7.3.1. The case Ê ∗ Ê. Applying (4.4), we get that there are the fol-
lowing possibilities for descr(G):

(a) Ê6 ⇔ Ê6;

(b) Ê7 ⇔ Ê7;

(c) Ê8 ⇔ Ê8.

Indeed, all the other cases are impossible since the ratio of any pair of
numbers from {24, 48, 120} is not equal to 4.

From looking at the multisets of values, it follows that for each case
we have descr(G) = descr(G∗). This actually implies that in the first
two cases, G is a twist. For example, in case (a), take a vertex v1

of X with vX(v1) = 1. It must be connected to a vertex u2 of Y
with vY (u2) = 2 which in turn must be connected to a vertex v3 of
X with vX(v3) = 3. Thus u2 is not connected to anything else in ∆.
We can now consider another leaf v′1 ∈ X with vX(v′1) = 1. It must
be connected to a vertex u′2 ∈ Y with vY (u′2) = 2 and by the above
observation, u′2 6= u2. Continuing in this fashion, we get that G is a

twist Ê6 × Ê6.
Let us now give a similar but a bit more complicated argument for

Ê7. Let v4 and u4 be the vertices ofX and Y respectively with vX(v4) =
vY (u4) = 4. Then they must be of the same color since v4 must be
connected to the neighbors u3 and u′3 of u4 with vY (u3) = vY (u′3) = 3.
This implies that u3 is connected to a vertex v2 of X with vX(v2) = 2
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that has the same color as v4 and now we this argument is finished in
the same way as our proof for Ê6.

For the third case, we actually get something besides twists, namely,
the bigraph #36. Label the vertices of the two copies of Ê8 with v1

through v9 and with u1 through u9 as shown in Figure 27.
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Figure 27. Labeling the nodes of X and Y .

From looking at the multisets of values, we get that the vertices v3

and u3 have the same color. We see that there are two cases to consider:
v3 is connected to either u2, u4, u9 or to u2, u4, u6.

Assume v3 is connected to u2, u4, u6. The same consideration as for
v3 can be applied to u3, with the only possible choice now of u3 being
connected to v2, v4, v6. Since u2 is connected to v3, its only other blue
neighbor has to be a vertex v with vX(v) = 2 so either v = v1 or
v = v7. Counting the red-blue and blue-red paths5 between u2 and v6,
we conclude that u2 is connected to v = v7. Since u8 is connected to
either v7 or v1, it follows that u8 is connected to v1. Since the vertex
u6 is already connected to v3, it cannot be connected to v1, and now it
follows that ∆ contains a path with vertices

u8, v1, u9, v5, u4, v3, u2, v7

which determines the graph uniquely and we see that it is exactly the
bigraph #36.

Assume v3 is connected to u2, u4, u9. The same consideration as for
v3 can be applied to u3, with the only possible choice now of u3 being
connected to v2, v4, v9. We know that v2 is connected to either u1 or
u7 and counting the red-blue and blue-red paths between u1 and v3 we

5Throughout the text, the phrase counting the red-blue and blue-red paths refers
to Corollary 2.15 and the discussion after it.
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conclude v2 is connected to u1. We now have enough information to
conclude that ∆ contains a path with vertices

u1, v2, u3, v4, u5, v6, u7, v8

which implies that G is a twist Ê8 × Ê8.

7.3.2. The case Ê6 ∗ Â. The component X of type Ê6 has a vertex v3

with vX(v3) = 3 and therefore it cannot be connected to anything by
an edge of ∆ unless scf(G) = (1, 4). Thus we only need to find all

double bindings of type Ê6 Â5.
It follows from looking at the multisets of values that descr(G∗) =

descr(G) in this case, and because of the symmetries of X and Y ,
there is essentially one way to connect the vertices v2, v

′
2, v
′′
2 of X with

vX(v2) = vX(v′2) = vX(v′′2) = 2 to the vertices u2, u4, u6 of Y to form a
6-cycle in ∆. The rest of the edges are reconstructed uniquely and we
get the bigraph #37.

7.3.3. The case Ê7 ∗ Â. The component X of type Ê7 has a vertex v4

with vX(v4) = 4 and therefore it cannot be connected to anything by an
edge of ∆ unless scf(G) = (1, 4). Thus we only need to find all double

bindings of type Ê7 Â11. We get an immediate contradiction from
looking at the multisets of values since there is no affine ADE Dynkin
diagram Λ̂ with M0(Λ̂) = {2, 2, 2, 2, 2, 2} and M1(Λ̂) = {1, 1, 2, 3, 3}.

7.3.4. The case Ê8 ∗ Â. The component X of type Ê8 has a vertex v6

with vX(v6) = 6 and therefore it cannot be connected to anything by
an edge of ∆, regardless of scf(G).

7.3.5. The case Ê6 ∗ D̂. Let X be the component of type Ê6 and let Y
the the component of type D̂. The cases scf(G) = (4, 1) or scf(G) =
(1, 4) are impossible. Indeed, if Y gets a scaling factor of 1, none of its
vertices can be connected to the vertex v3 of X with vX(v3) = 3. If
on the other hand Y gets scaling factor of 4, there is just not enough
vertices in X of the same color to collect vY (u) × 4 = 8 for a vertex
u ∈ Y with vY (u) = 2.

Thus scf(G) = (2, 2) and descr(G) = descr(G∗) = Ê6 ⇔ D̂8. Label
vertices ofX with v1 through v7, and label vertices of Y with u1 through
u9 as shown in Figure 28.

Assume v1 is white, and then it follows that u1 is also white from
looking at the multisets of values. By the same reason, v3 is connected
to u3, u5 and u7, which must be connected to v1, v5, v7. Without loss of
generality we can assume that we have edges (u3, v1), (u5, v7), (u7, v5).

This determines the position of the blue component of type Ê6 from
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Figure 28. Labeling the nodes of X and Y .

which we can uniquely reconstruct the edges of the blue component of
type D̂8 by counting the corresponding red-blue paths: we get that v2

is connected to u1, u2, v4 is connected to u8, u9, and thus v6 is connected
to u4, u6 which are connected to v2 and v4 or vice versa, and we see
that in any case we get a contradiction.

7.3.6. The case Ê7 ∗ D̂. Let X be the component of type Ê7 and let Y
the the component of type D̂. Our three possibilities by (4.4) are:

• Ê7 ⇔ D̂14;
• Ê7 D̂50;
• Ê7 D̂5;

Since M0(X) = {1, 1, 3, 3} and since there is no Dynkin diagram Λ̂

for which the maximum of v(Λ̂) is greater than 2 and is achieved more
than once, it follows that only the third case is possible. From looking
at the multisets of values, we get that descr(G) = descr(G∗) = Ê7 D̂5,
and in fact all the edges of ∆ can be immediately reconstructed from
knowing the additive function for each component of ∆, yielding the
bigraph #38.

7.3.7. The case Ê8 ∗ D̂. The cases Ê8 ⇔ D̂m+2 and Ê8 D̂m+2 are
impossible because the vertex in Ê8 with v = 6 cannot be connected
to any vertex in D̂m+2. The only possibility is the case Ê8 D̂m which
is also impossible because by (4.4), m must satisfy 4× 4m = 120, but
120 is not divisible by 16.

7.4. Affine � affine double bindings involving type Â.

7.4.1. The case Â ∗ Â. By (4.4), there are two possibilities:

• Â2n−1 ⇔ Â2n−1, n ≥ 1;
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• Â8n−1 Â2n−1, n ≥ 1.

In the second case, the multisets of values tell us that the red com-
ponents of G∗ are 2n copies of D̂4, and since G∗ is also required to be
a double binding, we get that n = 1, in which case there is only one
possible double binding which already is listed in family #12.

In the first case, the multisets of values tell us that descr(G) =

descr(G∗) = Â2n−1 ⇔ Â2n−1. Label the vertices of X with v1 through
v2n, and label the vertices of Y with u1 through u2n (we will be taking
the indices modulo 2n). Since the case n = 1 is trivial, we assume that
∆ has no double edges.

Lemma 7.6. Assume edges (vi, uj) and (vi+1, uj+1) are present. Then
so are the edges (vi+2, uj+2) and (vi−1, uj−1). Similarly, assume the
edges (vi, uj) and (vi+1, uj−1) are present. Then so are edges (vi+2, uj−2)
and (vi−1, uj+1).

Proof. Due to symmetry, it is enough to prove the first claim. Again
due to symmetry, it is enough to argue (vi+2, uj+2) exists. Assume
not. Counting blue-red and red-blue paths between vi+1 and uj+2 we
see that the edge (vi, uj+2) must exist. Similarly the edge (uj, vi+2)
exists. Counting blue-red and red-blue paths between uj+1 and vi we
see that the edge (vi−1, uj+1) exists. A similar logic gives us the edge
(vi+1, uj−1). Continuing this way we get edges between vi−k and vj+k
and vj+k+2 for k = 1, 2, . . .. For k = 2n−2 we see that vi+2 is connected
to uj+2 after all – a contradiction to our assumption. �

Now it is easy to see that all edges of ∆ consist of two such families
as in Lemma 7.6: each family consisting of all viui±k for fixed k. Fur-
thermore, if one family has a plus sign and the other has a minus sign,
we would have a double edge. Therefore both families have the same
sign, which without loss of generality we can assume to be plus. Thus,
there are two fixed choices k, k′ of residues modulo 2n such that the
edges of ∆ are viui+k and viui+k′ for all i. Such a bigraph is therefore
listed in family #3.

7.4.2. The case Â∗D̂. Since the component Y of type D̂n+2 has a vertex
v with vY (v) = 2, we cannot have a bigraph of type Â2n−1 D̂n. Thus
the only two possibilities that we have are:

• Â4n−1 ⇔ D̂n+2, n ≥ 2;
• Â2n−1 D̂2n+2, n ≥ 1.

In the first case, the multisets of values tell us the following. If
n = 2k+2 is even for k ≥ 0, one blue component will have 2n = 4k+4
ones and k twos and the other component will have 2n + 4 ones and
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k + 1 twos. Thus the second component must be of type D̂ which
implies that n = 0, a contradiction. Now if n = 2k+1 is odd for k ≥ 1,
each blue component has 2n+2 = 4k+4 ones and k twos which is also
impossible.

For the case Â2n−1 D̂2n+2, one blue component has 2n twos while
the other blue component has 4 ones and 2n − 1 twos. Thus the first
component must be of type Â2n−1 and the second component must be
of type D̂2n+2 so we get descr(G) = descr(G∗).

Let v1 and v2 be two vertices with vX(v1) = vX(v2) = 1 adjacent
to a vertex v3 in X with vX(v3) = 2. Label the vertices of Y as u1

through u2n. Let v2 be connected to u1 ∈ Y . Without loss of generality
we can assume v3 is connected to u2. Counting red-blue and blue-red
paths between v1 and u2 we see that there are two options: v1 is either
connected to u1, or to u3.

Assume v1 is connected to u3. Counting the red-blue and blue-red
paths between v1 and u4 we see that v3 has to be connected to u4.
Counting the red-blue and blue-red paths between v2 and u2n we see
that v3 has to be connected to u2n. By (4.2) applied to v3 we see that
this is impossible unless u2n = u4, that is, n = 2. In this case v4 has
to be connected to u1 and u3 and now we uniquely recover another
exceptional bigraph listed as #39 in our classification.

Assume now v1 is connected to u1. Counting red-blue and blue-red
paths between v3 and u1 we see that there are two options to consider:
either v3 is connected by a double edge to u2, or it is connected by a
single edge to u2 and a single edge to u2n.

In the former case, we get a component of type Â1 so n = 1 and we
get the bigraph #40.

Consider now the latter case. Counting red-blue and blue-red paths
between v3 and u3 and u2n−1 we see that again there are two options:
either 2n − 1 = 3 and v4 is connected to it by a double edge, or not,
in which case v4 is connected to both u3 and u2n−1. Continuing in this
manner we arrive to the moment when vn+2 is connected to un+1 by a
double edge. Thus, the option of a double edge does get realized sooner
or later, with the only choice of how soon it comes to be. But for n > 1
this contradicts the assumption that G∗ is a double binding.

7.5. Affine � affine double bindings involving only type D̂.
By (4.4), we have the following two possibilities:

• D̂n+2 ⇔ D̂n+2, n ≥ 2;
• D̂n+2 D̂4n+2, n ≥ 2.
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Let us start with the second case. Assume that n = 2k is even for
some k ≥ 1. Without loss of generality we may assume that

M(X0) = {2, 2, 2, 2, 4, . . . , 4︸ ︷︷ ︸
k−1

}, M(X1) = {4, . . . , 4︸ ︷︷ ︸
k

};

M(Y0) = {1, 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
4k−1

}, M(Y1) = {2, . . . , 2︸ ︷︷ ︸
4k

}.

We see that if k > 1 then there is no way to combine M(X0) with either

M(Y0) or M(Y1) to get M(Λ̂) in the union for any affine ADE Dynkin

diagram Λ̂. For k = 1, the blue components are necessarily X0 ∪ Y0 of
type D̂10 and X1 ∪ Y1 of type D̂4 so we get descr(G) = descr(G∗) =

D̂4 D̂10. We would like to show that such a double binding does not
exist. Let v be the unique vertex of X of degree 4 and suppose that it is
black. Then it is connected to all four white vertices of Y , and each of
them satisfies vY (u) = 2. By repeatedly counting red-blue and blue-red

paths, we recover the dual of #31 with descr(G∗) = D̂6 ⇒ D̂4 ⇒ Â3.
In particular, G∗ has three red components so is not a double binding.

Assume now that n = 2k + 1 is odd for some k ≥ 1. Then without
loss of generality we get that

M(X0) = {2, 2, 4, . . . , 4︸ ︷︷ ︸
k

}, M(X1) = {2, 2, 4, . . . , 4︸ ︷︷ ︸
k

};

M(Y0) = {1, 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
4k+1

}, M(Y1) = {2, . . . , 2︸ ︷︷ ︸
4k+2

}.

We see that there is no way to combine M(Y0) with either M(X0) or

M(X1) to get M(Λ̂) because if 1, 4 ∈ M(Λ̂) then we must also have

3 ∈M(Λ̂).

For the first case, both blue components have to also have type D̂n+2

so we get
descr(G) = descr(G∗) = D̂n+2 ⇔ D̂n+2.

First, assume n = 2. Since the blue components are two copies of D̂4,
the unique way to get them is to connect the vertex of X of red degree
4 to all the leaves of Y and vice versa. We obtain a twist D̂4 × D̂4.

Suppose now that n ≥ 3. We would like to show that in this case
we get family #19 or #2, i.e., G = D̂n+2 op D̂n+2 for some p ∈ [n −
1]. Recall that the bigraphs D̂n+2 op D̂n+2 and D̂n+2 on−p D̂n+2 are

isomorphic and D̂n+2 o1 D̂n+2 is isomorphic to the twist D̂n+2× D̂n+2.
Let us label the vertices of X and Y as in Section 5.4. Thus the

vertices of X are labeled by

u+
0 , u

−
0 , u1, u2, . . . , un−1, u

+
n , u

−
n
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so that the leaves u+
0 and u−0 are connected to u1 and the leaves u+

n

and u−n are connected to un−1. Similarly, the vertices of Y are labeled
in a similar way by

v+
0 , v

−
0 , v1, v2, . . . , vn−1, v

+
n , v

−
n .

Since we know that the blue components have type D̂n+2, we get that
the leaves of X are not connected to the leaves of Y by blue edges.
Without loss of generality we can assume that u+

0 is connected to some
vp, where p ∈ [n−1]. Counting red-blue and blue-red paths we see that
u1 is connected to a neighbor v′ of vp. Counting red-blue and blue-red
paths between u−0 and v′, we get cases: u−0 has to be connected to either
vp or to another neighbor v′′ of v′.

Consider the case when u−0 is connected to v′′. Since u−0 is a leaf of
X, v′′ cannot be a leaf of Y . Moreover, v′ has two different neighbors vp
and v′′ so it also cannot be a leaf of Y . Without loss of generality we can
therefore assume that p ≤ n− 3, v′ = vp+1 and v′′ = vp+2. Hence there

exists a path of length 5 in Y of the form (v
(+)
p−1, vp, vp+1, vp+2, v

(+)
p+3),

where v
(+)
i is equal to vi if i 6= 0, n and to v+

i if i = 0 or i = n.

Counting red-blue and blue-red paths between v
(+)
p−1 and u+

0 we get

that v
(+)
p−1 is connected to u1. Counting red-blue and blue-red paths

between v
(+)
p+3 and u−0 we get that v

(+)
p+3 is connected to u1 as well. This

contradicts (4.3) for u1.
Thus u−0 is connected to vp as well as u+

0 . Since vp is connected to a
leaf u+

0 by a blue edge, every red neighbor of vp must be connected to

u1. Thus u1 is connected to v
(+)
p−1. Then either p− 1 = 0 or p− 1 > 0.

Similarly either p + 1 = n or p + 1 < n. Assume that 1 < p < n − 1.
Note that vp cannot be connected to u2 since counting red-blue and
blue-red paths between vp and u1 we would arrive at a contradiction.
Then counting red-blue and blue-red paths between u2 and vp−1, vp+1

we conclude that v
(+)
p−2 and v

(+)
p+2 exist and are connected to u2. Again,

either p − 2 = 0 or p − 2 > 0, and either p + 2 = n or p + 2 < n.
Also, again, vp±1 are not connected to u3, since otherwise we get a
contradiction by counting red-blue and blue-red paths between vp±1

and u2, etc. Continuing this way we get ui to be connected to vp±i for
i = 0, 1, . . . .

Eventually we arrive at a situation when without loss of generality
p − i = 0, that is, i = p. Thus, v+

0 is connected to up, and so is
v2p. Counting red-blue and blue-red paths between v+

0 and up+1 we
conclude that v1 is connected to up+1. Counting red-blue and blue-red
paths between v−0 and up+1 we conclude that v−0 is connected to either
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up+2 or to up. The former case as before leads to a contradiction. In the
latter case we proceed as before, with u-s and v-s swapped, concluding
the existence of edges between vj and up±j for 1 ≤ j ≤ p.

Counting blue-red and red-blue paths between up+1 and v2p, and
taking into account that the edge (v2p−1, up+1) does not exist in ∆
since (v2p−2, up) does not, we conclude that up+1 is connected to v2p+1,

etc. Continuing in this manner we get edges connecting up+j to v
(+)
2p+j,

and also edges connecting vp+j to u
(+)
2p+j for 1 ≤ j ≤ n− 2p. Finally, in

a symmetric way to the previous argument we obtain edges connecting
un−2p+j to vn−j, and also edges connecting vn−2p+j to un−j for 1 ≤ j ≤
p.

As a result we obtain precisely the pseudo twist D̂n+2 op D̂n+2. �

8. Twists

In this section, we concentrate on the case when the bigraph G =
(Γ,∆) is a twist Λ̂× Λ̂ for some affine ADE Dynkin diagram Λ̂. First,
we introduce a certain game one can play on any undirected graph that
very much resembles the Kostant’s find the highest root game which is
due to Allen Knutson. We deduce a positivity result for this game
from the theory of Kac-Moody algebras [23]. We then give a gen-
eral construction of a twist for any quiver in Section 8.2. We prove
a factorization theorem for any such twist in Section 8.3 thus directly
generalizing [30, Proposition 2.4] where this was done for the del Pezzo
3 quiver which can be seen as a twist of a triangle with itself as we
explain in Section 8.2. Finally, in Section 8.4 we apply these results to
the case Λ̂× Λ̂ where Λ̂ is an affine ADE Dynkin diagram and deduce
Conjecture 1.7 for such twists as a special case.

8.1. Reflections on undirected graphs. Let G = (I, E) be a con-
nected undirected graph with possibly multiple edges but no loops. We
denote by V = {h : I → R} the vector space of all functions from I
to R and for each i ∈ I, denote by αi : I → R the i-th basis vector
defined by αi(j) = δij.

Suppose that G has one distinguished vertex b ∈ V . For every vertex

i ∈ I, we define two reflections si, s
(b)
i : V → V as follows. Given a

vector h ∈ V , put

(sih)(j) =


h(j), if i 6= j;

−h(j) +
∑

(j,k)∈E

h(k), if i = j; s
(b)
i h =

{
sih, if i 6= b;

sih+ αb, if i = b.
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h a b c d
s2(h) a a+ c− b c d
s3s2(h) a a+ c− b a+ d− b d
s2s3s2(h) a a+ d− c a+ d− b d
h a b c d

s
(b)
2 (h) a a+ c− b+ 1 c d

s
(b)
3 s

(b)
2 (h) a a+ c− b+ 1 a+ d− b+ 1 d

s
(b)
2 s

(b)
3 s

(b)
2 (h) a a+ d− c+ 1 a+ d− b+ 1 d

Table 1. An example of applying the operators si and s
(b)
i .

Example 8.1. Let I = {1, 2, 3, 4} and letG be an undirected path with
edges E = {(1, 2), (2, 3), (3, 4)}. Thus V can be identified with R4. Let
b = 2 be the distinguished vertex. Suppose that h = (a, b, c, d) ∈ V ,
thus for example h(2) = b. The values of s2(h), s3s2(h), s2s3s2(h), as

well as of s
(b)
2 (h), s

(b)
3 s

(b)
2 (h), and s

(b)
2 s

(b)
3 s

(b)
2 (h) are given in Table 1.

For an element h ∈ V , we write h ≥ 0 if for any i ∈ I, h(i) ≥ 0.
The rest of this section will be concentrated on showing the following
result:

Proposition 8.2. For any sequence i = (i1, i2, . . . , ip) of vertices of G,
we have

(8.1) s
(b)
ip
s

(b)
ip−1
· · · s(b)

i1
(0) ≥ 0.

Proof. First, one easily checks (for example, using Table 1) that if
the vertices i and j are connected by exactly one edge (resp., zero

edges) in G, we have (s
(b)
i s

(b)
j )mij = id for mij = 3 (resp., mij = 2).

Thus the operators s
(b)
i define a representation of the Weyl group W

of the Kac-Moody algebra associated to the generalized Cartan matrix
AG = (aij)i,j∈I of G defined by

(8.2) aij =

{
2, if i = j;

−qij, otherwise,

where qij is the number of edges in G connecting i to j. This follows
from [23, Proposition 3.13]. Thus we may assume that the word i is
reduced, that is, the element sipsip−1 · · · si1 cannot be represented as a
product of less than p elements in W .

We prove (8.1) by induction on p. The case p = 0 is trivial so suppose
that p > 0.
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1

2

3

1′

2′

3′

1′′

2′′

3′′

a quiver Q its twist Q×Q

Figure 29. The del Pezzo 3 quiver is a twist.

Since si(0) = 0 for all i ∈ I, we may assume that i1 = b. One easily
checks that in this case,

s
(b)
ip
s

(b)
ip−1
· · · s(b)

i1
(0) = s

(b)
ip
s

(b)
ip−1
· · · s(b)

i2
(0) + sipsip−1 · · · si2(αb).

This is true because for any i ∈ I and h1, h2 ∈ V , we have

(8.3) s
(b)
i (h1 + h2) = si(h1) + s

(b)
i (h2).

Since i was reduced, the same is true for i′ = (i2, . . . , ip), and thus
the positivity of the first summand follows by induction. The pos-
itivity of the second summand is an immediate application of [23,
Lemma 3.11(a)]. �

8.2. Twists for arbitrary quivers. Let Q be a quiver, and let I :=
Vert(Q) be the set of its vertices. Let G be the underlying undirected
graph for Q with the same set I of vertices. We let I ′ = {i′ | i ∈ I}
and I ′′ = {i′′ | i ∈ I}. We are going to construct a new quiver Q × Q
with vertex set Vert(Q×Q) = I ′ ∪ I ′′. For every edge i→ j of Q, the
quiver Q×Q contains edges

i′ → j′, i′′ → j′′, j′′ → i′, j′ → i′′.

For example, when Q is a cycle with edges 1→ 2→ 3→ 1 then Q×Q
is the well studied del Pezzo 3 quiver, see Figure 29.

For each i ∈ I, we define a new quiver τi(Q×Q) to be σi◦µi′◦µi′′(Q×
Q), where µi′ is the usual quiver mutation (see Definition 2.14) and σi
is the operation that swaps the vertices i′ and i′′ in the quiver. We
introduced this operation in [14], however, for the del Pezzo 3 quiver
it already appeared in [30] under the name τ -mutation.

Lemma 8.3. We have τi(Q×Q) = Q×Q.
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Proof. Suppose that u → i′ → w is a path of length 2 in Q × Q. We
then therefore have a path w → i′′ → u of length 2 as well. The
mutation µi′ introduces an edge u → w, but then the mutation µi′′
introduces an edge w → u so these edges cancel each other out.

For any edge u → i′, there is an edge i′′ → u so reversing both of
these edges and swapping the vertices i′ and i′′ preserves both of these
edges. We get that any edge of Q × Q is preserved by τi and no new
edges are introduced. We are done with the proof. �

Corollary 8.4. If G is bipartite then Q is a bipartite recurrent quiver.

For each i ∈ I, we introduce two variables x′i and x′′i corresponding
to the vertices i′ and i′′ of Q respectively, and thus the set of vertex
variables for Q×Q is x′ ∪ x′′ where x′ = {x′i}i∈I and x′′ = {x′′i }i∈I .

Consider a map T : Vert(Q × Q′) → Z[(x′)±1, (x′′)±1] assigning a
Laurent polynomial to each vertex of Q×Q. The operation τi for i ∈ I
can be lifted to an operation on such maps T . More specifically, it is
defined as follows: for j 6= i ∈ I, we set

(τiT )(j′) = T (j′), (τiT )(j′′) = T (j′′).

For the remaining two vertices, we put

(τiT )(i′) =

∏
u→i′′ T (u) +

∏
i′′→v T (v)

T (i′′)
;

(τiT )(i′′) =

∏
u→i′ T (u) +

∏
i′→v T (v)

T (i′)
.

(8.4)

Here u, v ∈ I ′∪ I ′′ are the vertices of Q×Q. Thus the operation τi can
be viewed as a composition of two quiver mutations τi′ ◦ τi′′ followed
by swapping the values of T at i′ and i′′.

8.3. A product formula for any τ-mutation sequence. We let
T0 : Vert(G) → Z[x′,x′′] be the initial seed, that is, T0(i′) = x′i and
T0(i′′) = x′′i for all i ∈ I. Consider a sequence i = (i1, i2, . . . , ip) of
elements of I and let

(8.5) T1 = τi1T0, T2 = τi2T1, . . . , Tp = τipTp−1.

We are interested in giving a formula for Tp(j) for any j ∈ I. For
each i ∈ I, define Xi ∈ Z[(x′)±1, (x′′)±1] by

(8.6) Xi =

∏
j→i x

′
j

∏
i→j x

′′
j +

∏
j→i x

′′
j

∏
i→j x

′
j

x′ix
′′
i

.

Just as in Section 8.1, we define the operators s
(j)
i for each i, j ∈ I

to be the reflections s
(b)
i for G with b = j.
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Proposition 8.5. Let i = (i1, i2, . . . , ip) and T0, T1, . . . , Tp be as in (8.5).
Then there exists a matrix A(i) = (aiij)i,j∈I with nonnegative integer
entries such that for any i ∈ I we have

(8.7) Tp(i
′) = x′i

∏
j∈I

X
aiij
j ; Tp(i

′′) = x′′i
∏
j∈I

X
aiij
j .

The j-th column (aiij)i∈I of A(i) is equal to

(8.8) s
(j)
ip
s

(j)
ip−1
· · · s(j)

i1
(0).

Proof. We prove (8.7) and (8.8) by induction on p, the case p = 0
being trivial. Suppose that we already know the result for p − 1.
The induction step is straightforward to check by substituting (8.6)
into (8.4). The nonnegativity of the coefficients of A(i) follows from
Proposition 8.2

�

Corollary 8.6. If Q is an orientation of a finite (resp., affine) ADE

Dynkin diagram Λ (resp., Λ̂) then the operators τi define a simply tran-
sitive action of the Weyl group W (resp., the affine Weyl group Wa) of

Λ (resp., Λ̂) on the clusters that can be obtained from the initial seed T0

by applying τ -mutations. In particular, such clusters are in bijection
with Weyl chambers of W (resp., with alcoves of Wa).

Proof. This follows immediately from Proposition 8.5. We refer the
reader to [5, Chapter V, §4] for the background on alcoves and Weyl
chambers. �

8.4. Twists of ADE Dynkin diagrams. In this section, we return
to the case when Q is a finite or affine ADE Dynkin diagram with
every edge oriented towards a white vertex (see Definition 5.1). Let
I = {0, 1, 2, . . . , n} be the set of its vertices and suppose that the
vertices 0, 1, 2, . . . , k−1 are white while the vertices k, . . . , n are black.
We would like to apply the product formula (8.7) to the T -system
associated with Q × Q. Proposition 8.5 implies that we only need to
analyze the left hand side of (8.1) for the specific mutation sequence
i = (0, 1, 2, . . . , n, 0, 1, 2, . . . ). Let us choose some distinguished vertex,
say, b = 0. Let V be a vector space with basis α0, α1, . . . , αn as in
Section 8.1 and a bilinear form B associated to the generalized Cartan
matrix AG of G from (8.2). In particular, for h1, h2 ∈ V , we have

B(h1, h2) = 〈h1, h2〉 := hT1AGh2.

Thus it is well known (see e.g. [40, Section 2.17]) that B is positive
definite (resp., nonnegative definite) if and only if Q is an orientation
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of a finite (resp., affine) ADE Dynkin diagram. The reflections si can
be alternatively defined by

si(h) = h− 〈h, αi〉αi
for i ∈ I. Define the Coxeter transformation C by

C = ω2ω1, where ω1 = sk−1sk−2 . . . s0, ω2 = snsn−1 . . . sk.

Let (h0, h1, . . . ) be the sequence of elements of V associated with
i = (0, 1, 2, . . . , n, 0, 1, 2, . . . ) in the left hand side of (8.1). In other

words, h0 = 0 is the origin and hk+1 = s
(b)
ik
hk for k ≥ 0. Here ik ∈ I is

defined by ik ≡ k (mod n) + 1 so that i = (i0, i1, . . . ). The following
lemma follows immediately from (8.3):

Lemma 8.7. For any integer m ≥ 0, we have

(8.9) hm(n+1) = C(hmn + α0) =
m∑
k=1

Ckα0.

Since the whole calculation amounts to computing the powers of the
Coxeter transformation, it would be nice to find its Jordan normal form
J which is actually well studied:

Proposition 8.8 ([40, Theorems 3.15 and 4.1]).

(1) If Q is an orientation of a finite ADE Dynkin diagram then J
is diagonal and C is periodic, and the eigenvalues of J are roots
of unity not equal to 1;

(2) If Q is an orientation of an affine ADE Dynkin diagram then
J has one 2×2 block corresponding to the eigenvalue 1, the rest
of its blocks are 1 × 1 and all the other eigenvalues of C are
roots of unity not equal to 1;

(3) otherwise there is a simple maximal eigenvalue of C that is
greater than one.

Theorem 8.9. Let Q be a bipartite quiver.

(1) If Q is an orientation of a finite ADE Dynkin diagram then the
T -system associated with Q×Q is periodic;

(2) If Q is an orientation of an affine ADE Dynkin diagram then
the T -system associated with Q × Q grows quadratic exponen-
tially;

(3) otherwise the T -system associated with Q×Q grows doubly ex-
ponentially.

Proof. Note that the first part follows from [14] while the third part
follows from Theorem 1.5. However, it is easy to prove all the parts
directly using (8.9) and Propositions 8.8 and 8.5. Let C = P−1JP be
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the Jordan normal form of C and consider the vector Pα0. Suppose
that Q is an orientation of a finite ADE Dynkin diagram Λ. Then C
is periodic with some period h (the Coxeter number) so the sum of Ck

over the period will be zero. Indeed, the matrix J is diagonal and by
Proposition 8.8, its entries are roots of unity that are not equal to 1.
Thus the sequence hk is periodic, and by Proposition 8.5, this sequence
describes the degrees of the factors Xi in the values of the T -system
associated with Q×Q. This proves the first claim.

Suppose now that Q is an orientation of an affine ADE Dynkin
diagram. Then the unique 2× 2 block of Jk will have the form(

1 k
0 1

)
.

Since all the other 1 × 1 blocks correspond to roots of unity that are
not equal to 1, the corresponding entries of J1 + J2 + · · ·+ Jm will be
bounded while the unique 2× 2 block of J1 + J2 + · · ·+ Jm will have
the form (

m
(
m+1

2

)
0 m

)
.

This shows that the sequence hm(n+1) grows quadratically and thus the
values of the T -system associated with Q×Q grow quadratic exponen-
tially6 and we are done with the second claim.

Finally, suppose that the underlying graph G of Q is not a finite
or affine ADE Dynkin diagram. Then there is a simple maximum
eigenvalue λ in J and therefore we will have λk in Jk dominating all
the other terms. Thus the sequence hm(n+1) grows exponentially which
implies that the values of the T -system associated with Q × Q grow
doubly exponentially and we are done with the third claim. �

9. Conjectures

In addition to the main Conjecture 1.7 we make several other con-
jectures describing the behavior of T -systems in our affine � affine
classification. We prove some of them for twists.

9.1. Arnold-Liouville integrability. In this paper we worked with
zero algebraic entropy, which is one of the ways to define integrabil-
ity. An alternative way is to look for the Arnold-Liouville integrability,
which means finding a non-degenerate Poisson bracket, and a number

6it may happen that even though some entries of J grow fast, the vector
P−1JPα0 is bounded. But then we can relabel the vertices and choose some other
vertex b for which the growth will be quadratic exponential.



72 PAVEL GALASHIN AND PAVLO PYLYAVSKYY

of algebraically independent conserved quantities in involution with re-
spect to this Poisson bracket. We refer the reader to [1] for a classical
account.

Conjecture 9.1. Y -systems associated with all the affine � affine
ADE bigraphs in our classification are integrable in Arnold-Liouville
sense.

This conjecture has already been verified in the special case of our
T (Ârd−1, exp(2πip/r), n) family #3. Specifically, it is a special case of a
theorem of Goncharov and Kenyon [19, Theorem 3.7]. It is also present
in Ovsienko-Schwartz-Tabachnikov [35, Theorem 2] and Gekhtman-
Shapiro-Tabachnikov-Vainshtein [16, Theorem 4.4]. The latter two
sources prove it in a somewhat narrower generality than our family #3,
however their methods extend easily to cover the whole family.

Note that all three of the above sources prove Arnold-Liouville inte-
grability for the Y -variable dynamics. It remains to be understood if
a similar claim can be made about the T -systems in our classification.

9.2. Devron property. Glick has introduced the Devron property in
[17] as a counterpart to singularity confinement, often used to detect
integrability. Roughly speaking, Devron property is a property of sys-
tems where time flow is reversible. Assume that going backward in
time one fails due to a really bad singular behavior, i.e. a Devron sin-
gularity. Then the system has Devron property if this implies similar
failure after a number of steps when going forward in time.

For a T -system associated with an affine � affine ADE bigraph from
our classification, let us say that the initial values Tv(t) for t = 0, 1
form a backward Devron singulairty if for any v of color εv = 1 we
have Tv(−1) = 0. Let us say that for some time t0, the values of the
T -system form a forward Devron singulairty if for any v of color εv 6≡ t0
(mod 2) we have Tv(t0 + 1) = 0.

Conjecture 9.2. If the initial values of a T -system associated with an
affine � affine ADE bigraph from our classification form a backward
Devron singularity, then after a finite number of steps t0, the T -system
will reach a state that forms a forward Devron singularity.

We prove this conjecture for twists of arbitrary bipartite quivers.

Proposition 9.3. Let Q be any bipartite quiver. Then the twist Q×Q
has the Devron property with t0 = 2.

Proof. This follows immediately from Proposition 8.5. Indeed, having
a backward Devron singularity at t = 0 means that Xv = 0 for any
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v ∈ Vert(Q) with εv = 1. Since Xv appears in Tv(3) with exponent
equal to 1 by Proposition 8.5, we are done. �

For the case when Q is a tensor product of type Â2n−1⊗ Â2m−1, our
limited computer evidence suggests that we have

t0 ∈ {max(2n, 2m), 2 max(2n, 2m)},
depending on the parity of n and m.

9.3. Time-dependent conserved quantities. A notion of time de-
pendent conserved quantities is sometimes used when analysing inte-
grability of dynamical systems, see [20] for an accessible introduction.
Let A(t) be a function of the system parameters evaluated at time t.
We say that A is a time-dependent conserved quantity if there exist in-
tegers m, t0 ≥ 1 such that for any t ∈ Z, we have A(t+ t0) = A(t)Bm,
where B = B(t) is a fixed genuine conserved quantity of the system,
that is, B(t+ t0) = B(t) for all t ∈ Z.

Conjecture 9.4. The T -systems associated with affine � affine ADE
bigraphs from our classification possess non-trivial time-dependent con-
served quantities.

We again prove this conjecture for twists, but now only of affine ADE
Dynkin diagrams. In order to state the result, we need to associate
one more integer ha(Λ̂) to each affine ADE Dynkin diagram Λ̂ which
is called the affine Coxeter number in [40], not to be confused with the

McKay number h(2)(Λ̂) of Λ̂ from Figure 3.

Definition 9.5. The affine Coxeter number of an affine ADE Dynkin
diagram Λ̂ is the smallest positive integer m = ha(Λ̂) such that λm = 1

for any eigenvalue λ of the Coxeter transformation associated to Λ̂.
The values of ha(Λ̂) are given in [40, Table 4.1]. Moreover, define the

Coxeter-McKay ratio g(Λ̂) by

g(Λ̂) =
4ha(Λ̂)

h(2)(Λ̂)
.

The values of ha(Λ̂) and g(Λ̂) are given in Table 2. In particular, g(Λ̂)
is always equal to either 1 or 2.

The Coxeter-McKay ratio is closely related to the Dlab-Ringel defect,
see [7] or [40, Section 6.3.3].

Proposition 9.6. Let Λ̂ be an affine ADE Dynkin diagram with vertex
set I, edge set E, additive function λ : I → Z, and affine Coxeter
number m = ha(Λ̂). Consider the twist Λ̂ × Λ̂ with vertex set I ′ ∪ I ′′.
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Λ̂ Â2n−1 D̂n, n even D̂n, n odd Ê6 Ê7 Ê8

ha(Λ̂) n n− 2 2(n− 2) 6 12 30

g(Λ̂) 2 1 2 1 1 1

Table 2. The affine Coxeter number and the Coxeter-
McKay ratio for affine ADE Dynkin diagrams.

Then for each vertex i ∈ I, there is a time-dependent conserved quantity
Ai(t) defined as follows: for t ≡ εi (mod 2), we put

Ai(t) =
Ti′(t)

2∏
(i,j)∈Λ̂ Tj′(t− 1)

.

These functions satisfy

(9.1) Ai(t+ 2m) = Ai(t)B
g(Λ̂)λ(i),

where B = B(t) is defined as follows. For t even, we put

B(t) =
∏
j

X
λ(j)
j (t− εj).

For odd t, one replaces εj by 1− εj. Here Xj(t) is defined analogously
to (8.6), namely,

Xj(t) =

∏
k→j Tk′(t)

∏
j→k Tk′′(t) +

∏
k→j Tk′′(t)

∏
j→k Tk′(t)

Tj′(t− 1)Tj′′(t− 1)
.

The function B(t) is a genuine conserved quantity: B(t + m) = B(t)
for all t ∈ Z.

Proof. Let us fix some j ∈ I with say εj = 0 and look at the exponent
atij of Xj = Xj(0) from (8.6) in Ti(t). By Lemma 8.7, this value equals
to the i-th coordinate of

δj(t) =
t∑

k=1

Ckαj.

Now, the degree of Xj in Ai(t) is therefore the value of 〈αi, δj(t)〉. We
would like to show (9.1), and the exponent of Xj in Ai(t+m)/Ai(t) is
given by 〈αi, δj(t+m)− δj(t)〉. Note that

δj(t+m)− δj(t) = Ct

(
m∑
k=1

Ckαj

)
.

From Proposition 8.8 it follows that the right hand side, written in the
Jordan basis for C, has nonzero coordinates corresponding only to the
two eigenvectors of C associated to the 2 × 2 Jordan block. One of
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these vectors is exactly λ and 〈αi, λ〉 = 0. The other vector ν satisfies
Cν = ν+λ so its coefficient in δj(t+m)− δj(t) is independent of t and
is equal to mcj, where cj is the coefficient of ν in the expansion of αj
in the Jordan basis of C. Let us calculate cj explicitly. The vector ν is
orthogonal to the other Jordan basis vectors of C with respect to the
scalar product (·, ·) defined by (αi, αj) = δij, see [40, (6.47)]. Thus cj
equals to

(αj ,ν)

(ν,ν)
. For any k ∈ I, we have ν(k) = 1

4
(−1)εkλ(k). Therefore

(ν, ν) = 1
16
h(2)(Λ̂). On the other hand, (αj, ν) is equal up to sign to

1
4
λ(j). Thus cj equals to 4λ(j)

h(2)(Λ̂)
. Multiplying this by m shows that the

coefficient of ν in δj(t+m)− δj(t) equals g(Λ̂)λ(j). It remains to note
that up to sign we have 〈αi, ν〉 = λ(i) which yields the result. �

Note that for the T (Ârd−1, exp(2πip/r), n) family #3 one can use
the topology of the torus embedding of the quiver to define conserved
quantities, as it was done in a slightly different language by Goncharov
and Kenyon in [19]. In [15] we performed this construction in our
language for cylindric rather than toric quivers, resulting in what we
called Goncharov-Kenyon Hamiltonians. However, as evident from the
definition, the task of finding time-dependent conserved quantities is
strictly harder than that of finding conserved quantities: if one knows

A(t), one can find the associated function B(t) =
(
A(t+t0)
A(t)

)1/m

, but

there is no simple way to go in the other direction. Thus, even for
the T -systems from family #3 we do not know of a construction of
time-dependent conserved quantities in general.
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