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Abstract. We solve two open problems in Coxeter–Catalan combinatorics. First, we introduce a family

of rational noncrossing objects for any finite Coxeter group, using the combinatorics of distinguished

subwords. Second, we give a type-uniform proof that these noncrossing Catalan objects are counted

by the rational Coxeter–Catalan number, using the character theory of the associated Hecke algebra

and the properties of Lusztig’s exotic Fourier transform. We solve the same problems for rational

noncrossing parking objects.

1. Introduction

1.1. Rational W -Catalan numbers and W -nonnesting combinatorics. The Catalan number

Catn :=
1

n+ 1

(
2n

n

)
=

1

2n+ 1

(
2n+ 1

n

)
famously counts Dyck paths with 2n steps. More generally, if p is a positive integer coprime to n, then

the rational Catalan number Catn,p := 1
p+n

(
p+n
n

)
counts rational Dyck paths: the lattice paths in a p×n

rectangle that stay above the diagonal [Biz54, ARW13]. For instance, Figure 1 shows that Cat5,3 = 7.

Taking p = n+ 1 recovers the classical case: Catn,n+1 = 1
2n+1

(
2n+1
n

)
= Catn.

Figure 1. The rational Dyck paths counted by Cat5,3.

Rational Dyck paths admit several generalizations that depend uniformly on an irreducible finite Weyl

group W :

• for p = h+ 1, where h is the Coxeter number of W , one can take antichains in the positive root

poset or dominant regions of the Shi arrangement [Shi87, Rei97];

• for p = kh+ 1, one can take certain k-tuples of roots that encode dominant regions of the k-Shi

arrangement [Ath04, Ath05]; and

• for any p coprime to h, one can take coroots inside a certain p-fold dilation of the fundamental

alcove [Hai94, KF96, Som97, Sag00, CP02, Thi16, TW17].
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These generalizations are collectively known as nonnesting objects, because when W is the symmetric

group Sn and p = n+ 1, they admit natural bijections to the classical nonnesting partitions of n.

Henceforth, all reflection groups are finite, real, and irreducible. Let W be a Weyl group of rank r

and Coxeter number h. (If W = Sn, then r = n − 1 and h = n.) For any integer p coprime to h, the

rational W -Catalan numbers [Hai94] are given by

Catp(W ) :=

r∏
i=1

p+ ei
di

,

where the numbers di are integers known as the degrees of W , and the numbers ei = di − 1 are known

as the exponents of W . If W = Sn, then di = i + 1 and ei = i, giving Catp(Sn) = Catn,p. Together,

[Hai94, Theorem 7.4.2] and [Thi16, Lemma 8.2] give a uniform proof that the families of nonnesting

objects above are counted by Catp(W ).

For an arbitrary Coxeter group W (in fact, for any well-generated complex reflection group) with

Coxeter number h and p coprime to h, [GG12] extend the definition above to

(1.1) Catp(W ) :=

r∏
i=1

p+ (pei modh)

di
.

If W is a Weyl group, then multiplication by p permutes the residues of the exponents modulo h by

[Spr74, Proposition 4.7] and [STW15, Proposition 8.1.2], so the new definition of Catp(W ) specializes

to the previous one. In the generality of Coxeter groups, however, a uniform definition of nonnesting

objects has not been found.

1.2. Rational W -noncrossing combinatorics. The Catalan numbers Catn count many other objects

beyond Dyck paths—in particular, they also count the noncrossing partitions of n. If p = kh + 1,

then several families of noncrossing objects counted by Catp(W ) can be defined uniformly for any finite

Coxeter group W , including W -noncrossing partitions [Rei97, Bes03, Bes15, Arm09], generalizations

of cluster exchange graphs for finite-type cluster algebras [FZ03a, FR05, CLS14], and Coxeter-sortable

elements [Rea07a, Rea07a, STW15]. The W -noncrossing partitions can even be defined for well-generated

complex reflection groups.

These families are of a very different nature from the nonnesting objects of Section 1.1. They are

defined beyond crystallographic reflection groups, their definition depends on the choice of a Coxeter

element, and they satisfy a recursive property called the Cambrian recurrence. However:

(1) For any W , the uniform definition of rational noncrossing families for arbitrary p coprime to h

has been an open problem for roughly a decade.

(2) For any of the kinds of noncrossing families above, the proof of their uniform enumeration by

Catp(W ) for all W has been an open problem since their definition.

For further discussion of these problems, see the summary report from the 2012 American Institute of

Mathematics workshop on rational Catalan combinatorics [Wil12, Sections 1.1–1.2], as well as [STW15,

Chapter 8], [BR16, Section 7], [Bod19, Section 8], and [ARW13, Section 1].

We resolve both problems. Our first result is the uniform definition of a rational noncrossing family

for any Coxeter group W (Definition 1.1). Our second result is their enumeration (Theorem 1.4).

1.3. Rational W -noncrossing objects. Let S ⊆ W be a system of simple reflections, and let c =

(s1, s2, . . . , sr) be an ordering of S, which we will call a Coxeter word. Let p be a positive integer

coprime to h, and let cp be the concatenation of p copies of c. Thus cp = (s1, s2, . . . , sm), where

si = si−r for all i > r, is a word of length m = pr.
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Given a subword u = (u1, u2, · · · , um) of cp, meaning ui ∈ {si, e} for every i ∈ [m] := {1, 2, . . . ,m}, we

set u(i) := u1u2 · · ·ui ∈ W for each i. We write e for the identity of W , and say that u is an e-subword

if u(m) = e. We say that u is distinguished [Deo85, MR04] if u(i) ≤ u(i−1)si in the weak order for all

i ∈ [m], where we set u(0) := e. In other words, the symbol si must be used in u if it decreases the length

of u(i−1). We write eu for the number of symbols of cp skipped in u: that is, eu := |{i | ui = e}|. The

following definition is closely related to [GL20, Definition 9.3]; see also [KW13].

Definition 1.1. A maximal cp-Deogram is a distinguished e-subword u of cp for which eu = r. The set

of maximal cp-Deograms is denoted Me,cp(W ).

See Figure 2 for an example of Definition 1.1. In general, any e-subword u of cp satisfies eu ≥ r, as

we show in Corollary 4.9. Thus the maximal cp-Deograms are precisely the distinguished e-subwords of

cp that use the maximal possible number of symbols.

Remark 1.2. We can interpret maximal cp-Deograms as certain closed walks on W on the Hasse diagram

of the weak Bruhat order, or equivalently, on the directed Cayley graph of (W,S). The walk corresponding

to an e-subword u of cp is the sequence of elements (e = u(0), u(1), . . . , u(m) = e): that is, the walk starts

at e, and for each letter si, it either follows the corresponding edge of the Cayley graph or stays in place.

In this model, the distinguished condition on u becomes the condition that the walk must follow the

edge labeled by si whenever it points downward in weak order. In particular, maximal cp-Deograms

correspond to distinguished closed walks starting and ending at e with precisely r stays.

Remark 1.3. For W = Sn, we can also interpret maximal cp-Deograms in terms of wiring diagrams, as

illustrated in Figure 3. A maximal cp-Deogram consists of n− 1 elbows inside the wiring diagram of

cp with the property that the resulting permutation is the identity, i.e., the left and the right endpoints

of each wire have the same labels.

In this model, the distinguished condition becomes the condition that for each elbow E, the two

participating wires intersect an even number of times to the left (or equivalently, to the right) of E. We

associate to E a colored inversion (Definition 4.3). The inversion (ij) records the left endpoints i, j ∈ [n]

of the two wires participating in E. Its color, indicated by the number of dots above (ij), equals the

number of intersection points to the left of E between the two wires participating in E. See also [GL20,

Figure 5] and Remark 2.12.

Theorem 1.4. For any (irreducible, finite) Coxeter group W of rank r and Coxeter number h, Coxeter

word c, and (positive) integer p coprime to h, we have

|Me,cp(W )| = Catp(W ).

See Figures 2 and 3 for an example of Theorem 1.4. The proof occupies Sections 4 to 6.

Even in the Catalan case p = h+ 1, all previous results on the enumeration of W -noncrossing objects

relied on the classification of Coxeter groups. In Section 8, we show that the objects in Me,cp(W )

are truly noncrossing by showing that they are in natural uniform bijection with the three families of

W -noncrossing objects mentioned in Section 1.2 [Arm09, STW15]. Our work therefore provides the

first uniform proof that each of these W -noncrossing families is counted by the W -Catalan numbers

Cat(W ) := Cath+1(W ). In particular, our results give the first uniform proof that the number of clusters

in a finite-type cluster algebra is counted by Cat(W ) [FZ03b, Theorem 1.9].

We generalize this bijection between Me,cp(W ) and the three families of W -noncrossing objects to

the Fuss–Catalan (p = kh + 1) setting. Since the zeta polynomial of the noncrossing partition lattice

counts the Fuss–Catalan noncrossing partitions [Cha04, Proposition 9], taking the leading coefficient of
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s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

s1 s2 (14) s4 s1 s2 (25) s4 s1 s2 (34) ¨(45)

s1 s2 (14) s4 (23) s2 s3 (34) s1 (25) s3 s4

s1 s2 (14) (45) s1 s2 (24) s4 s1 s2 (35) s4

s1 (13) s3 s4 s1 s2 (25) s4 (14) s2 s3 (45)

s1 (13) s3 s4 s1 (24) s3 s4
¨(12) (25) s3 s4

(12) s2 s3 (25) s1 (14) s3 s4 s1 s2 (35) s4

(12) (23) s3 s4 s1 (14) s3 s4 s1 (25) s3 s4

Figure 2. For W = S5, c = (s1, s2, s3, s4), and p = 3, each row above depicts one

of the seven maximal cp-Deograms in the set Me,cp(W ) from Definition 1.1. For each

u ∈ Me,cp(W ), we have replaced the positions i where ui = e with the corresponding

colored inversions from Remark 1.3. Compare with Figure 1.

1 1

2 2

3 3

4 4

5 5

(14) (25) (34) ¨(45)

1 1

2 2

3 3

4 4

5 5

(14) (23) (34) (25)

1 1

2 2

3 3

4 4

5 5

(14) (45) (24) (35)

1 1

2 2

3 3

4 4

5 5

(13) (25) (14) (45)

1 1

2 2

3 3

4 4

5 5

(13) (24) ¨(12) (25)

1 1

2 2

3 3

4 4

5 5

(12) (25) (14) (35)

1 1

2 2

3 3

4 4

5 5

(12) (23) (14) (25)

Figure 3. Wiring diagrams for Figure 2, illustrating Remark 1.3.

k in
∏r
i=1

kh+di
di

immediately gives a new uniform proof of the formula r!hr

|W | for the number of maximal

chains in the noncrossing partition lattice [Del74, Rea08, Mic16].

Remark 1.5. For W = Sn, Theorem 1.4 is comparable to [GL20, Proposition 9.5]. This result states

that Catn,p counts maximal fp,n+p-Deograms, where fp,n+p is a permutation (rather than a word) in

the larger symmetric group Sn+p. It would be interesting to give such an interpretation for other Weyl

groups W , even for classical types. See Open Problem 2.11 and Remark 2.12.

1.4. Rational W -parking functions. Let a = (a1, a2, . . . , an) be a sequence of positive integers and

(b1 ≤ b2 ≤ · · · ≤ bn) its increasing rearrangement. We say that a is a parking function if bi ≤ i for all i.

The number of parking functions of length n is well known to be (n+ 1)n−1 [KW66].

Example 1.6. For n = 3, the 16 parking functions are given by

(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2),

(2, 1, 2), (2, 2, 1), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

For a Coxeter group W with h, c, and p as above, we can use distinguished subwords to define rational

W -analogues of parking functions that we call rational noncrossing W -parking objects. Recall from

Remark 1.2 that each e-subword u of cp gives rise to a closed walk (e = u(0), u(1), . . . , u(m) = e) in

weak order, starting and ending at e. To define our parking objects, we instead consider closed walks

starting and ending at arbitrary v ∈ W . More precisely, given v ∈ W , we say that a subword u of cp is

v-distinguished if we have vu(i) ≤ vu(i−1)si for all i.
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v = e = [1, 2, 3]

1 1

2 2

3 3

(12) (23)
1 1

2 2

3 3

(13) ¨(12)
1 1

2 2

3 3

(23) ¨(13)
1 1

2 2

3 3

(12) ¨(23)
1 1

2 2

3 3

¨(12) ¨(23)

1

2

3123

1

2

313

2

1

2

323

1

1

2

312 3

1

2

33
2

1

v = s1 = [2, 1, 3]

1 1

2 2

3 3

(13) ¨(12)
1 1

2 2

3 3

(23) ¨(13)
1 1

2 2

3 3

¨(12) ¨(23)

1

2

323

1

1

2

313

2

1

2

3
2

1
3

v = s2 = [1, 3, 2]

1 1

2 2

3 3

(12) ¨(23)
1 1

2 2

3 3

(13) ¨(12)
1 1

2 2

3 3

¨(23) ¨(13)

1

2

313 2

1

2

312

3

1

2

3
1

3
2

v = s2s1 = [3, 1, 2]

1 1

2 2

3 3

(23) ¨(13)
1 1

2 2

3 3

¨(12) ¨(23)

1

2

312

3

1

2

3
3

1
2

v = s1s2 = [2, 3, 1]

1 1

2 2

3 3

(12) ¨(23)
1 1

2 2

3 3

¨(13) ¨(12)

1

2

323 1

1

2

3
2

3
1

v = w◦ = [3, 2, 1]

1 1

2 2

3 3

¨(12) ¨(23)

1

2

3
3

2
1

Figure 4. The 16 elements of Pe,cp(W ) for W = S3, c = (s1, s2), and p = 4. For each

v ∈ Sn, we list the maximal (v, cp)-Deograms in the top row of the corresponding table.

They are shown together with their v-twisted colored inversions defined in Sections 2.3

and 8.5. The bottom row of each table illustrates the bijection from Section 2.3 be-

tween the set Pe,cn+1(W ) and the set of labeled noncrossing partitions. Compare with

Example 1.6 and Figure 12.

Definition 1.7. Given v ∈ W , a maximal (cp, v)-Deogram is a v-distinguished e-subword u of cp

satisfying eu = r. Let M(v)
e,cp(W ) be the set of maximal (cp, v)-Deograms, and let

Pe,cp(W ) :=
⊔
v∈W
M(v)

e,cp(W ).

In the language of Remark 1.2, each element u ∈ Pe,cp(W ) gives rise to a distinguished closed walk

(v = vu(0), vu(1), . . . , vu(m) = v) with precisely r stays. We note that the same subword u may belong

toM(v)
e,cp(W ) for several different v ∈W , in which case it gives rise to several different closed walks. We

consider these closed walks to be distinct elements of Pe,cp(W ).

Theorem 1.8. For any Coxeter group W of rank r and Coxeter number h, Coxeter word c, and integer

p coprime to h, we have

|Pe,cp(W )| = pr.(1.2)

For W = Sn and p = n+ 1, the right-hand side of (1.2) becomes (n+ 1)n−1. See Figures 4 and 12 for

examples of Theorem 1.8.

1.5. q-Deformations and Hecke algebra traces. We will deduce Theorems 1.4 and 1.8 from stronger

statements involving q-numbers: that is, polynomials of the form [a]q := 1 + q + · · ·+ qa−1. Let

(1.3) Catp(W ; q) :=

r∏
i=1

[p+ (pei modh)]q
[di]q

,
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the q-analogue of Catp(W ) from (1.1).

For any word w = (s1, s2, . . . , sm) and u, v ∈W , let D(v)
u,w be the set of v-distinguished u-subwords of

w, not necessarily maximal. For any u ∈ D(v)
u,w, recall from Section 1.3 that eu := |{i ∈ [m] | ui = e}|.

We set d(v)
u := |{i ∈ [m] | vu(i) < vu(i−1)}| and

R(v)
u,w(q) =

∑
u∈D(v)

u,w

(q − 1)euqd(v)
u .(1.4)

We abbreviate Du,w = D(e)
u,w and Ru,w(q) = R

(e)
u,w(q). The polynomials Ru,w(q) are generalizations of the

celebrated R-polynomials of Kazhdan–Lusztig [KL79]. In Section 4, we define R
(v)
u,w(q) by a recurrence,

and then deduce the closed formula above from an analogous recurrence for D(v)
u,w. The q-deformations

of Theorems 1.4 and 1.8 are as follows:

Theorem 1.9 (Corollaries 6.13 and 6.15). For any Coxeter group W of rank r and Coxeter number h,

Coxeter word c, and integer p coprime to h, we have

(1) Re,cp(q) = (q − 1)rCatp(W ; q),

(2)
∑
v∈W

R
(v)
e,cp(q) = (q − 1)r[p]rq.

For W = Sn, the right-hand side of Theorem 1.9(1) equals (q − 1)n−1Catn,p(q), where

Catn,p(q) :=
1

[p+ n]q

[
p+ n

n

]
q

,

where
[
p+n
n

]
q

:=
[p+n]q !

[p]q ![n]q !
and [m]q! := [1]q[2]q · · · [m]q.

Example 1.10. For W = S3 and p = 4, we compute (1.4) and compare it with Theorem 1.9(2):

(q − 1)−r
∑
v∈W

R
(v)
e,cp(q) =

v=e︷ ︸︸ ︷(
1 + q2 + q3 + q4 + q6

)
+ 2q

v∈{s1,s2}︷ ︸︸ ︷(
1 + q2 + q4

)
+ 2q2

v∈{s1s2,s2s1}︷ ︸︸ ︷(
1 + q2

)
+ q3

v=s1s2s1︷︸︸︷
(1) = [4]2q.

The sets M(v)
e,cp(W ) are shown in Figures 4 and 12. The v = e piece of the sum recovers the rational

q-Catalan number Cat4(S3; q) = Cat3,4(q) = 1 + q2 + q3 + q4 + q6 of Theorem 1.9(1).

The proofs given in Sections 4 to 6 require some background in the representation theory of Coxeter

groups.

In Section 5, we recall that the group ring Z[W ] can be deformed to a Z[q±1]-algebra called the Hecke

algebra HW . Every word w in the simple reflections of W gives rise to a corresponding element Tw of

the Hecke algebra. We will show that Re,w(q) can be expressed in terms of the value of Tw under a

certain Z[q±1]-linear trace. For general u, v ∈W , a similar result holds for R
(v)
u,w(q).

In Section 6, we compare the trace to the right-hand sides of Theorem 1.9(1–2). The key idea is

to decompose the trace as a linear combination of the characters of the simple HW -modules. Using a

theorem of Springer, we deduce that for a Coxeter word c, the trace of Tcp can be expressed as a linear

combination of values of the form Fegχ(e2πi ph ), where χ runs over the irreducible characters of W and

Fegχ is a polynomial called the fake degree of χ. On the other hand, using a result from [Tri21], we show

that the right-hand side of Theorem 1.9(1) can be expressed as a linear combination of values of the

form Degχ(e2πi ph ), where Degχ is a polynomial called the unipotent or generic degree of χ.

Although fake degrees and generic degrees originated in the work of Deligne and Lusztig on repre-

sentations of finite groups of Lie type, they can be defined purely in terms of the structure of HW . For
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the symmetric group Sn, we have Fegχ = Degχ for every χ. But for general Coxeter groups, these

polynomials are related by a nontrivial pairing {−,−}W on the set of irreducible characters Irr(W ), dis-

covered by Lusztig and known as the (truncated) exotic Fourier transform (Theorem 6.12). Ultimately,

we show that Theorem 1.9(1) is equivalent to a certain identity (6.16) for Fegχ and Degχ, that is a con-

sequence of symmetry and block-diagonality properties of the exotic Fourier transform: See parts (2)–(3)

of Theorem 6.12.

While these properties can be stated uniformly for all Coxeter groups, Lusztig’s proofs of these prop-

erties are not uniform even for Weyl groups. Moreover, there is no uniform definition of {−,−}W for

general Coxeter groups. See Section 6.5 for an extensive discussion of this issue.

Remark 1.11. As we explain in Section 6.5, {−,−}W arises as the restriction to Irr(W ) of a pairing

{−,−} on a superset Udeg(W ) ⊇ Irr(W ). The pairing is the actual exotic Fourier transform: When W

is a Weyl group, {−,−} is a precise nonabelian generalization of the usual Fourier transform on a finite

abelian group. The name “truncated” for {−,−}W comes from the preprint [Mic22], which appeared

while our paper was in preparation.

1.6. Braid Richardson varieties. Our final goal is to introduce algebraic varieties
◦
R

(v)
e,w whose point

counts over a finite field of order q recover the q-formulas above. These varieties appear in [Deo85, MR04,

WY07] when w is a reduced word of an element w ∈ W , in which case
◦
Ru,w becomes isomorphic to

an open Richardson variety
◦
Ru,w. Related constructions appear in [Mel19, CGGS21, Tri21]. See [Tri21,

Appendix B] for further references.

Let F be a field. Fix a split, connected reductive algebraic group G over F with Weyl group W . Let

B be the flag variety of G, i.e., the variety of all Borel subgroups of G. The group G acts on B by

conjugation: If g ∈ G and B ∈ B, then we set g ·B := gBg−1.

Fix a pair of opposed F-split Borel subgroups B+, B− ∈ B, and set H := B+ ∩ B−. We can identify

W with NG(H)/H. We write w · B+ := ẇ · B+, where ẇ ∈ G is any lift of w ∈ W to NG(H). For any

two Borels B1, B2 ∈ B, there is a unique w such that (B1, B2) = (g · B+, gw · B+) for some g ∈ G. In

this case, we write B1
w−→ B2 and say that (B1, B2) are in relative position w. For example, B+

w◦−−→ B−,

where w◦ is the longest element of W , whereas B1
e−→ B2 if and only if B1 = B2.

If W = Sn, then we can take G = GLn(F), the general linear group of Fn. In this case, B is the

variety of complete flags

V• = (V0 ⊂ V1 ⊂ · · · ⊂ Vn) ∈ Fn(1.5)

where dimVi = i for all i. The relative position of two such flags U•, V• is the unique permutation

w ∈ Sn such that dim(Ui ∩ Vj) = |{1 ≤ k ≤ i | w−1(k) ≤ j}| for all i, j.

For any u ∈ W and any word w = (s1, s2, . . . , sm) ∈ Sm, not necessarily reduced, we will define an

algebraic variety
◦
Ru,w over F. When u = e, it is

(1.6)
◦
Re,w =

{
(B1, . . . , Bm) ∈ Bm | B+

s1−→ B1
s2−→ · · · sm−−→ Bm

w◦←−− B−
}
.

More generally, for v ∈W , let

(1.7)
◦
R(v)
e,w =

{
(B1, . . . , Bm) ∈ Bm | v ·B+

s1−→ B1
s2−→ · · · sm−−→ Bm

vw◦←−− B−
}
.

For a specific calculation, see Example 7.3. We show in Section 7 that Theorem 1.9 has the following

geometric interpretation.
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Theorem 1.12. Suppose that F = Fq is a finite field with q elements, where q is a prime power. Then

for any Weyl group W of rank r and Coxeter number h, Coxeter word c, and integer p coprime to h, we

have ∣∣∣ ◦Re,cp(Fq)
∣∣∣ = Re,cp(q) = (q − 1)rCatp(W ; q),∣∣∣∣∣ ⊔

v∈W

◦
R

(v)
e,cp(Fq)

∣∣∣∣∣ =
∑
v∈W

R
(v)
e,cp(q) = (q − 1)r[p]rq.

1.7. Future work. A natural problem would be to generalize our work to the (q, t)-level in the spirit

of [GL20, Tri21], where the point count on the left-hand side is replaced by the mixed Hodge polynomial of

the corresponding variety, and the right-hand side is replaced by the rational (W, q, t)-analogs of Catalan

numbers and parking functions; see [GG12].

The dichotomy between W -nonnesting objects and W -noncrossing objects appears to be related to a

nonabelian Hodge correspondence and a P = W phenomenon for braid Richardson varieties; see [Tri20,

Section 4.9]. We hope to return to this possibility in the future.

Another natural problem would be to extend the construction of rational noncrossing objects to well-

generated complex reflection groups, which still have a well-defined rational Catalan number [GG12].

Acknowledgments. We thank Theo Douvropoulos, Eric Sommers, and Dennis Stanton for helpful

conversations regarding character computations. We thank Thomas Gobet for pointing out the ref-

erence [Dye01]. We thank Olivier Dudas and George Lusztig for responding to questions about the

representation theory of Coxeter groups.

2. Type A Combinatorics

As a warm-up, we discuss the structure of Deograms in type A, and give bijections between maximal

Deograms and well-known Catalan objects. Throughout this section, let W = Sn. Recall that Sn has

rank r = n− 1 and Coxeter number h = n. We concentrate on the Fuss–Catalan case p = h+ 1 = n+ 1

and the Fuss–Dogolon case p = h − 1 = n − 1. In both cases, the number of maximal cp-Deograms is

given by the classical Catalan number:

|Me,cn+1(Sn)| = Catn and |Me,cn−1(Sn)| = Catn−1,

where Catn = 1
n+1

(
2n
n

)
and c = (s1, s2, . . . , sn−1).

Throughout this section, we omit the proofs, leaving them as exercises for the interested reader. In

Section 8, we will give bijections to known Catalan and parking objects for general Coxeter groups W

and integers p = kh+ 1 with k ≥ 1.

2.1. The case p = n + 1: binary search trees, noncrossing matchings, and noncrossing par-

titions. Up to commutation moves, the braid word cn+1 can be decomposed as cn+1 = w′◦ · c∗ · w′′◦ ,
where c∗ = sn−1 · · · s2s1, and

w′◦ := s1 · (s2s1) · · · (sn−1 · · · s2s1) and w′′◦ := (sn−1 · · · s2s1) · (sn−1 · · · s2) · · · sn−1

are two reduced words for w◦. In the wiring diagram of cn+1, w′◦ forms an upright triangle on the left

while w′′◦ forms a downright triangle on the right; see Figure 5.

Following Remark 1.3, we identify elements of Me,cn+1(Sn) with ways to insert n − 1 elbows into

the wiring diagram of cn+1. Recall that to each elbow E we associate a colored inversion consisting of
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Figure 5. The decomposition cn+1 = w′◦ · c∗ ·w′′◦ from Section 2.1.
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Figure 6. The bijections from Section 2.1: maximal cn+1-Deograms (first row), binary

search trees (second row), noncrossing partitions (third row), and noncrossing matchings

(fourth row).

a reflection (ij) and a color k ∈ Z. Here, i < j are the labels of the left endpoints of the two strands

participating in E, and k is the number of times these two wires intersect to the left of E.

Lemma 2.1. If cn+1 = w′◦ · c∗ ·w′′◦ as above, then in any maximal cn+1-Deogram u, none of the elbows

of u appears in c∗. The elbows appearing in w′◦ all have color 0, and those appearing in w′′◦ all have

color 2.

An example is shown in the top row of Figure 6.

2.1.1. Binary search trees. To a maximal cn+1-Deogram u, we associate a binary tree TBST(u) with

vertex set [n] as follows:

• for every colored inversion (ij) of u of color 0, i is a left child of j in TBST(u); and

• for every colored inversion ¨(ij) of u of color 2, j is a right child of i in TBST(u).

A binary tree T with vertex set [n] is a binary search tree if, for any node i, the nodes in the left (resp.,

right) subtree of i have labels less than (resp., greater than) i. Such objects are in bijection with the

binary trees on n unlabeled vertices; see [Sta15, Figure 1.3].

Proposition 2.2. For each maximal cn+1-Deogram u, the binary tree TBST(u) is a binary search tree.

The map u 7→ TBST(u) is a bijection between maximal cn+1-Deograms and binary search trees with vertex

set [n].

This bijection is illustrated in the first two rows of Figure 6.
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Figure 7. The bijection from Section 2.2: maximal cn−1-Deograms (top row) versus

noncrossing alternating trees (bottom row).

2.1.2. Noncrossing partitions. Next, given a maximal cn+1-Deogram u, let π(u) ∈ Sn be the product of

the reflections corresponding to the colored inversions of u of color 0, and let Π(u) be the set partition

of [n] given by the cycles of π(u).

Proposition 2.3. For any maximal cn+1-Deogram u, the set partition Π(u) is a noncrossing partition

of [n]. The map u 7→ Π(u) is a bijection between maximal cn+1-Deograms and noncrossing partitions of

[n].

An example is illustrated the third row of Figure 6. For a more general statement, see Theorem 8.8.

Noncrossing partitions appear in [Sta15] as item 160.

Remark 2.4. Applying the construction above to the colored inversions of u of color 2 instead yields the

Kreweras complement of Π(u).

2.1.3. Noncrossing matchings. Finally, let w′◦ be the wiring diagram of w◦ as above. Label the left

endpoints of w′◦ by 1, 2, . . . , n bottom-to-top, and label the right endpoints by 1̄, 2̄, . . . , n̄ top-to-bottom.

Let [n̄] := {1̄, 2̄, . . . , n̄}. We shall consider noncrossing matchings (item 61 in [Sta15]) of the set [n] t [n̄]

with respect to the cyclic ordering (1̄, 1, 2̄, 2, . . . , n̄, n). Given a maximal cn+1-Deogram u, let m(u) :

[n]→ [n̄] be the map obtained by restricting u to the w′◦-part of cn+1.

Proposition 2.5. For every maximal cn+1-Deogram u, the map m(u) is a noncrossing matching of

[n]t [n̄]. The map u 7→ m(u) is a bijection between maximal cn+1-Deograms and noncrossing matchings

of [n] t [n̄].

See the fourth row of Figure 6.

2.2. The case p = n − 1: noncrossing alternating trees. We start with a structural result for

maximal cn−1-Deograms, illustrated in the top row of Figure 7.

Lemma 2.6. In any maximal cn−1-Deogram u, each of the n−1 copies of c contains exactly one elbow.

All elbows of u have color 0.

Given a maximal cn−1-Deogram u, let TNC
alt (u) be the tree with vertex set [n] containing an edge {i, j}

for each colored inversion (ij) of u. A tree T with vertex set [n] is alternating if, upon directing each

edge {i, j} of T from the smaller number i to the larger number j, we find that every vertex is either a

source or a sink. We say that T is noncrossing if we can draw T in the plane, with the vertices on a line

in increasing order and the edges in the closed half-plane above the line, such that no two edges cross.

Proposition 2.7. For every maximal cn−1-Deogram u, the tree TNC
alt (u) is a noncrossing alternating

tree. The map u 7→ TNC
alt (u) is a bijection between maximal cn−1-Deograms and noncrossing alternating

trees with vertex set [n].
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See Figure 7. Noncrossing alternating trees appear in [Sta15] as item 62.

Remark 2.8. Noncrossing alternating trees have already been related to Deograms in [GL20, Remark 9.7].

We do not have a direct bijection between these two classes of Deograms; see Open Problem 2.11(3) below.

2.3. Parking functions. Let Π = {B1, B2, . . . , Bk} be a noncrossing partition of [n]. We say that

the tuple Π̃ = {(B1, L1), (B2, L2), . . . , (Bk, Lk)} is a labeled noncrossing partition, or equivalently, a

noncrossing parking function, if:

• {B1, B2, . . . , Bk} is a noncrossing partition of [n],

• {L1, L2, . . . , Lk} is a set partition of [n], which need not be noncrossing, and

• |Bi| = |Li| for all i = 1, 2, . . . , k.

In other words, to each part Bi of B we associate a set Li of |Bi|-many labels, so that each element of

[n] appears as a label exactly once. Noncrossing parking functions are known to be in bijection with

parking functions; see e.g. [Ede80, ARR15].

Let v ∈ Sn. Consider a maximal (cn+1, v)-Deogram u. In Section 8.5, we associate to u a set of

v-twisted colored inversions. This means we again view u as a way to insert n− 1 elbows into the wiring

diagram of cn+1, and for each elbow E, we consider a colored inversion (ij) with color k defined in

the same way as above. Note that E has a bottom strand and a top strand. Writing i (resp., j) for

the left endpoint of the bottom (resp., top) strand, we need no longer have i < j. However, since u is

v-distinguished, we must have v(i) < v(j). We set the v-twisted color k′ of (ij) to be k if i < j and k+ 1

if i > j, and refer to the resulting pair ((ij), k′) as the v-twisted colored inversion of u. The v-twisted

colored inversions of the 16 Deograms in Pe,cn+1(Sn) are shown in Figure 4.

Lemma 2.9. For any maximal (cn+1, v)-Deogram u, the v-twisted color of any elbow is either 0 or 2.

Let u be a maximal (cn+1, v)-Deogram. Let π(v)(u) ∈ Sn be obtained by multiplying all reflections

(ij) of v-twisted color 0, and let Π(v)(u) = {B1, B2, . . . , Bk} be the set partition of [n] given by the

cycles of π(v)(u). To each part Bi of Π(v)(u), we associate a set of labels Li := {v(j) | j ∈ Bi}. We

denote the resulting noncrossing parking function by Π̃(v)(u) = {(B1, L1), (B2, L2), . . . , (Bk, Lk)}.

Proposition 2.10. For any v ∈ Sn and maximal (cn+1, v)-Deogram u, the tuple Π̃(v)(u) is a noncross-

ing parking function. The map u 7→ Π̃(v)(u) is a bijection between Pe,cn+1(Sn) and the set of noncrossing

parking functions.

See Figure 4 for an example. See Theorem 8.17 for a uniform generalization to Coxeter groups and

parameters of the form p = kh+ 1.

2.4. Open problems. We conclude this section with several purely combinatorial bijective problems

which do not easily follow from our results. Many of them are closely related to the problem of finding

a bijection between noncrossing and nonnesting objects; see [Wil12, Problem 1].

Let fp,n+p ∈ Sn+p be the permutation sending i 7→ i+p for 1 ≤ i ≤ n and i 7→ i−n for n+1 ≤ i ≤ n+p.

Open Problem 2.11. Let p, n be two coprime positive integers.

(1) Find a bijection between Me,cp(Sn) and the set of rational Dyck paths inside a p× n rectangle.

(2) Find a bijection between Me,cp(Sn) and Me,(c′)n(Sp), where c is a Coxeter word in Sn and c′

is a Coxeter word in Sp.

(3) Find a direct bijection between Me,cp(Sn) and the set of maximal fp,n+p-Deograms of [GL20,

Definition 9.3].
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(4) Find a bijection between Pe,cp(Sn) and the set of rational parking functions as defined in, e.g.,

[ALW16].

(5) Find a statistic stat on Me,cp(Sn) and on Pe,cp(Sn) such that

Catp(Sn; q) =
∑

u∈Me,cp (Sn)

qstat(u) and [p]n−1
q =

∑
u∈Pe,cp (Sn)

qstat(u);

cf. Example 1.10. More generally, do this for an arbitrary Coxeter group W .

Remark 2.12. For Open Problem 2.11(3), one can give an indirect recursive bijection between our max-

imal cp-Deograms and the maximal fp,n+p-Deograms of [GL20, Definition 9.3] by applying a sequence

of Markov moves. Namely, it is known that the braid word cp and the positive braid lift of fp,n+p give

rise to the same link called the (p, n)-torus link. Moreover, these braids can be related to each other by

a sequence of positive Markov moves, i.e., braid moves and positive (de)stabilizations. The associated

braid varieties change in a predictable way (cf. [CGGS21]), and one can check that each positive Markov

move induces a bijection on the associated sets of maximal Deograms. The problem of finding a direct,

non-recursive bijection remains open.

Remark 2.13. Whereas maximal cp-Deograms are in bijection with maximal fp,n+p-Deograms, maximal

(cp, v)-Deograms appear to be counted by other positroid Catalan numbers [GL21], enumerating maximal

fv,p,n+p-Deograms for other permutations fv,p,n+p ∈ Sn+p. Explicitly, when n < p, the permutation

fv,p,n+p corresponds to the bounded affine permutation f̃v,p,n+p := ṽf̃p,n+pṽ
−1, where

• f̃p,n+p is the bounded affine permutation corresponding to fp,n+p, and

• ṽ : Z→ Z is an (n+ p)-periodic affine permutation lifting v, sending i 7→ v(i) for 1 ≤ i ≤ n and

i 7→ i for n+ 1 ≤ i ≤ n+ p.

In particular, when the affine permutation f̃v,p,n+p is not bounded, we conjecture that the set of (cp, v)-

Deograms is empty.

3. Coxeter Groups

Let W be a finite Coxeter group: that is, a finite group for which we can find a subset S ⊂W and a

group presentation

W =
〈
s ∈ S | (st)m(s,t) = 1

〉
(3.1)

in which m(s, t) ≥ 1 and m(s, s) = 1 for all s, t ∈ S. We say that W is irreducible if and only if it is not

a product of smaller Coxeter groups, yet also not the trivial group. Henceforth, we always assume that

W is irreducible.

The rank of W is the integer r := |S|. We refer to elements of S as simple reflections. For an arbitrary

element w ∈ W , the length `(w) of w is the smallest integer m ≥ 0 such that w can be expressed as a

product of m simple reflections, possibly with repetition. There is a unique element of maximal length

called the longest element, which we denote by w◦ ∈ W . For w ∈ W and s ∈ S, we write ws < w if

`(ws) < `(w) and ws > w if `(ws) > `(w). The weak order on W is the partial order formed by the

transitive closure of these relations.

A (standard) Coxeter element of W with respect to S is an element formed by taking the product

over all simple reflections in some ordering. It is known that all Coxeter elements are conjugate. Their

common order is called the Coxeter number of W and denoted h.
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A (general) reflection is an element of the form su := usu−1 for some s ∈ S and u ∈ W . We write T

for the set of all reflections: that is,

T := {su | (s, u) ∈ S ×W}.

The reflection length `T (w) of w is the smallest integer m ≥ 0 such that w can be expressed as a product

of m general reflections.

Every Coxeter group admits a faithful representation on a (finite-dimensional) real vector space V ,

which sends each reflection in W to a hyperplane reflection in V . Such a representation is called a

reflection representation of W . After possibly passing to a quotient, we can assume that the only W -

invariant vector is zero: that is, VW = 0. In this case, dim(V ) = r, and by a theorem of Chevalley, the

ring of W -invariant polynomials on V is freely generated by r homogeneous polynomials.

The degrees of W are the degrees d1 ≤ d2 ≤ · · · ≤ dr of these polynomials, which do not depend on

the choice of reflection representation. The exponents of W are the integers ei = di−1. Recall from (1.1)

that for any positive integer p coprime to h, we set

Catp(W ) :=

r∏
i=1

p+ (pei modh)

di
,

where 0 ≤ (pei modh) < h is the integer in that range congruent to pei modulo h.

4. Words and Subwords

4.1. Distinguished subwords. A word is any finite sequence w = (s1, s2, . . . , sm) of elements of S,

possibly with repetition. If w = s1s2 · · · sm, then we refer to w as a w-word, and if m = `(w), then we

say it is reduced. We say that a word c is a Coxeter word if it is an ordering of S.

A subword of w is a sequence u = (u1, u2, . . . , um) in which ui ∈ {si, e} for all i. For any such

sequence, we set u(i) = u1u2 · · ·ui ∈W . If u(m) = u, then we refer to u as a u-subword of w.

Definition 4.1 ([Deo85, MR04]). Let u ∈ W . We say that a u-subword u of w is distinguished if

u(i) ≤ u(i−1)si for all i. We write Du,w(W ) (or Du,w for short) for the set of distinguished u-subwords

of w. For any u-subword u of w, we write

eu = |{i ∈ [m] | ui = e}|,
du = |{i ∈ [m] | u(i) < u(i−1)}|.

We write Dku,w := {u ∈ Du,w | eu = k}. In the special case where k = minu∈Du,w eu, we write

Mu,w(W ) =Mu,w := Dku,w. For u = e, the minimal value k is given in Proposition 4.8 below.

We give an equivalent characterization of distinguished subwords among the set of all subwords using

reflections. A colored reflection is a pair (t, k) ∈ T × Z≥0, i.e., a reflection t decorated by a nonnegative

integer k. Given a subword u = (u1, u2, · · · , um) of a word w = (s1, s2, . . . , sm) and an index j ∈ [m],

we obtain a colored reflection

tj(u) := (s
u(j)

j , kj), where kj :=
∣∣{1 ≤ i < j | su(i)

i = s
u(j)

j and ui 6= e
}∣∣ .(4.1)

For brevity in examples, we may also record the color k using k dots above the reflection. See Remark 1.3

for an alternative description of colored reflections in type A.

Example 4.2. For W = S2 = {e, s} and u = (s, s, s), we have t1(u) = (s, 0) = s, t2(u) = (s, 1) = ṡ,

and t3(u) = (s, 2) = s̈.
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Definition 4.3. If w = (s1, s2, . . . , sm) is a word and u is a subword of w, then we set

inv(u) := (t1(u), t2(u), . . . , tm(u)) .

We write inve(u) for the subsequence of inv(u) obtained by restricting to the indices j for which uj = e.

We also write inv(u) :=
(
s
u(1)

1 , s
u(2)

2 , . . . , s
u(m)
m

)
(resp., inve(u)) for the sequence obtained from inv(u)

(resp., inve(u)) by forgetting the colors.

Proposition 4.4. A subword u of a word w is distinguished if and only if each colored reflection in

inve(u) has even color.

Proof. This follows directly from the definitions. �

Example 4.5. Let W = S5, the Weyl group of type A4, c = s1s2s3s4, and c = (s1, s2, s3, s4). Then∣∣Me,c3

∣∣ = 7, which is a rational W -Catalan number for A4. The 7 elements of Me,c3 are illustrated

in Figure 2. Each element u gives a decomposition of c3 as a product of reflections in inve(u). For

example, the bottom row in Figure 2 decomposes c3 = (14253) as the product (12)(23)(14)(25).

Remark 4.6. We explain how to recover a subword u ∈ De,w from the corresponding sequence inve(u)

(cf. [PS15, Remark 3.5]). Read the letters in w = (s1, s2, . . . , sm) from left to right. For a given position

j, tentatively set uj = sj and compute (s
u(j)

j , k), where k is defined as in (4.1). If (s
u(j)

j , k) is the next

unread colored reflection in inve(u), then we set uj = e. Otherwise, we keep uj = sj .

Proposition 4.7. Let w be a w-word, and let u be a u-subword of w. Then∏
t∈inve(u)

t = wu−1,

where the product is taken from left to right.

Proof. Indeed, it follows from Definition 4.3 that
(∏

t∈inve(u) t
)−1

w = u. �

Proposition 4.8. Let w = (s1, s2, . . . , sm) be a w-word. Then

`T (w) = min
u∈De,w

eu .

Proof. When w is a reduced word for w, the result follows from [Dye01, Theorem 1.3]; see also [BDSW14].

Suppose the word w is not reduced. Let ˜̀(w) := minu∈De,w eu. By Corollary 5.2, proved independently

in the next section, ˜̀(w) is invariant under applying braid and commutation moves to w. (See the proof

of [Rie08, Proposition 7.2] for an explicit bijection.) So we may assume that w = (w1, s, s,w2) for some

words w1,w2 and s ∈ S.

Let w′ := (w1, s,w2) and w′′ := (w1,w2). Let w′, w′′ ∈W be the corresponding Weyl group elements.

We have w = w′′ and w′ = wt for some reflection t ∈ T . It follows that `T (w) = min (`T (w′) + 1, `T (w′′)).

On the other hand, if u′′ = (u1,u2) ∈ De,w′′ then u := (u1, s, s,u2) ∈ De,w satisfies eu = eu′′ . Similarly,

if u′ = (u1, x,u2) ∈ De,w′ , where x ∈ {e, s}, then either u := (u1, x, e,u2) or u := (u1, e, x,u2) is

an element of De,w satisfying eu = eu′ +1. This shows ˜̀(w) ≤ min
(

˜̀(w′) + 1, ˜̀(w′′)
)

. Conversely,

any element u ∈ Me,w must be of the form (u1, s, s,u2), (u1, s, e,u2), or (u1, e, s,u2), which implies

˜̀(w) ≥ min
(

˜̀(w′) + 1, ˜̀(w′′)
)

. By induction, we get `T (w) = ˜̀(w). �

Corollary 4.9. If c is a Coxeter word and p an integer coprime to h, then

r = min
u∈De,cp

eu .
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Proof. Let c ∈ W be the Coxeter element corresponding to c. It is known that `T (cp) = r [RRS17,

Theorem 1.3]. (If W is a Weyl group, then cp is conjugate to c, but this is not necessarily true when W

is a Coxeter group that is not a Weyl group.) Applying Proposition 4.8 to w = cp and u = e shows that

eu = r for all u ∈Me,cp . �

Remark 4.10. Proposition 4.7 implies more generally that for a w-word w ∈ Sm and u ∈ W , we have

`T (wu−1) ≤ minu∈Du,w eu. However, the analog of Proposition 4.8 does not hold in this generality, as

mentioned in [GL20, Remark 9.4]: For u = s2 and w = (s1, s2, s3, s2, s1) in S4, we have `T (wu−1) = 2,

but minu∈Du,w eu = 4.

4.2. The Deodhar recurrence. Henceforth, given a word w = (s1, s2, . . . , sm) and s ∈ S, we write

ws := (s1, s2, . . . , sm, s). The distinguished subwords of w obey a certain recurrence due to Deodhar.

Proposition 4.11 ([Deo85, Lemma 5.2]). Let w be a word, let u ∈ W , and let s ∈ S. Then for all k,

we have a natural bijection

Dku,ws '

Dkus,w if us < u,

Dkus,w t Dk−1
u,w if us > u.

Proof. Let w = (s1, s2, . . . , sm), s ∈ S, and ws := (s1, s2, . . . , sm, s). Let u be a distinguished u-subword

of ws. If us < u, then a distinguished subword of ws cannot satisfy u(m) = u(m+1) = u, so it must

satisfy u(m) = us. This gives a bijection Dku,ws ' Dkus,w. If instead us > u, then either u(m) = us,

in which case u(m+1) = u, or else u(m) = u, in which case u(m+1) = u as well. This gives a bijection

Dku,ws ' Dkus,w t Dk−1
u,w . �

In analogy with this Deodhar recurrence on distinguished subwords of w, we define the R-polynomials

Ru,w(q) for all u ∈W as follows. For the empty word w = ∅∅∅, set

Ru,∅∅∅(q) :=

1 if u = e,

0 if u 6= e.
(4.2)

Assume that w = (s1, s2, . . . , sm−1) is a word for which the polynomials Ru,w(q) have already been

defined. Let s ∈ S and ws := (s1, s2, . . . , sm−1, s) as before. Set

Ru,ws(q) :=

Rus,w(q) if us < u,

qRus,w(q) + (q − 1)Ru,w(q) if us > u.
(4.3)

For reduced words w, the polynomials Ru,w(q) were originally defined by Kazhdan–Lusztig in [KL79,

KL80] using the Hecke algebra of W ; see Proposition 5.1.

Corollary 4.12. For each word w and u ∈W , we have

Ru,w(q) =
∑

u∈Du,w
(q − 1)euqdu .(4.4)

In particular, we also have

lim
q→1

1

(q − 1)`T (w)
Re,w(q) = |Me,w|(4.5)

by Corollary 4.9.
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Example 4.13. Let W = S2 = {e, s}. Then (4.3) gives

Re,∅∅∅(q) = 1,

Re,(s)(q) = q − 1, Rs,(s) = 1,

Re,(s,s)(q) = q2 − q + 1, Rs,(s,s)(q) = q − 1,

Re,(s,s,s)(q) = (q − 1)(q2 + 1).

On the other hand, De,(s,s,s) = {(e, e, e), (e, s, s), (s, s, e)} and

e(e,e,e) = 3, d(e,e,e) = 0,

e(e,s,s) = 1, d(e,s,s) = 1,

e(s,s,e) = 1, d(s,s,e) = 1.

Therefore, ∑
u∈De,(s,s,s)

(q − 1)euqdu = (q − 1)3 + 2(q − 1)q = (q − 1)(q2 + 1),

verifying the first claim of Corollary 4.12.

Moreover, Me,(s,s,s) = {(e, s, s), (s, s, e)} and limq→1
1
q−1Ru,(s,s,s)(q) = 2 = Cat(S2), verifying the

second claim of Corollary 4.12.

4.3. The twisted Deodhar recurrence. For any v ∈W , there is a generalization of Definition 4.1:

Definition 4.14. We say that a subword u of a word w is v-distinguished if vu(i) ≤ vu(i−1)si for each

i ∈ [m]. Generalizing du, we write d(v)
u for the number of i ∈ [m] such that vu(i) < vu(i−1).

We write D(v)
u,w for the set of v-distinguished u-subwords of w. As before, we write D(v),k

u,w ⊆ D(v)
u,w

for the subset of elements u such that eu = k. In the special case where k = max
u∈D(v)

u,w
eu, we write

M(v)
u,w = D(v),k

u,w .

Proposition 4.11 generalizes to a bijection

D(v),k
u,ws '

D
(v),k
us,w if vus < vu,

D(v),k
us,w t D(v),k−1

u,w if vus > vu.

As before, we define polynomials R
(v)
u,w(q) by induction. Set R

(v)
u,∅∅∅(q) := Ru,∅∅∅(q), and for any word w

and s ∈ S, set

R(v)
u,ws(q) =

R
(v)
us,w(q) if vus < vu

qR
(v)
us,w(q) + (q − 1)R

(v)
u,w(q) if vus > vu.

(4.6)

Then Corollary 4.12 generalizes to the identity

R(v)
u,w(q) =

∑
u∈D(v)

u,w

(q − 1)euqd(v)
u .

5. The Hecke Algebra

5.1. Preliminaries. As before, W is an arbitrary finite Coxeter group and S ⊆W is a system of simple

reflections. Let A = Z[q±1]. The Hecke algebra of (W,S) is the A-algebra HW freely generated by
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symbols Tw for w ∈W , modulo the relations

TwTs =

qTws + (q − 1)Tw if ws < w,

Tws if ws > w,
(5.1)

for all w ∈ W and s ∈ S. The goal of this section is to relate the R-polynomials Ru,w(q) and their

twisted versions R
(v)
u,w(q) to the values of appropriate elements of HW under certain A-linear traces.

The Hecke algebra specializes to Z[W ], in the sense that there is a ring isomorphism HW /(q − 1)
∼−→

Z[W ] that sends Tw 7→ w for all w. It follows that HW forms a free A-module with basis {Tw}w∈W .

Furthermore, there is an involutive ring automorphism D : HW → HW defined by D(q) = q−1 and

D(Tw) = T−1
w−1 for all w ∈ W , so we find that {T−1

w }w∈W forms another free A-basis of HW . Note that

D is not itself A-linear.

5.2. R-polynomials via the Hecke algebra. For any word w = (s1, s2, . . . , sm), we set Tw :=

Ts1Ts2 · · ·Tsm . Note that if w is a reduced w-word, then Tw = Tw.

Proposition 5.1. For any word w and v ∈W , we have

TvD(Tw) = q`(v)
∑
u∈W

R(v)
u,w(q−1)q−`(vu)Tvu.(5.2)

Proof. We induct on the length of w. The base case w = ∅∅∅ is satisfied by (4.2). Suppose the result

holds for w = (s1, . . . , sm). To prove it for ws = (s1, . . . , sm, s), write

TvD(Tws) = q`(v)
∑
u∈W

Q(v)
u,ws(q

−1)q−`(vu)Tvu

for some Q
(v)
u,w(q) ∈ Z[q±1]. Since D(Tws) = D(Tw)D(Ts), we compute using (5.1) that

q−`(v)TvD(Tw) = q−`(v)TvD(Tws)D(Ts)
−1

=
∑
u∈W

Q(v)
u,ws(q

−1)q−`(vu)TvuTs

=
∑
x∈W
vxs<vx

Q(v)
x,ws(q

−1)q−`(vx)qTvxs +
∑
x∈W
vxs<vx

Q(v)
x,ws(q

−1)q−`(vx)(q − 1)Tvx

+
∑
u∈W
vus>vu

Q(v)
u,ws(q

−1)q−`(vu)Tvus

=
∑
u∈W
vus<vu

Q(v)
u,ws(q

−1)q−`(vus)Tvus +
∑
u∈W
vus>vu

(q − 1)Q(v)
us,ws(q

−1)q−`(vus)Tvus

+
∑
u∈W
vus>vu

qQ(v)
u,ws(q

−1)q−`(vus)Tvus.

At the same time, by the inductive hypothesis,

q−`(v)TvD(Tw) =
∑
u∈W

R(v)
u,w(q−1)q−`(vu)Tvu =

∑
u∈W

R(v)
us,w(q−1)q−`(vus)Tvus.

Equating coefficients, we find that:

(1) If vus < vu, then Q
(v)
u,ws(q−1) = R

(v)
us,w(q−1).

(2) If vus > vu, then (q − 1)Q
(v)
us,ws(q−1) + qQ

(v)
u,ws(q−1) = R

(v)
us,w(q−1).
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We observe that in case (2), (vus)s < vus, so by case (1), Q
(v)
us,ws(q−1) = R

(v)
u,w(q−1). Therefore, we can

rewrite case (2) as:

(2) If us > u, then Q
(v)
u,ws(q−1) = q−1R

(v)
us,w(q−1) + (q−1 − 1)R

(v)
u,w(q−1).

By (4.6), we deduce that Q
(v)
u,ws(q) = Ru,ws(q) for all u, completing the induction. �

For reduced w, the following result is usually taken to be the definition of the R-polynomials Ru,w(q);

cf. [KL79, (2.0.a)].

Corollary 5.2. For any word w and u ∈W , we have

D(Tw) =
∑
u∈W

Ru,w(q−1)q−`(u)Tu.

5.3. Two traces. If A is any commutative ring and H is any A-algebra, then a trace on H is an A-

linear map τ : H → A such that τ(ab) = τ(ba) for all a, b ∈ H. Taking A = Z[q±1] and H = HW , let

τ+, τ− : HW → A be the traces defined A-linearly by:

τ±(T±1
w ) :=

1 w = e,

0 w 6= e
for w ∈W .

We have the following identities [GL20, (2.10)] for u, v ∈W :

(5.3) τ±(T±1
u T±1

v−1) =

q±`(u) if u = v;

0 if u 6= v.

So Proposition 5.1 implies:

Corollary 5.3. For any word w and u, v ∈W , we have

R(v)
u,w(q) = q`(v)τ−(T−1

v−1TwT
−1
vu ).(5.4)

Proof. Right-multiply both sides of (5.2) by q−`(v)T(vu)−1 to get

R(v)
u,w(q−1) = q−`(v)τ+(TvD(Tw)T(vu)−1) = q−`(v)τ+(D(T−1

v−1TwT
−1
vu )).

Then observe that τ+ ◦D = D ◦ τ−. �

Corollary 5.4. For any word w and u ∈W , we have

Ru,w(q) = τ−(TwT
−1
u ).(5.5)

6. Characters of the Hecke Algebra

6.1. Characters of W . Let W be a Coxeter group. The goal of this section is to relate the traces from

Section 5 to q-deformed rational W -Catalan numbers, by way of character-theoretic arguments inspired

by [Tri21]. As a consequence, we will show that Theorem 1.9 follows from the existence and properties

of Lusztig’s exotic Fourier transform.

For the convenience of the reader, CHEVIE [GHL+96] code for this section appears at [GLTW22].

(Our proofs do not rely on any code.) In type A, the objects and formulas below admit explicit inter-

pretations in the world of symmetric functions, as we review in Section 6.7.1.
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Remark 6.1. One can also prove Theorem 1.9 directly from the results in [Tri21] together with results of

Kálmán and Gordon–Griffeth. More precisely, it follows from combining Corollary 5.4, the W -analogue

of [Kál09, Proposition 3.1], [Tri21, Corollary 8.6.2], [Tri21, Corollary 11], [Tri21, Corollary 13], and

[GG12, Section 1.12], in that order. Below, we take a simpler approach that isolates the role of the

exotic Fourier transform to the greatest extent possible. We still rely on Gordon–Griffeth, but avoid

relying on Kálmán.

Fix a subfield QW ⊆ C over which every (complex) representation of W is defined. Let Irr(W ) be

the set of irreducible characters of W , and let RW be the representation ring of W , or equivalently,

the ring generated by the class functions χ : W → QW , for χ ∈ Irr(W ), under pointwise addition and

multiplication. We write (−,−)W : RW×RW → Z for the multiplicity pairing on RW , i.e., the symmetric

bilinear pairing given by the identity matrix with respect to the Z-basis {χ}χ∈Irr(W ).

We write 1 and ε for the trivial and sign characters of W , respectively. Explicitly, 1(w) = 1 and

ε(w) = (−1)`(w) for all w ∈W .

Fix a reflection representation V such that VW = 0, or equivalently, dim(V ) = r. Let ςi : W → QW
be the character of the ith symmetric power of V : that is, ςi(w) = tr(w | Symi(V )). Let

[Sym]q =
∑
i

qiςi ∈ RW [[q]].

The element [Sym]q only depends on W and not on the choice of the reflection representation V .

6.2. Characters of HW . Let K = QW (q±
1
2 ) ⊇ A. The K-algebra

KHW = K ⊗A HW

is known to be isomorphic to K[W ], the group algebra of W over K; see [GP00, Theorem 7.4.6]. In

particular, they have the same representation theory: Every KHW -module of finite K-dimension is a

direct sum of simple KHW -modules, and the simple KHW -modules are in bijection with the simple

K[W ]-modules. Moreover, the latter are in bijection with the irreducible representations of W , because

by construction, every representation of a finite Coxeter group can be defined over K.

Recall the definition of trace from Section 5.3. Every KHW -module M of finite K-dimension defines

a trace χM : KHW → K called its character: namely,

χM (a) = trK(a |M).

Since KHW is split semisimple, the character χM determines M up to isomorphism.

We say that a trace τ : KHW → K is symmetrizing if the K-bilinear form on KHW defined by

a⊗b 7→ τ(ab) is nondegenerate. In this case, the symmetrizer of τ is the element Σ(τ) ∈ KHW ⊗KKHW
defined by

Σ(τ) =
∑
i

ei ⊗ fi,

for any choice of ordered K-bases (ei)i, (fi)i for KHW that are dual to one another under the bilinear

form. We write Σ̄(τ) ∈ KHW for the image of Σ(τ) under the multiplication map KHW ⊗K KHW →
KHW . This element is central in KHW .

We now state a version of Schur orthogonality for KHW . Let Irr(W ) be the set of characters of simple

K[W ]-modules up to isomorphism. Each χ ∈ Irr(W ) restricts to a class function χ : W → QW . At

the same time, via the isomorphism KHW ∼−→ K[W ], we can pull back χ to the character of a simple
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KHW -module. We denote the resulting character by χq : KHW → K. Schur orthogonality for KHW
says that for any symmetrizing trace τ : KHW → K, we have a decomposition

τ =
∑

χ∈Irr(W )

1

sτ (χq)
χq,(6.1)

where sτ (χq) ∈ K is a scalar characterized by the property that Σ̄(τ) acts by χ(e)sτ (χq) on any KHW -

module with character χq. We say that sτ (χq) is the Schur element for χq with respect to τ . We can

view its defining property as a version of Schur’s lemma for the central element Σ̄(τ) ∈ KHW .

6.3. The sign twist. Abusing notation, let τ+, τ− : KHW → K denote the K-linear extensions of the

A-linear traces from Section 5. It turns out that both are symmetrizing. Namely, if we set

σw := q−
`(w)

2 Tw

for all w ∈W , then (5.3) becomes equivalent to:

Σ(τ±) =
∑
w∈W

σ±1
w ⊗ σ±1

w−1 .

Now we can relate the Schur elements of these traces. In what follows, we will write s±(χq) in place of

sτ±(χq) for clarity. Recall that ε is the sign character of W .

Proposition 6.2. For all χ ∈ Irr(W ), we have s+(χq) = s−((εχ)q).

Proof. For all χ, we have

s±(χq) =
1

χ(e)

∑
w∈W

χq(σ
±1
w )χq(σ

±1
w−1).

Since (εχ)(e) = χ(e) and ε2 = 1, it is enough to show that

ε(w)χq(σ
−1
w−1) = (εχ)q(σw)

for all w ∈ W and χ ∈ Irr(W ). Indeed, this is [GP00, Proposition 9.4.1(b)], once we observe that the

K-algebra involution they call γK is, in our notation, given by γK(σw) = ε(w)σ−1
w−1 for all w ∈W . �

6.4. Periodic elements of HW . Recall that w◦ denotes the longest element of W . The definition below

is adapted from a standard definition at the level of the positive braid monoid of W , which we will not

need until Section 8.1.

Definition 6.3. For any word w = (s1, . . . , sm), we set σw := σs1σs2 · · ·σsm = q−
m
2 Tw. We say that w

is periodic if σmw = σ2p
w◦ for some p,m with m 6= 0. In this case, we say that p

m is the slope of w.

Example 6.4. If c is a Coxeter word, then σpc is periodic of slope p
h for any integer p.

For all χ ∈ Irr(W ), the fake and generic degrees of χ are respectively

Fegχ(q) :=
(χ, [Sym]q)W
(1, [Sym]q)W

,(6.2)

Degχ(q) :=
s+(1q)

s+(χq)
,(6.3)
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where in (6.2), we have extended (−,−)W to a pairing RW [[q]]×RW [[q]]→ Z[[q]] by linearity. It turns out

that Fegχ(q) ∈ Z[q] and Degχ ∈ QW [q]. At q = 1, both polynomials specialize to the degree of χ, i.e.,

the Z[q±1]-dimension of the underlying HW -module:

(6.4) Fegχ(1) = Degχ(1) = χ(1).

For Fegχ(1), this follows from the discussion in [Spr74, Section 2.5], and for Degχ(1), see [GP00, Sec-

tion 8.1.8]. In addition, s+(1q) is the Poincaré polynomial of W , which, by a formula of Bott–Solomon

[Sol66], can be written as

s+(1q) =
∑
w∈W

q`(w) =

r∏
i=1

1− qdi
1− q =

1

(1− q)r(1, [Sym]q)W
.(6.5)

We will show that:

(1) The values of fake degrees at roots of unity are related to the values of τ±(σw) for periodic w.

(2) The values of generic degrees at roots of unity are related to q-deformed rational W -Catalan

numbers.

Recall that T ⊂W is the set of reflections. In what follows, let N := |T | = `(w◦) and

c(χ) :=
1

χ(e)

∑
t∈T

χ(t).(6.6)

Note that c(1) = N . More generally, it turns out that c(χ) ∈ Z.

Remark 6.5. In [Tri21], the integer c(χ) was called the content of χ, because for W = Sn, it is the

content of the integer partition of n corresponding to χ. Explicitly, the content of an integer partition

λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) is the sum c(λ) :=
∑∞
i=1

∑λi
j=1(j − i).

Theorem 6.6 (Springer). If χ ∈ Irr(W ) and w is a periodic word of slope ν ∈ Q, then

(6.7) χq(σw) = qν c(χ)Fegχ(e2πiν).

Proof. Combine [Tri21, Corollary 9.2.2] and [Spr74, Theorem 4.2(v)]. �

Corollary 6.7. If w is a periodic w-word of slope ν ∈ Q, then

τ+(σw) =
1

s+(1q)

∑
χ∈Irr(W )

qν c(χ)Fegχ(e2πiν)Degχ(q),

τ−(σw) =
ε(w)

s+(1q)

∑
χ∈Irr(W )

q−ν c(χ)Fegχ(e2πiν)Degχ(q).

Proof. The first identity follows from combining (6.1), (6.3), and Theorem 6.6. To get the second identity

from the first, observe that

1

s−(εχq)
(εχ)q(σw) =

1

s+(χq)
(εχ)q(σw) by Proposition 6.2

=
Degχ(q)

s+(1q)
(εχ)q(σw) by (6.3)

=
Degχ(q)

s+(1q)
qν c(εχ)Fegεχ(e2πiν) by Theorem 6.6.
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We have c(εχ) = − c(χ) because ε(t) = −1 for all t ∈ T . Moreover, w is regular by [Tri21, Corollary

9.3.6], so

Fegεχ(e2πiν) = (εχ)(w) = ε(w)χ(w) = ε(w)Fegχ(e2πiν)

by [Spr74, Theorem 4.2]. �

Remark 6.8. When W is a Weyl group of Coxeter number h, the right-hand sides of the identities in

Corollary 6.7 each simplify to a sum of precisely h nonzero terms, as we now explain. (See also [Ree19,

Section 6].)

Suppose that c is a c-word. For any χ ∈ Irr(W ) and p coprime to h, we have Fegχ(e
2πip
h ) = χ(cp)

by §2.7 and Theorem 4.2(v) of [Spr74], so it suffices to determine the number of χ for which χ(cp) is

nonzero. Since W is a Weyl group, cp is conjugate to the Coxeter element c by [Spr74, Proposition 4.7],

allowing us to assume p = 1. Let C and W · c denote the centralizer and conjugacy class of c in W ,

respectively. Then c generates C by [Spr74, Corollary 4.4], so by Schur orthogonality,

h = |C| = |W |
|W · c| =

∑
χ∈Irr(W )

|χ(c)|2.

Since W is a Weyl group, we have QW = Q, which in turn implies that the values of χ(c) in the last

expression are all rational integers. But by direct inspection we can find at least h irreducible characters

χ for which χ(c) is nonzero. So in the last expression above, we must have χ(c) = ±1 for exactly h

irreducible characters χ, and χ(c) = 0 for all other χ. Alternatively—and we thank Eric Sommers for

this argument—one can deduce this conclusion in a case-free way from the fact that the trace of c on

any irreducible character is 1, 0, or −1 [Kos76, Theorem 1]. Altogether, we have shown that when W is

a Weyl group,

{χ ∈ Irr(W ) : χ(c) 6= 0}| = |{χ ∈ Irr(W ) : Fegχ(e
2πip
h ) 6= 0}| = h.

The behavior of the values χ(c) for noncrystallographic Coxeter groups is a little more irregular:

• In type H3, where h = 10, the value of χ(c) is nonzero for 8 of the 10 irreducible characters χ.

• In type H4, where h = 30, it is nonzero for 24 of the 34 irreducible characters.

• In types I2(2m− 1) and I2(4m− 2), it is nonzero for all irreducible characters. In type I2(4m),

there is a single irreducible character for which it vanishes. (Note that the Coxeter number of

I2(m) is equal to 2m.)

For any ν ∈ Q, let Lν denote the simple spherical module of the rational Cherednik algebra of W of

central charge ν. Let [Lν ]q ∈ RW [q] be its graded character, normalized to be a polynomial in q with

nonzero constant term. We will not give an exposition of rational Cherednik algebras here, as we will

not need Lν itself, but only a formula involving [Lν ]q. In what follows, recall from (1.3) that

Catp(W ; q) :=

r∏
i=1

[p+ (pei modh)]q
[di]q

,

where [a]q = 1 + q + · · ·+ qa−1.

Theorem 6.9. If p is a positive integer coprime to h, then:

(1) [GG12, Section 1.12] We have

(1, [Lp/h]q)W = Catp(W ; q).(6.8)
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(2) [Tri21, Corollaries 11 and 13] We have

[Lp/h]q = q
rp
2

∑
χ∈Irr(W )

q−
p
h c(χ)Degχ(e

2πip
h )χ · [Sym]q.(6.9)

In particular, rp
2 −

p
h c(χ) ∈ Z for all χ such that Degχ(e

2πip
h ) 6= 0.

Proof. We explain how to deduce part (2) from the results of [Tri21]. Observe that 1
2rh = `(w◦) = N .

So in the notation of [Tri21], the right-hand side of (6.9) is the graded character (q
1
2 )2N p

h−r[Ωp/h]q.

Given the way we normalize [Lp/h]q to be polynomial with nonzero constant term, [Tri21, Corollary 13]

identifies this character with [Lp/h]q. �

Remark 6.10. In analogy with Remark 6.8, the right-hand side of (6.9) simplifies to a sum of precisely

r+ 1 nonzero terms, where r is the rank of W . If we write Λk for the character of the kth exterior power

of the reflection representation of W , then it turns out that:

(6.10) Degχ(e
2πip
h ) =

(−1)k, if χ = Λk for some 0 ≤ k ≤ r;
0, otherwise.

By direct calculation,

(6.11) c(Λk) = N − hk = h

(
1

2
r − k

)
,

which leads to the formula

[Lp/h]q =
∑

0≤k≤r
(−qp)kΛk · [Sym]q.(6.12)

Note that Gordon–Griffeth themselves cite [BR11, Proposition 4.2], which relies on (6.12).

We sketch the proof of (6.10), relying freely on background explained in [Tri21, §A.11]. First, by

Theorem 6.6 and Remark 6.9 of [BGK97], the non-principal Φh-blocks of KHW all have defect 0. The

principal Φh-block of KHW has defect 1, and its Brauer tree is a line graph in which the vertices are

the characters Λk ordered by k. (In non-crystallographic types, this result depends on the case-by-case

methods of [Mül97].) Next, [Tri21, Lemma 10.8.2] shows that for χ in the blocks of defect 0, we have

Degχ(e2πi ph ) = 0, whereas for χ = Λk, we have Degχ(e2πi ph ) = (−1)k.

Corollary 6.11. If p is a positive integer coprime to h, then

(1− q)rq− rp2 Catp(W ; q) =
1

s+(1q)

∑
χ∈Irr(W )

q−
p
h c(χ)Fegχ(q)Degχ(e

2πip
h ).(6.13)

Proof. Since W is a Coxeter group, every character χ ∈ Irr(W ) is defined over the real numbers. This

means (1, χ · (−))W = (χ,−)W . So combining (6.8) and (6.9) gives

q−
rp
2 Catp(W ; q) =

∑
χ∈Irr(W )

q−
p
h c(χ)Degχ(e

2πip
h )(χ, [Sym]q)W .

Multiplying both sides by (1− q)r, then invoking (6.2) and (6.5), we get the result. �

6.5. The exotic Fourier transform. The following result is proved in [Lus84, Chapter 4].

Theorem 6.12 (Lusztig). There is a pairing {−,−}W : Irr(W ) × Irr(W ) → QW that satisfies the

following conditions:
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(1) For all χ ∈ Irr(W ), we have

(6.14) Fegχ(q) =
∑

φ∈Irr(W )

{φ, χ}WDegφ(q).

(2) For all φ, χ ∈ Irr(W ), we have {φ, χ}W = {χ, φ}W .

(3) For all φ, χ ∈ Irr(W ) such that {φ, χ}W 6= 0, we have c(φ) = c(χ).

Let q1, q2, q3 be arbitrary parameters and ν ∈ Q. Then the identity

(6.15)
∑

χ∈Irr(W )

q
ν c(χ)
1 Fegχ(q2)Degχ(q3) =

∑
χ∈Irr(W )

q
ν c(χ)
1 Fegχ(q3)Degχ(q2)

follows from Theorem 6.12 via a double-summation argument. We can now prove Theorem 1.9(1).

Corollary 6.13. Let c be a Coxeter word, and let p be a positive integer coprime to h. Then we have

Re,cp(q) = (q − 1)rCatp(W ; q).

Proof. We show that the stated identity Re,cp(q) = (q − 1)rCatp(W ; q) is equivalent to the identity

(6.16)
∑

χ∈Irr(W )

q−
p
h c(χ)Fegχ(e

2πip
h )Degχ(q) =

∑
χ∈Irr(W )

q−
p
h c(χ)Fegχ(q)Degχ(e

2πip
h ),

which is a specialization of (6.15). Suppose that c is a c-word. Then ε(c) = (−1)r, so

Re,cp(q) = q
rp
2 τ−(σpc) by Corollary 5.4(6.17)

=
(−1)rq

rp
2

s+(1q)

∑
χ∈Irr(W )

q−
p
h c(χ)Fegχ(e2πi ph )Degχ(q) by Corollary 6.7.(6.18)

So the result follows from Corollary 6.11. �

6.5.1. Uniformity. Lusztig’s proof of Theorem 6.12 is not uniform. Below, we explain which parts can

be made uniform and in which settings.

For every irreducible finite Coxeter group W , Lusztig defines

(I) a finite set Udeg(W ),

(II) an embedding Irr(W ) ↪→ Udeg(W ),

(III) an extension of the function χ 7→ Degχ on Irr(W ) to a function on Udeg(W ),

(IV) a pairing {−,−} : Udeg(W ) × Udeg(W ) → QW , now called the nonabelian or exotic Fourier

transform, satisfying conditions (1)–(3) of Theorem 6.12.

We take {−,−}W to be the restriction of {−,−} to Irr(W )× Irr(W ).

In [Lus93], Lusztig gives a uniform characterization of (I)-(III) by a list of axioms, and proves that the

axioms always admit a solution. However, beyond Weyl groups, this proof uses case-by-case arguments.

The definition of (IV) beyond Weyl groups also uses case-by-case arguments. For dihedral types, it is

constructed uniformly in [Lus94], and for type H4, it is constructed in [Mal94]. For type H3, the details

are scattered in the literature; see [Tri21, Remark 7.5.4]. We do not know a definition of the restricted

pairing {−,−} that is uniform for Coxeter groups and independent of (I)-(II).

For Weyl groups, there are two ways to define {−,−}. In what follows, suppose that Fq is a finite

field of order q, and that G is a split, connected reductive algebraic group over Fq with Weyl group W .

In [Lus84, Chapter 4], Lusztig defines the data (I)-(IV) as follows; see also [Tri21, Section 8.2]. For

(I)-(III), the constructions are uniform in G.
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(I) Udeg(W ) is the set of unipotent irreducible representations of G(Fq). The definition of a unipo-

tent representation uses Deligne–Lusztig varieties [DL76, Section 7.8].

(II) The embedding Irr(W ) ↪→ Udeg(W ) sends each character χ to a representation ρχ called the

corresponding unipotent principal series representation.

(III) For general ρ ∈ Udeg(W ), the number Degρ(q) := ρ(1) turns out to be a polynomial in q that is

independent of the prime power and recovers Degχ when ρ = ρχ.

(IV) First, for any finite group G, Lusztig uniformly defines a set M(G) and a hermitian unitary

pairing {−,−}G : M(G)×M(G)→ C.

For each χ ∈ Irr(W ), let a(χ) be the largest power of q dividing Degχ(q). The subsets of

Irr(W ) on which a is constant are called families. For each family F ⊆ Irr(W ), Lusztig defines

(a) a finite group GF , in a uniform manner;

(b) an embedding M(GF ) ↪→ Udeg(W ), in a case-by-case manner, such that as we run over

families F , the disjoint union of these embeddings is a bijection.

The pairing {−,−} on Udeg(W ) is defined as the block sum of the pairings {−,−}GF on the

subsets M(GF ). The embeddings above are chosen in such a way that condition (1) of Theo-

rem 6.12 is guaranteed; see [Lus84, Theorem 4.23]. Moreover, for the groups G that actually get

assigned to families, it turns out that {−,−}G is real-valued, hence symmetric orthogonal. (It

further turns out that {−,−}G takes values in QW .)

In this approach, the construction of {−,−} is not uniform, but conditions (1) and (2) of Theorem 6.12

follow immediately and uniformly once it is shown that [Lus84, Theorem 4.23] is satisfied for the right

choice of embeddings in (IV)(b). As for condition (3): [BM97, Section 4.21] shows uniformly that

c(χ) = N − a(χ) − A(χ) for all χ ∈ Irr(W ), where A(χ) = degq Degχ(q). One can check case-by-case

that A is also constant on families, and therefore, so is c, which verifies condition (3).

Each irreducible character χ ∈ Irr(W ) also uniformly defines a virtual representation Rχ called the

corresponding almost-character. The actual statement of [Lus84, Theorem 4.23] says that (%,Rχ)G(Fq) =

∆(%){%, ρχ} for all χ ∈ Irr(W ) and % ∈ Udeg(W ), where ∆ : Udeg(W ) → {±1} is defined case-by-case

in [Lus84, Section 4.14]. However, ∆(ρ) = 1 when ρ is a principal series representation. This means that

if we only care about the restricted pairing {−,−}W on Irr(W ), then we can take

{φ, χ}W := (ρφ, Rχ)G(Fq)

as a uniform definition. In this approach, condition (1) of Theorem 6.12 immediate, but there is no

uniform proof of conditions (2) or (3).

Remark 6.14. Let us similarly address the uniformity of the proofs of the results we need from [Tri21].

The only place affected in our work is Theorem 6.9(2), which relies on:

• [Tri21, Corollary 11], which in turn relies on a Lemma 10.6.1 stating that Degεχ(e2πiν) =

(−1)2NνDegχ(e2πiν).

The proof of the lemma relies on {−,−}W by way of Theorem 6.12(1). It seems possible that

a proof avoiding the exotic Fourier transform can be found. Note that in our application, where

ν = p/h for p coprime to h, the sign on the right-hand side disappears.

• [Tri21, Corollary 13], which follows from the results about the Φh-block theory of KHW that

we mentioned in Remark 6.10. The characterization of the principal block in terms of defect is

proved uniformly for Weyl groups in [BGK97, Theorem 6.6], but there does not appear to be a

uniform proof for general Coxeter groups.

6.6. The q-parking count. We now prove Theorem 1.9(2).
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Corollary 6.15. Let c be a Coxeter word, and let p be a positive integer coprime to h. Then we have∑
v∈W R

(v)
e,cp(q) = (q − 1)r[p]rq.

Proof. Applying Corollary 5.3 and (6.1), we find

∑
v∈W

R
(v)
e,cp(q) = τ−

(∑
v∈W

q`(v)T−1
v−1TcpT

−1
v

)
=

∑
χ∈Irr(W )

1

s−(χq)

∑
v∈W

χq

(
q`(v)T−1

v−1TcpT
−1
v

)
.

By (5.3), the bases (T−1
v )v∈W and (q`(v)T−1

v−1)v∈W are dual to each other with respect to τ−. Applying

the second display equation on page 226 of [GP00], we see that the above sum simplifies to∑
v∈W

R
(v)
e,cp(q) =

∑
χ∈Irr(W )

dim(χ) · χq(Tcp).

(In the notation of loc. cit., we are taking φ to be the operator by which Tcp acts on the HW -module of

character χq.) By (6.7), (6.4), and (6.15),

q
rp
2

∑
χ∈Irr(W )

q
p
h c(χ)Degχ(1)Fegχ(e

2πip
h ) = q

rp
2

∑
χ∈Irr(W )

q
p
h c(χ)Degχ(e

2πip
h )Fegχ(1).

By (6.10)–(6.11), (6.4), and the formula dim(Λk) =
(
r
k

)
, this becomes

q
rp
2

∑
0≤k≤r

qp(r/2−k) dim(Λk)(−1)k = qrp
∑

0≤k≤r
(−1)k

(
r

k

)
q−pk = qrp(1− q−p)r = (q − 1)r[p]rq. �

6.7. Explicit computations in type A. In this subsection, we specialize the results above to W = Sn.

6.7.1. Symmetric functions. We refer the reader to [Sta99] for background on symmetric functions. Let

Λq be the ring of symmetric functions over the field Q(q). For n ≥ 0, let Λnq denote the subspace of

degree-n homogeneous polynomials. It has a basis of Schur functions sλ, indexed by the set Par(n)

of partitions λ ` n. The set Irr(Sn) can be identified canonically with Par(n). For λ ` n, we write

χλ ∈ Irr(Sn) to denote the corresponding character. The trivial character 1 corresponds to the single-row

partition λ = (n), while the sign character ε corresponds to the single-column partition λ = (1, 1, . . . , 1).

The scalar product (−,−)Sn corresponds to the Hall inner product 〈−,−〉 on Λq. The Schur functions

form an orthonormal basis with respect to 〈−,−〉.
First, we claim that the inverses of the Schur elements s+(χλ) can be given in terms of the principal

specializations of the Schur functions sλ:

(6.19)
1

s+(χλ)
= (1− q)n · sλ(1, q, q2, . . .).

An explicit formula for the right-hand side (the q-hook length formula) can be found in [Sta99, Corol-

lary 7.21.3]. Specifically, for a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ 0), let

|λ| :=
∑
i

λi and b(λ) :=
∑
i

(i− 1)λi.

View λ as a Young diagram in English notation, and let h(u) denote the hook-length of a box u ∈ λ.

Then [Sta99, Corollary 7.21.3] reads

sλ(1, q, q2, . . .) =
qb(λ)

(1− q)n∏u∈λ[h(u)]q
.

The left-hand side of (6.19) is computed in [GP00, Theorem 10.5.2]. Comparing the two sides gives the

proof of (6.19).
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We can now compute the generic degrees Degχλ(q). For the trivial character χ(n) = 1, (6.19) yields

(6.20)
1

s+(1)
= (1− q)n · s(n)(1, q, q

2, . . .) =
1

[n]q!
,

in agreement with (6.5). Applying [Sta99, Corollary 7.21.5], we find that

Degχλ(q) =
qb(λ)[n]q!∏
u∈λ[h(u)]q

=
∑

T∈SYT(λ)

qmaj(T ).

Here, SYT(λ) is the set of standard Young tableaux of shape λ and maj(T ) is the major index of T ,

defined as the sum of all i such that i + 1 appears in a lower row of T than i. As expected from (6.4),

Degχλ(1) equals the dimension |SYT(λ)| of the irreducible representation of Sn corresponding to χλ.

Next, we compute the fake degrees. By [Sta99, Exercise 7.73], we have

(6.21) [Sym]q =
∑
λ`n

sλ(1, q, q2, . . .)sλ.

As an immediate consequence,

(χλ, [Sym]q)Sn = sλ(1, q, q2, . . .).

This implies that the fake degrees coincide with the generic degrees: Fegχλ(q) = Degχλ(q). The exotic

Fourier transform {−,−}Sn therefore coincides with the scalar product (−,−)Sn , i.e., for φ, χ ∈ Irr(Sn),

we have {φ, χ}Sn = 1 if φ = χ and {φ, χ}Sn = 0 otherwise.

Remark 6.16. Using the Cauchy identity [Sta99, Theorem 7.12.1], one can check that the right-hand side

of (6.21) equals hn[X/(1− q)], where the square brackets denote the plethysm [Sta99, Defintion A.2.6].

More generally, one can show that the operation χ 7→ χ · [Sym]q on class functions corresponds to the

plethystic substitution f 7→ f [X/(1− q)] on symmetric functions.

Conjecture 6.17. Let W = Sn. Then (6.15) gives the following explicit sum:

1

[n]!q

∑
w∈W

q
ν c(shape(RSK(Foata−1(w)))
1 q

maj(w)
2 q

`(w)
3

where c is given explicitly in Remark 6.5, maj is the usual major index in Sn, RSK denotes the usual

Robinson-Schensted insertion, and Foata : Sn → Sn is Foata’s bijection [FS78].

6.7.2. A streamlined proof of Theorem 1.9. Below, we reprove Theorem 1.9 in type A by direct calcula-

tion, avoiding the machinery needed for the previous proof. Note that the type-A case of Theorem 1.9(1)

is a specialization of V. Jones’s formula for the HOMFLYPT polynomial of the (n, p)-torus knot [Jon87,

Theorem 9.7]. Explicitly, in the notation of loc. cit., Catp(W ; q) is the q-coefficient of the smallest power

λ in Jones’s formula.

Let W = Sn. Recall that r = n−1, that the exponents and degrees of Sn are given by ei = di−1 = i

for 1 ≤ i ≤ n− 1, that the Coxeter number is h = dn−1 = n, and that the irreducible representations of

Sn are indexed by partitions λ ` n.

By Remark 6.10, we have Degχλ(e
2πip
h ) = 0 unless χλ is the character of an exterior power of the

reflection representation, or equivalently, unless λ is the hook partition (n− k, 1k) for some k. Following

loc. cit., we write Λk = χ(n−k,1k), so that dim(Λk) =
(
n−1
k

)
and

(6.22) FegΛk
(q) = DegΛk

(q) = q(
k+1
2 )
[
n− 1

k

]
q

.



28 P. GALASHIN, T. LAM, M. TRINH, AND N. WILLIAMS

Evaluations of q-binomial coefficients at roots of unity are well known; see e.g. [Sag92] and references

therein. In particular, for p coprime to n and ζ = e
2πip
n , we get

(6.23) FegΛk
(ζ) = DegΛk

(ζ) = ζ(k+1
2 )
[
n− 1

k

]
ζ

= (−1)k,

in agreement with (6.10).

By (6.11) (or, alternatively, by Remark 6.5), we have

(6.24) c(Λk) =

(
n

2

)
− kn =

n(n− 2k − 1)

2
.

We now prove a more explicit version of Theorem 1.9 in type A.

Theorem 6.18. Let W = Sn. For p coprime to h = n, we have

Re,cp(q) = (q − 1)n−1 1

[n+ p]q

[
n+ p

n

]
q

and∑
v∈Sn

R
(v)
e,cp(q) = (q − 1)n−1[p]n−1

q .

Proof. Write ζ = e
2πip
n . We compute:

Re,cp(q) =
(−1)rq

rp
2

s+(1q)

∑
χ∈Irr(Sn)

q−
p
h c(χ)Fegχ(q)Degχ(ζ) by (6.17)–(6.18)

=
(−1)n−1q

(n−1)p
2

[n]q!

n−1∑
k=0

q−
p
n c(Λk)FegΛk

(q)DegΛk
(ζ) by (6.10) and (6.20)

=
(−1)n−1q

(n−1)p
2

[n]q!

n−1∑
k=0

q
−p(n−2k−1)

2 q(
k+1
2 )
[
n− 1

k

]
q

(−1)k by (6.22)–(6.24)

=
(−1)n−1

[n]q!

n−1∑
k=0

q(
k
2)
[
n− 1

k

]
q

(−1)kq(p+1)k

=
1

[n]q!

n−1∏
i=1

(qp+i − 1) = (q − 1)n−1 1

[n+ p]

[
n+ p

n

]
q

by the q-binomial theorem.

Similarly, we compute:∑
v∈Sn

R
(v)
e,cp(q) = q

rp
2

∑
χ∈Irr(Sn)

dim(χ)q
p
h c(χ)Fegχ(ζ) by Section 6.6

= q(n−1)p
n−1∑
k=0

(−1)k
(
n− 1

k

)
q−pk by (6.24) and (6.23)

= q(n−1)p(1− q−p)n−1 by the binomial theorem

= (q − 1)n−1[p]n−1
q . �

7. Braid Richardson Varieties

Let F, G,B, B+, B−, H be defined as in Section 1.6. That is:

• F is a field,

• G is a split, connected reductive algebraic group over F with Weyl group W ,

• B is the flag variety of G,
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• B+ and B− are opposed F-split Borels, and

• H := B+ ∩B−, a split maximal torus of G.

Recall that for any (B,B′) ∈ B2, the notation B
w−→ B′ means (B,B′) are in relative position w. For

a fixed Borel B, the set {B′ ∈ B | B w−→ B′} is isomorphic as an algebraic variety to an affine space of

dimension `(w). In particular, if B is an Fq-point of B (where q is a prime power), then this set contains

q`(w) Fq-points of B.

Definition 7.1. Let w = (s1, s2, . . . , sm) ∈ Sm and fix u ∈W . Define the braid Richardson variety by

◦
Ru,w =

{
(B+ = B0

s1−→ B1
s2−→ · · · sm−−→ Bm

uw◦←−− B−) | Bi ∈ B for all i
}
.

Note that
◦
Ru,w is nonempty whenever w admits at least one u-subword.

We now take F = Fq, a finite field of q elements. The following relation between braid Richardson

varieties and R-polynomials will be proved after Theorem 7.4.

Proposition 7.2. For all words w ∈ Sm and all u ∈W ,

Ru,w(q) =
∣∣∣ ◦Ru,w(Fq)

∣∣∣ .
Example 7.3. We continue Example 4.13. Let G = SL2 with W = {e, s}. Then |B(Fq)| = q + 1. Let

us denote the elements of B(Fq) by B(Fq) = {B0 = B+, B1, B2, . . . , Bq = B−}. Then Bi
e−→ Bi and

Bi
s−→ Bj for i 6= j. By analyzing which Borel subgroups are equal to B−, we compute that

◦
Re,(s,s,s) =


(B+

s−→ Bi
s−→ Bj

s−→ Bk
s←− B−) for 1 ≤ i ≤ q − 1 and 0 ≤ j, k ≤ q − 1 with i 6= j 6= k,

(B+
s−→ B−

s−→ Bi
s−→ Bj

s←− B−) for 0 ≤ i, j ≤ q − 1 with i 6= j,

(B+
s−→ Bi

s−→ B−
s−→ Bj

s←− B−) for 1 ≤ i ≤ q − 1 and 0 ≤ j ≤ q − 1

 .

Thus
◦
Re,(s,s,s)(q) = (q − 1)3 + 2q(q − 1) = (q − 1)(q2 + 1).

The following result appears in [Deo85] (see also [MR04, WY07]) for reduced words w, but the

argument in [Deo85] extends to the case where w is arbitrary.

Theorem 7.4 ([Deo85, MR04, WY07]). Let W be a Weyl group. For a u-subword u of w = (s1, s2, . . . , sm),

let

◦
Ru,w =

{
(B0

s1−→ B1
s2−→ · · · sm−−→ Bm

uw◦←−− B−) | B−
u(i)w◦−−−−→ Bi for i ∈ {0, 1, . . . ,m}

}
.

Then

(7.1)
◦
Ru,w =

⊔
u∈Du,w

◦
Ru,w with

◦
Ru,w(F) ' (F∗)eu × Fdu .

Thus, Proposition 7.2 follows by comparing (7.1) with (4.4). We may therefore interpret Theorem 7.4

as a geometric incarnation of Corollary 4.12. Applying a similar argument to the variety
◦
R

(v)
e,cp defined

in (1.7), we find for all v ∈W and all integers p that

(7.2)
∣∣∣ ◦Re,cp(Fq)

∣∣∣ = Re,cp(q) and
∣∣∣ ◦R(v)

e,cp(Fq)
∣∣∣ = R

(v)
e,cp(q).

Theorem 1.12 then follows from Theorem 1.9.
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8. Noncrossing Combinatorics

For Weyl groups, the uniformly-defined rational nonnesting Coxeter–Catalan objects from Section 1.1

are counted by Catp(W ). As reviewed in Section 1.3, it has been an open problem to give a uniform

definition of a rational noncrossing family counted by Catp(W ).

There are three previously-defined families of noncrossing Coxeter–Catalan objects, which are all in

uniform bijection with each other. Each of these families has a generalization to the Fuss–Catalan

(p = kh + 1) and Fuss–Dogolon (p = kh − 1) levels of generality. In this section, for simplicity, we will

only treat the Fuss–Catalan case.

Fix a Coxeter word c = (s1, s2, . . . , sr). We will review the three noncrossing families, then prove

that the elements ofMe,cp are naturally rational noncrossing objects by giving direct bijections between

Me,ckh+1 and the Coxeter–Fuss–Catalan noncrossing families.

8.1. Noncrossing Objects and Bijections. A Coxeter group W with system of simple generators S

defines a corresponding positive braid monoid B+
W , equipped with a generating set S in bijection with

S. For all s ∈ S, we write s ∈ S to denote the corresponding generator. As a monoid, B+
W is freely

generated by S modulo the braid relations

m(s,t)︷ ︸︸ ︷
sts · · · =

m(s,t)︷ ︸︸ ︷
tst · · ·

for distinct s, t ∈ S, for the same integers m(s, t) as in (3.1). Thus there is a surjective homomorphism

of monoids B+
W → W that sends s 7→ s. Note that it factors through a surjective homomorphism of

rings Z[q±1][B+
W ]→ HW , where HW is the Hecke algebra from Section 5.

For any word w = (s1, s2, . . . , sm) ∈ Sm, we abuse notation by again writing w to denote the product

s1s2 · · · sm ∈ B+
W . In the case where w is a reduced w-word for some w ∈W , this product only depends

on w, not on w.

The weak order (B+
W ,≤R) on B+

W is the lattice formed by the transitive closure of the relation lR
defined by w lR ws for s ∈ S and w ∈ B+

W . The map w 7→ w, where w ∈ B+
W is a reduced word for w,

defines a canonical lift from W onto the weak order interval [e,w◦]R ⊂ B+
W . Here, w◦ is the lift of the

longest element w◦ ∈W , also known as the half-twist.

8.1.1. Sortable Elements. The first family of noncrossing objects we review are the Coxeter-sortable

elements, introduced at the Coxeter–Catalan level of generality by Reading [Rea06, Rea07b, Rea07a]

and extended to the Fuss–Catalan level by Stump, Thomas, and Williams [STW15].

Let c∞ ∈ S × S × · · · be the infinite sequence formed by repeated concatenations of c. The c-sorting

word w(c) of w ∈ B+
W is the lexicographically-first subword of w occurring in c∞. We write w(c, i) for

the word formed by restricting w(c) to the ith copy of c in c∞.

Definition 8.1 ([Rea07a, STW15]). An element w ∈ B+
W is c-sortable if w(c, i + 1) is a subword of

w(c, i) for all i. We write Sort(∞)(W, c) for the set of all such w. We also write

Sort(m)(W, c) := {w ∈ Sort(∞)(W, c) : w ≤R wm
◦ }.

Example 8.2. The 12 elements of Sort(2)(S3, (s1, s2)) are illustrated in Figure 8(left) together with

their skip tuples, defined as follows. For 1 ≤ j ≤ n− 1, let (tj , kj) be the colored reflection in inv(w(c))

corresponding to the leftmost simple reflection sj that does not appear in w(c). We define the skip tuple

of w to be the collection skipc(w) of all (tj , kj), ordered by when they appear in inv(w(c)).
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Sort(2)(S3, c) NC(2)(S3, c) Clus(2)(S3, c)

(12) (23) · · · · · ·
(
(12), (23)

)
(12) (23) s1 s2 s1 s2 s1 s2

s1 (13) ˙(12) · · · · ·
(
(13), ˙(12)

)
s1 (13) ˙(12) s2 s1 s2 s1 s2

s1 (13) s1 · ¨(12) · · ·
(
(13), ¨(12)

)
s1 (13) s1 s2 s1

¨(12) s1 s2

(12) s2 · ˙(23) · · · ·
(
(12), ˙(23)

)
(12) s2 s1 s2

˙(23) s2 s1 s2

(12) s2 · s2 · ¨(23) · ·
(
(12), ¨(23)

)
(12) s2 s1 s2 s1 s2 s1

¨(23)

s1 s2 (23) ˙(13) · · · ·
(
(23), ˙(13)

)
s1 s2 (23) ˙(13) s1 s2 s1 s2

s1 s2 (23) s2 · ¨(13) · ·
(
(23), ¨(13)

)
s1 s2 (23) s2 s1 s2

¨(13) s2

s1 s2 s1
˙(12) ˙(23) · · ·

( ˙(12), ˙(23)
)

s1 s2 s1
˙(12) ˙(23) s2 s1 s2

s1 s2 s1 s2
˙(13) ¨(12) · ·

( ˙(13), ¨(12)
)

s1 s2 s1 s2
˙(13) ¨(12) s1 s2

s1 s2 s1
˙(12) s1 · ¨(23) ·

( ˙(12), ¨(23)
)

s1 s2 s1
˙(12) s1 s2 s1

¨(23)

s1 s2 s1 s2 s1
˙(23) ¨(13) ·

( ˙(23), ¨(13)
)

s1 s2 s1 s2 s1
˙(23) ¨(13) s2

s1 s2 s1 s2 s1 s2
¨(12) ¨(23)

( ¨(12), ¨(23)
)

s1 s2 s1 s2 s1 s2
¨(12) ¨(23)

Figure 8. Let c = (s1, s2). Left: the 12 c-sortable elements in Sort(2)(S3, c). In each

row, we have replaced the position of the leftmost sj (j = 1, 2) not appearing in w(c)

with the corresponding colored reflection in the skip tuple. Middle: The 12 elements in

NC(2)(S3, c). Right: The 12 elements of Clus(2)(S3, c). We have replaced the positions

i where ui = e with the corresponding colored reflection in inve(u).

e

(12) (23)(13)

(132) (123)

(12)
(13)

(23)

(13)

(23)

(13)

(12)
(12)(23)

Figure 9. The Hasse diagram of the absolute order (S3,≤T ), with edges labeled by reflections.

By [Spe09], the element w◦ is c-sortable for any c. For example, for S4, we have

w◦(s1, s2, s3) = (s1, s2, s3︸ ︷︷ ︸
w◦(c,1)

, s1, s2, ·︸ ︷︷ ︸
w◦(c,2)

, s1, ·, ·︸ ︷︷ ︸
w◦(c,3)

, · · ·)

and w◦(s2, s1, s3) = (s2, s1, s3︸ ︷︷ ︸
w◦(c,1)

, s2, s1, s3︸ ︷︷ ︸
w◦(c,2)

, ·, ·, ·, · · ·).

8.1.2. Noncrossing Partitions. The second noncrossing family we review are the noncrossing partitions,

introduced in the Coxeter–Catalan level of generality by Bessis [Bes03] and extended to the Fuss–Catalan

level by Armstrong [Arm09].

The absolute order ≤T is the partial order on W induced by `T . That is, u ≤T w if and only if

`T (u) + `T (u−1w) = `T (w). The covering relations in this poset are therefore of the form u lT w
whenever u−1w ∈ T , and we label the corresponding edge u → w of the Hasse diagram of (W,≤T ) by

t := u−1w. See Figure 9.

The (W -)noncrossing partitions are defined to be the elements of the absolute order interval NC(W, c) :=

[e, c]T . Observe that each element of T appears exactly once as an inversion in the c-sorting word for

w◦. This gives rise to a total order on T : For two reflections t1, t2 ∈ T , we write t1 ≤c t2 if and only if
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t1 appears before t2 in inv(w◦(c)). The poset NC(W, c) is known to be EL-shellable with respect to the

ordering on T given by ≤c, which amounts to the following statement.

Proposition 8.3 ([STW15, Proposition 4.1.4]). Every noncrossing partition has a unique ≤c-increasing

factorization into reflections. In other words, for each π ∈ [e, c]T , there exists a unique m-tuple

(t1, t2, . . . , tm) ∈ Tm, where m = `T (π), such that π = t1t2 . . . tm and t1 ≤c t2 ≤c · · · ≤c tm.

For instance, choosing c = (s1, s2) in S3, we have (12) ≤c (13) ≤c (23). The interval [e, c]T consists

of all elements of S3 \ {s2s1}, and each of them indeed has a unique ≤c-increasing factorization into

reflections, as Figure 9 illustrates.

Generalizing a construction of Edelman in type A [Ede80], Armstrong [Arm09] defined the Fuss–

Catalan analogue of noncrossing partitions to be k-multichains π1 ≤T · · · ≤T πk in NC(W, c), recovering

NC(W, c) for k = 1. For 0 ≤ i ≤ k, define δi := π−1
i πi+1, with the convention that π0 = e and πk+1 = c.

Factoring each δi into reflections using ≤c as above, it is convenient to think of these multichains as a

factorization of c into colored reflections (with colors 0, 1, . . . , k corresponding to the factors δ0, δ1, . . . , δk),

such that the reflections in any color increase with respect to ≤c.

Definition 8.4 ([Arm09, STW15]). Given k ∈ N, we write

NC(k)(W, c) :=

((t1, k1), (t2, k2), . . . , (tr, kr)
)
∈ (T × Z)r

∣∣∣∣∣∣∣
t1t2 · · · tr = c,

0 ≤ k1 ≤ · · · ≤ kr ≤ k, and

if ki = ki+1 then ti ≤c ti+1

 .

The 12 elements of NC(2)(S3, (s1, s2)) are illustrated in Figure 8(middle).

8.1.3. Clusters. The third noncrossing family we review are the clusters, introduced in the Coxeter–

Catalan level of generality by Fomin and Zelevinsky [FZ03a] and extended to the Fuss–Catalan level

in several different guises, by several different authors [FR05, Tza08, STW15]. We present a definition

using the notation of Section 4. Let cwk
◦(c) be the c-sorting word of cwk

◦ (which is just c followed by

the c-sorting word of wk
◦).

Definition 8.5 ([FR05, CLS14, STW15]). We write

Clus(k)(W, c) := {wk◦ -subwords u of cwk
◦(c) satisfying eu = r}.

The 12 elements u ∈ Clus(2)(S3, (s1, s2)) and their sets inve(u) are illustrated in Figure 8(right).

Since w◦ is an involution, wk◦ must be either e or w◦, depending on the parity of k. Thus, Clus(k)(W, c)

contains all wk◦ -subwords of cwk
◦(c), not necessarily distinguished, that skip exactly r letters. These

conditions are very similar to the ones in Definition 1.1, and we make this similarity precise in the proof

of Theorem 8.8 below.

8.1.4. Bijections and Enumeration. Recall that previously, the three families of noncrossing objects

defined in Sections 8.1.1 to 8.1.3 had been enumerated case by case, using combinatorial models and

computer calculations:

Theorem 8.6 ([Rea07a, STW15]). For all k ∈ N, non-uniform arguments show that∣∣∣Sort(k)(W, c)
∣∣∣ =

∣∣∣NC(k)(W, c)
∣∣∣ =

∣∣∣Clus(k)(W, c)
∣∣∣ = Catkh+1(W ).

Our main result in this section is their uniform enumeration.

Theorem 8.7 ([Rea07a, STW15]). We have the following uniform bijections:



RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 33

• w 7→ skipc(w) is a bijection Sort(k)(W, c)
∼−→ NC(k)(W, c).

• u 7→ inve(u) is a bijection Clus(k)(W, c)
∼−→ NC(k)(W, c).

In particular, arguments uniform for all Coxeter groups W show that∣∣∣Sort(k)(W, c)
∣∣∣ =

∣∣∣NC(k)(W, c)
∣∣∣ =

∣∣∣Clus(k)(W, c)
∣∣∣ .

See Figure 8 for an example.

8.2. Rational Noncrossing Partitions. Assuming Theorem 8.7, we prove that Me,ckh+1 naturally

forms a noncrossing Fuss-Catalan family by giving a uniform bijection from its elements to noncrossing

partitions. This implies that the more general sets Me,cp should be considered rational noncrossing

families.

Theorem 8.8. Fix k ∈ N. Then there is a uniform bijection

Me,ckh+1 ' NC(k)(W, c)

u 7→
(
(t, i) : (t, 2i) ∈ inve(u)

)
.

Proof. Observe that w2
◦ = e in W and w2

◦ = ch in B+
W . In particular, the c-sorting word for cw2k

◦ is

just cw2k
◦ (c) = ckh+1. By Definition 8.5, Clus(2k)(W, c) consists of e-subwords of ckh+1 that skip exactly

r letters. Therefore, by Proposition 4.4, Me,ckh+1 is exactly the subset of Clus(2k)(W, c) consisting of

those subwords u such that each colored reflection in inve(u) has even color. By Theorem 8.7, the map

u 7→ inve(u) is a bijection Clus(2k)(W, c)
∼−→ NC(2k)(W, c). Therefore, by Definition 8.4, Me,ckh+1 is in

bijection with sequences
(
(t1, 2k1), (t2, 2k2), . . . , (tr, 2kr)

)
satisfying

• t1t2 · · · tr = c,

• 0 ≤ k1 ≤ · · · ≤ kr ≤ k, and

• ti ≤c ti+1 whenever ki = ki+1.

Such sequences are in bijection with NC(k)(W, c) by “halving the colors,” i.e., by the map that sends(
(t1, 2k1), (t2, 2k2), . . . , (tr, 2kr)

)
7→
(
(t1, k1), (t2, k2), . . . , (tr, kr)

)
. �

8.3. Cambrian rotation. Recall that c = (s1, s2, . . . , sr). Let c′ = (s2, . . . , sr, s1). The Cambrian

rotation is a bijection Sort(k)(W, c)
∼−→ Sort(k)(W, c′) (equivalently, NC(k)(W, c)

∼−→ NC(k)(W, c′) or

Clus(k)(W, c)
∼−→ Clus(k)(W, c′)) satisfying certain properties that enable inductive arguments; see [STW15]

for background. Cambrian rotation is a distinguishing feature of noncrossing families [AST13]. The goal

of this subsection is to develop an analogous bijection for maximal ckh+1-Deograms.

Lemma 8.9. Let w = (s1, s2, . . . , sm) be a word and let w′ := (s2, . . . , sm, s1). Then there is a bijection

(8.1) De,w ∼−→ De,w′ .

preserving the statistics d(·), e(·). In particular, it restricts to a bijection Me,w
∼−→Me,w′ .

Proof. We describe the bijection. Choose a word u = (u1, u2, . . . , um) ∈ De,w. Let s = s1 and u′ :=

(u2, . . . , um, u1).

Assume that u1 = e. Then we claim that u′ is distinguished, i.e., that u′ ∈ De,w′ . Indeed, we have

u′(i) = u(i+1) for all 0 ≤ i ≤ m− 1, and moreover u′(m−1) = u′(m) = e, which implies u′ ∈ De,w′ .
Now assume that u1 = s. We first treat the case where W = S2, where we have si = s for all i ∈ [m].

Since u1 = s, we have u2 = s because u is distinguished. Thus, u = (s, s, u3, . . . , um), which we send to

u′′ := (u3, . . . , um, s, s). The map u 7→ u′′ is the desired bijection (8.1).
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Finally, we treat the general case. Let

J(u, s) := {j ∈ [m] | su(j)

j = s}

and J(u′, s) := {j ∈ [m] | su
′
(j)

j = s}.

For j ∈ J(u, s), let kj be the color of the corresponding reflection in inv(u) defined by (4.1). For

j ∈ J(u′, s), we similarly write k′j for the corresponding color.

Note that 1 ∈ J(u, s) and m ∈ J(u′, s). We thus have J(u, s) = {1 = j1 < j2 < · · · < jm̄}, and we

claim that similarly, J(u′, s) = {j′1 < · · · < j′m̄ = m}, where j′i = ji+1 − 1 for i ∈ [m̄ − 1]. Indeed, this

holds because the reflections in inv(u′) are obtained from those in inv(u) by conjugation by s. Under

such conjugation, the color changes if and only if the reflection itself was equal to s, in which case the

color decreases by one. In other words, we have k′ji−1 = kji − 1 for i ∈ [2, m̄].

Consider the word w̄ := (s, s, . . . , s), where s occurs m̄ times, and the subword ū := (ū1, . . . , ūm̄)

given by ūi = e if uji = e and ūi = s otherwise. Let ū′′ := (ū′′1 , . . . , ū
′′
m̄) be the result of applying the

above bijection for S2 to ū.

Let u′′ = (u′′1 , u
′′
2 , . . . , u

′′
m) be the subword of w defined as follows. For j /∈ J(u′, s), set u′′j := u′j . For

j = j′i ∈ J(u′, s), let u′′j := e if ū′′i = e and u′′j := w′j otherwise. Once again, one checks that the map

u 7→ u′′ gives the desired bijection. �

Let c′ := (s2, . . . , sr, s1). Then the lemma above gives a bijection Me,ckh+1
∼−→ Me,(c′)kh+1 . This

bijection has the following property: It sends an element u = (u1, u2, . . . , um) ∈Me,ckh+1 to an element

u′ = (u′1, u
′
2, . . . , u

′
m) ∈Me,(c′)kh+1 satisfying u′m = u1.

8.4. Cambrian and Deodhar recurrences. Our next goal is to show that the subset of u ∈Me,ckh+1

satisfying u1 = e is in bijection with Me,(c′′)kh′′+1 , where c′′ = (s2, . . . , sr) is a Coxeter word for the

parabolic subgroup W〈s1〉 of W generated by S \ {s1}. This will match the Cambrian recurrence on

noncrossing families described in [STW15, Section 4].

Let c′′ := s1c be the associated Coxeter element of W〈s1〉, and let h′′ be the Coxeter number of W〈s1〉.

Suppose that u ∈ Me,ckh+1 starts with u1 = e. Let
(
(t1, k1), (t2, k2), . . . , (tr, kr)

)
∈ NC(k)(W, c) be the

k-noncrossing partition assigned to u under the bijection of Theorem 8.8. Then we have (t1, k1) = (s1, 0).

By [STW15, Proposition 4.3], the subset of NC(k)(W, c) that satisfies (t1, k1) = (s1, 0) is in bijection

with the set NC(k)(W〈s1〉, c
′′), which is itself in bijection with Me,(c′′)kh′′+1 by Theorem 8.8.

The Cambrian recurrence on Me,ckh+1 is the modification of the Cambrian recurrence that performs

the map from Me,ckh+1 to Me,(c′)kh+1 from (8.1) when a subword u ∈ Me,ckh+1 does not start with

u1 = e, and performs the map above from Me,ckh+1 to Me,(c′′)kh′′+1 when u starts with u1 = e.

Remark 8.10. To perform the Cambrian recurrence on Me,w, we split the set of all u ∈Me,(c)kh+1 into

subsets satisfying u1 = e and u1 = s1. This same split—without the descent to the parabolic subgroup

made possible by the reflection-factorization properties of a Coxeter element—occurs in the Deodhar

recurrence (Proposition 4.11). Thus the Deodhar recurrence may be seen as a generalization of the

Cambrian rotation from collections of Fuss–Catalan objects to the more general sets Dku,w.

8.5. Rational Noncrossing Parking Functions. In the first four sections of [Ede80], Edelman pro-

posed a k-generalization of type A noncrossing partitions, which was subsequently generalized to all Cox-

eter groups by Armstrong [Arm09]. In [Ede80, Section 5], Edelman proposed a definition he called “non-

crossing 2-partitions.” Inspired by a related construction of nonnesting parking functions, Armstrong,

Reiner, and Rhoades independently proposed a generalized version for all Coxeter groups in [ARR15].

Rhoades gave a Fuss generalization in [Rho14].
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Me,ch+1 NC(1)(W, c)

s1 s2 s1 s2 s1 s2
¨(12) ¨(23)

( ˙(12), ˙(23)
)

s1 s2 (23) s2 s1 s2
¨(13) s2

(
(23), ˙(13)

)
s1 (13) s1 s2 s1

¨(12) s1 s2

(
(13), ˙(12)

)
(12) s2 s1 s2 s1 s2 s1

¨(23)
(
(12), ˙(23)

)
(12) (23) s1 s2 s1 s2 s1 s2

(
(12), (23)

)
Figure 10. For W = S3 and c = (s1, s2), the bijection between Me,ch+1 and

NC(1)(W, c). As usual, we replace the positions i where ui = e with the corresponding

colored reflection in inve(u).

Me,c2h+1

s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

....
(12)

....
(23)

s1 s2 s1 s2 s1 s2 s1 s2
¨(23) s2 s1 s2

....
(13) s2

s1 s2 s1 s2 s1 s2 s1
¨(13) s1 s2 s1

....
(12) s1 s2

s1 s2 s1 s2 s1 s2
¨(12) s2 s1 s2 s1 s2 s1

....
(23)

s1 s2 s1 s2 s1 s2
¨(12) ¨(23) s1 s2 s1 s2 s1 s2

s1 s2 (23) s2 s1 s2 s1 s2 s1 s2 s1 s2

....
(13) s2

s1 s2 (23) s2 s1 s2
¨(13) s2 s1 s2 s1 s2 s1 s2

s1 (13) s1 s2 s1 s2 s1 s2 s1 s2 s1

....
(12) s1 s2

s1 (13) s1 s2 s1
¨(12) s1 s2 s1 s2 s1 s2 s1 s2

(12) s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1

....
(23)

(12) s2 s1 s2 s1 s2 s1
¨(23) s1 s2 s1 s2 s1 s2

(12) (23) s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

Figure 11. For W = S3 and c = (s1, s2), the 12 elements of Me,c2h+1 . As usual, we

replace the positions i where ui = e with the corresponding colored reflection in inve(u).

Because of the v-twisting (cf. Definition 1.7), we find it convenient to pass from our canonical factoriza-

tion definition of NC(k)(W, c) back to k-multichain language. We refer the reader back to Section 8.1.2

for a discussion of this equivalence. Given π =
(
π1 ≤T π2 ≤T · · · ≤T πk

)
with πi ∈ NC(W, c), let

W〈π1〉 := 〈t : t ≤T π1〉 be the reflection subgroup of W generated by the reflections below π1 in absolute

order. By [Dye90, Corollary 3.4(ii)] (see Lemma 8.12 below), every coset vW〈π1〉 has a unique element

z of minimal length, characterized by the property that inv(z−1) has no reflections belonging to W〈π1〉.

Here, for u ∈W , we set

inv(u) :=
{
s
u(1)

1 , s
u(2)

2 , . . . , s
u(m)
m

}
,

where m = `(u) and u = (u1, u2, . . . , um) is any reduced word for u. In other words, inv(u) is obtained

from inv(u) by forgetting the colors and the order of the reflections. We write W 〈π1〉 to denote the set

of minimal coset representatives of W/W〈π1〉.

Definition 8.11 ([ARR15, Rho14]). The (W,k)-noncrossing parking functions are

Park(k)(W, c) :=
{(
v,
(
π1 ≤T π2 ≤T · · · ≤T πk

)) ∣∣∣ πi ∈ NC(W, c), v ∈W 〈π1〉
}
.
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v s1 s2 s1 s2 s1 s2 s1 s2 π1

e (12) (23) s1 s2 s1 s2 s1 s2 (123)

e s1 (13) s1 s2 s1
¨(12) s1 s2 (13)

e s1 s2 (23) s2 s1 s2
¨(13) s2 (23)

e (12) s2 s1 s2 s1 s2 s1
¨(23) (12)

e s1 s2 s1 s2 s1 s2
¨(12) ¨(23) (e)

s1 s1 (13) ¨(12) s2 s1 s2 s1 s2 (13)

s1 s1 s2 (23) s2 s1 s2
¨(13) s2 (23)

s1 s1 s2 s1
¨(12) s1 s2 s1

¨(23) e

s2 (12) s2 s1 s2
¨(23) s2 s1 s2 (12)

s2 s1 (13) s1 s2 s1
¨(12) s1 s2 (13)

s2 s1 s2 s1 s2 s1
¨(23) ¨(13) s2 e

s2s1 s1 s2 (23) ¨(13) s1 s2 s1 s2 (23)

s2s1 s1 s2 s1
¨(12) s1 s2 s1

¨(23) e

s1s2 (12) s2 s1 s2
¨(23) s2 s1 s2 (12)

s1s2 s1 s2 s1 s2
¨(13) ¨(12) s1 s2 e

s1s2s1 s1 s2 s1
¨(12) ¨(23) s2 s1 s2 e

Figure 12. The 16 elements of Pe,cp(W ) for W = S3 and c = (s1, s2) and p = 4,

shown together with the corresponding parking functions of Park(W, c). For the wiring

diagram representations, see Figure 4.

For W = S3, the sixteen (W, 1)-noncrossing parking functions (v, π1) in Park(1)(S3, s1s2) are illustrated

in the right column of Figure 12.

In the rest of this subsection, we show that the noncrossing parking functions of Definition 8.11 are

in uniform bijection with the parking objects of Definition 1.7.

Lemma 8.12 ([Dye90, Corollary 3.4(ii)]). Let v ∈ W and π ∈ NC(W, c). Then v ∈ W 〈π〉 if and only if

we have t 6∈ inv(v−1) for all t ≤T π.

Example 8.13. ForW = S4 and π = (12)(34), the minimal coset representatives inW 〈π〉 are e, s2, s1s2,

s3s2, s1s3s2, s2s1s3s2. The inverses of these permutations have inversion sets ∅, {(23)}, {(13), (23)},
{(24), (23)}, {(13), (24), (23)}, {(14), (13), (24), (23)}. The reflections t ∈ T satisfying t ≤T π are (12)

and (34), which are precisely the reflections that never appear in the inversion sets above.

It is natural to use v ∈ W to twist the color of the colored reflections in inv(u) while preserving the

reflection itself, generalizing Section 2.3. We explain this construction in more detail. Given a subword

u = (u1, u2, . . . , um), recall the colored reflections tj(u) = (s
u(j)

j , kj) for 1 ≤ j ≤ m that we defined

in (4.1). For 1 ≤ j ≤ m, set

t
(v)
j (u) := (s

u(j)

j , k′j), where k′j := kj +

1 if s
u(j)

j ∈ inv(v−1),

0 otherwise.

Write inv(v)(u) :=
(
t
(v)
1 (u), t

(v)
2 (u), . . . , t

(v)
m (u)

)
and inv(v)

e (u) for the restriction of inv(v)(u) to the indices

j for which uj = e.
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In order to state the bijection between Pe,ckh+1(W ) and Park(k)(W, c), we need to understand the

behavior of the twisted colored reflections of a subword. This will allow us to go between chains of

noncrossing partitions using only even colors, and certain chains of noncrossing partitions using both

even and odd colors.

Lemma 8.14. Fix v ∈W . Any π ∈ NC(W, c) can be uniquely factored as π = πv · πv, such that

• πv, πv ∈ NC(W, c),

• `T (πv) + `T (πv) = `T (π), and

• if t ≤T πv, then t ∈ inv(v−1), whereas

• if t ≤T πv, then t 6∈ inv(v−1).

Proof. First, assume that π = c. We argue using the theory of Reading’s Cambrian lattices [Rea06,

Rea07a]. These Cambrian lattices are quotients of the weak order induced by the projections πc↓ : W →
Sort(W, c) and π↑c from W to the c-antisortable elements of W . (Recall that w is called c-antisortable if

ww◦ is c−1-sortable.) More precisely, for v ∈W , we define πc↓(v) is as the largest c-sortable element less

than v in weak order, while π↑c (v) is the smallest c-antisortable element larger than v in weak order.

Then any v ∈ W is contained in a unique interval [πc↓(v), π↑c (v)]. The product of the lower cover

reflections for πc
−1

↓ (v−1) in the order ≤c defines a noncrossing partition cv ∈ NC(W, c), while the product

of the upper cover reflections for π↑c−1(v) in the order ≤c defines the Kreweras complement cv = c−1
v c.

(Note that here, we use the c−1-Cambrian lattice projections πc
−1

↓ and π↑c−1 instead of the c-Cambrian

lattice projections πc↓ and π↑c , to ensure that the order of the factors in the product c = cv · cv use

the lower cover reflections before the upper cover reflections. Using πc↓ and π↑c would instead result in a

factorization where the product of the lower cover reflections appear after the product of the upper cover

reflections.) These cv and cv are the desired factors: Uniqueness follows from uniqueness of the interval,

and the last two properties follow from the fact that the Cambrian lattices form stronger partial orders

than the noncrossing partition lattices [Rea11, Proposition 8.11].

Now let π be a general noncrossing partition with canonical EL-factorization π = t1t2 · · · ta, where

t1 <c t2 <c · · · <c ta. Consider the parabolic subgroup W〈π〉 of W in which t1, . . . , ta are the simple

reflections. (We can treat them as simple reflections because they are precisely the lower cover reflections

of some sortable element w ∈ W .) Each element v ∈ W appears in some coset of W〈π〉, and each such

coset contains a minimal representative in weak order by [GP00, Proposition 2.1.1]. After translating

by this representative, we can identify the coset with the Coxeter group W〈π〉. In this way, we can

identify v with an element of W〈π〉. The inversions for the latter are obtained from the inversions for v

by restricting to the reflections in W〈π〉. If we build the Cambrian lattices on the cosets of W〈π〉, using

t1, . . . , ta as the simple reflections and t1t2 · · · ta as the Coxeter element, then we will have reduced to

the previous case. �

Example 8.15. Continuing Example 8.13, take W = S4 and c = s1s2s3 = (1234) and π = c. This is

the Coxeter-element case of Lemma 8.14, which requires the full Cambrian lattice.

• For each of v ∈ {s2s1s3s2, s1s2, s1s3s2}, we have

πc
−1

↓ (v−1) = s2s1 with lower cover reflections {(13)}

and π↑c−1(v−1) = s2s1s3s2 with upper cover reflections {(12), (34)}.

giving the factorization (1234) = (13) · (12)(34).
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• For v ∈ {s3s2, s2}, we have

πc
−1

↓ (v−1) = s2 with lower cover reflections {(23)}

and π↑c−1(v−1) = s2s3 with cover reflections {(13), (34)}.

giving the factorization (1234) = (23) · (134).

• For v = e, we get the factorization (1234) = e · (1234), since

πc
−1

↓ (e) = π↑c−1(e) = e

with no lower cover reflections and with the upper cover reflections {(12), (23), (34)}.

Example 8.16. Take W = S4 and c = (1234) and π = (134), a more generic case of Lemma 8.14. We

have W〈π〉 = 〈(13), (34)〉 ' S3. The simple reflections of W〈π〉 are (13) and (34), and the reflections of

W〈π〉 are {(13), (14), (34)}.
• For v ∈ {e, s2, s3s2}, we have inv(v−1) ∩W〈π〉 = ∅, so

π
(143)
↓ (v|W〈π〉) = π↑(143)(v|W〈π〉) = e,

giving the factorization (134) = e · (134).

• For v ∈ {s1s2, s1s3s2}, we have inv(v−1) ∩W〈π〉 = {(13)}, so

π
(143)
↓ (v|W〈π〉) = (13) with lower cover reflection (13)

and π↑(143)(v|W〈π〉) = (13)(34) with upper cover reflection (34),

giving the factorization (134) = (13) · (34).

• For v = s2s1s3s2, we have inv(v−1) ∩W〈π〉 = {(14), (13)}, so again,

π
(143)
↓ (v|W〈π〉) = (13)

and π↑(143)(v|W〈π〉) = (13)(34),

giving the same factorization (134) = (13) · (34) as in the previous case.

Theorem 8.17. Fix k ∈ N. Then there is a uniform bijection

Pe,ckh+1(W ) ' Park(k)(W, c).

Proof. Any element of Pe,ckh+1(W ) =
⊔
v∈WM

(v)

e,ckh+1 belongs to M(v)

e,ckh+1 for some v. Now, M(v)

e,ckh+1

is exactly the subset of Clus(2k)(W, c) of those subwords u for which each colored reflection in inv(v)
e (u)

has even color. Since applying v to a colored reflection (t, k) increases k by one if and only if t ∈ inv(v),

we deduce thatM(v)

e,ckh+1 is in bijection with (2k+ 1)-tuples of noncrossing partitions e ≤T π0 ≤T π1 ≤T
· · · ≤T π2k = c such that:

• if t ≤T π−1
i−1πi and i is odd, then t ∈ inv(v−1), whereas

• if t ≤T π−1
i−1πi and i is even, then t 6∈ inv(v−1).

We wish to place such tuples in bijection with the noncrossing parking functions of the form
(
v,
(
σ1 ≤T

σ2 ≤T · · · ≤T σk
))

with v ∈W 〈σ1〉, by setting

σi := π2(i−1) for 1 ≤ i ≤ k.
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Note that if t ≤T π0, then t 6∈ inv(v−1), so v is a minimal coset representative of W〈σ1〉 = W〈π0〉 by

Lemma 8.12. Thus, the map from tuples to noncrossing parking functions is well-defined.

To see that the map is a bijection, apply Lemma 8.14 to each factor σ−1
i σi+1 in succession. Working

on colors i = 1, 2, . . . ,m, we use the reflections t ≤T σi that are also in inv(v−1) to split each noncrossing

partition σ−1
i σi+1 into a noncrossing partition in the odd color 2i− 3 and one in the even color 2i− 2,

which become the factors of the element in M(v)

e,ckh+1 . By further factoring the noncrossing partitions

cv and cv uniquely into <c-increasing products of reflections, as in Section 8.1.2, we construct the invve

sequence for the subword inM(v)

e,ch+1 with no reflections of color 0. So the product of the reflections with

twisted color 2 is c itself. As we have now identified the colored reflections in invve , we can reconstruct

the subword itself using Remark 4.6. �

Example 8.18. Continuing Example 8.15, we illustrate Theorem 8.17 by using Lemma 8.14 to recon-

struct the subwords in M(v)

e,ch+1 corresponding to the noncrossing parking functions
(
v,
(
e
))

.

• For v ∈ {s2s1s3s2, s1s2, s1s3s2}, we need to put (13) in color 1, whereas we need to put (12), (34)

in color 2 so that after twisting, all reflections have color 2. Using Remark 4.6, we obtain

(s1, s2, s3, s1, s2, s3, s1, ˙(13), ¨(12), s1, s2, s3, s1, s2, ¨(34)).

• For v ∈ {s3s2, s2}, we need to put (23) in color 1 and (13), (34) in color 2. We obtain

(s1, s2, s3, s1, s2, s3, s1, s2, ˙(23), s1, s2, s3, ¨(13), s2, ¨(34)).

• For v = e, we put all reflections (12), (23), and (34) in color 2, so that

(s1, s2, s3, s1, s2, s3, s1, s2, s3, s1, s2, s3, ¨(12), ¨(23), ¨(34)).

Example 8.19. For a larger illustration of Theorem 8.17, take W = S6 and c = (123456) and m = 1.

Fix v = s5s2s3s4s2s3 ∈∈W 〈(136)〉, and consider the noncrossing parking function
(
v,
(
(136)

))
.

First, inv(v−1) = {(34), (24), (35), (25), (45), (36)}. The noncrossing partition (136) corresponds to

the factorization into noncrossing partitions c = π0 · π1, where π0 = (136) and π1 = (12)(345). To each

of π0 and π1, we apply Lemma 8.14:

• Since v is a minimal coset representative of W 〈(136)〉, we have inv(v−1) ∩W〈π0〉 = ∅. Thus we

put (13), (36) in color 0.

• Since inv(v−1) ∩W〈π1〉 = {(34), (35), (45)}, we have

π
(12)(354)
↓ (v|W〈π1〉) = π↑(12)(354)(v|W〈π1〉) = (34)(45)(34)

in W〈π1〉, with lower cover reflections (34), (45) and upper cover reflection (12), giving the

factorization (12)(345) = (345) · (12). Thus we put (34), (45) in color 1 and (12) in color 2.

We can finally reconstruct the corresponding subword of c7 using Remark 4.6:

(s1, (13), s3, s4, (36),

s1, s2, s3, s4, s5,

s1, s2, s3, s4, ¨(12),

s1, ˙(34), s3, s4, s5,
˙(45), s2, s3, s4, s5,

s1, s2, s3, s4, s5,

s1, s2, s3, s4, s5).
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