
MONOTONE LINKS IN DAHA AND EHA

PAVEL GALASHIN AND THOMAS LAM

Abstract. We define monotone links on a torus, obtained as projections of curves in the
plane whose coordinates are monotone increasing. Using the work of Morton–Samuelson, to
each monotone link we associate elements in the double affine Hecke algebra and the elliptic
Hall algebra. In the case of torus knots (when the curve is a straight line), we recover
symmetric function operators appearing in the rational shuffle conjecture.

We show that the class of monotone links viewed as links in R3 coincides with the class
of Coxeter links, studied by Oblomkov–Rozansky in the setting of the flag Hilbert scheme.
When the curve satisfies a convexity condition, we recover positroid links that we previously
studied. In the convex case, we conjecture that the associated symmetric functions are Schur
positive, extending a recent conjecture of Blasiak–Haiman–Morse–Pun–Seelinger, and we
speculate on the relation to Khovanov–Rozansky homology.

Our constructions satisfy a skein recurrence where the base case consists of piecewise
almost linear curves. We show that convex piecewise almost linear curves give rise to
algebraic links.

1. Introduction

Cherednik [Che13], reinterpreting earlier work of Aganagic and Shakirov [AS15], con-
structed elements in the double affine Hecke algebra (DAHA) associated to an (m,n)-torus
knot, with the aim of constructing triply-graded link homology. This construction was
expanded on in the influential work of Gorsky and Neguţ [GN15], who further constructed
elements in the elliptic Hall algebra (EHA) using the work of Schiffmann and Vasserot [SV11,
SV13]. These objects appear at the intersection of beautiful conjectures relating link ho-
mology, compactified Jacobians, Hilbert schemes, rational Cherednik algebras, symmetric
functions, cluster algebras, and braid varieties; see [GNR21, GM13, CD16, ORS18, OY17,
OR17, GORS14, FPST22, STWZ19, GL20, CGGS21, GLSBS22, GLSB23, CGG+22].

There are multiple indications that these algebraic constructions extend beyond the case
of torus knots. For instance, some of the conjectures mentioned above extend to the case
of algebraic knots and links [CD17, ORS18, KT22]. In another direction, Oblomkov–
Rozansky [OR17] related the homology of Coxeter links (which include torus knots and
torus links) to the space of sections of a line bundle on a Hilbert scheme of points in C2.

In this work, we study DAHA, EHA, and symmetric function invariants for the class of
monotone links which includes torus knots and torus links. A monotone link is a projection
(under the map R2 → R2/Z2) of a curve C from (0, 0) to (m,n) with both coordinates
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monotone increasing; see Section 1.2. Our construction depends on viewing monotone links
as links in a (thickened) torus. It turns out that viewing them as links in R3 instead, one
recovers precisely the Coxeter links of [OR17]; see Sections 7.2 and 7.3.

In our earlier works [GL20, GL21, GL22], we studied positroid links associated to the
positroid stratification of the Grassmannian and discovered that the associated combinatorics
involves Dyck paths under an arbitrary convex curve. This surprising convexity property of
positroid links was a starting point for this work. Around the same time, Blasiak–Haiman–
Morse–Pun–Seelinger [BHM+21] constructed symmetric functions in the context of the shuf-
fle conjecture [HHL+05, BGLX15, GN15, CM18, Mel16] and independently conjectured that
under a convexity assumption, these symmetric functions are Schur positive.

We showed in [GL21] that for each repetition-free positroid link, the Euler characteristic
of the associated positroid variety equals the number of Dyck paths below a convex curve C,
and that any convex curve appears in this way. Our proof relied on a Dyck path recurrence
involving three curves passing above, below, and through a lattice point, respectively. One
of our main results is a lift of this Dyck path recurrence to the q, t-level; see Theorem 1.7.

Our main conjecture (Conjecture 1.13) states that convex monotone links produce Schur
positive symmetric functions. We show that under the specialization t = q−1, we recover
the HOMFLY polynomial of the link, and we give an explicit formula for our symmetric
function when t = 1. We further conjecture that our invariants recover Khovanov–Rozansky
link homology in the case of algebraic links. For the case of torus links with multiple
components, we expect that our conjecture coincides with that of Cherednik–Danilenko
[CD17] who more generally studied iterated torus cables.

To produce our invariants, we apply the construction of Morton–Samuelson [MS17, MS21],
who connected the skein algebra of the torus and of the punctured torus to the DAHA and
the EHA. At the heart of the technical challenge is the choice of a location for the puncture
when lifting our links to the punctured torus; see (1.2).

1.1. Overview. Let m,n be positive integers. A monotone curve (or simply a curve) is the
graph of a strictly increasing continuous function f : [0,m]→ [0, n] satisfying f(0) = 0 and
f(m) = n. Given a curve C, all of our constructions depend only on the sets of lattice points
in [0,m]× [0, n] which are strictly above, strictly below, and on C.

We compute the image of a curve C inside the commutative diagram in Figure 1, where:

• D is a (two-dimensional) disk, A is an annulus, T is a torus, and T− D is a punctured
torus;
• Skq−1(S) is the skein algebra of a surface S;
• Λq and Λq,t are the algebras of symmetric functions over C(q1/2) and C(q1/2, t1/2);

• SḦN ;q,t is the spherical DAHA;
• Eq,t is the EHA;
• the superscript + denotes the positive part of the corresponding algebra.

The full background on the above objects is given in the main body of the paper. Some
examples of symmetric functions in Λq,t associated to curves can be found in Table 1. We
now explain our results in more detail.

1.2. Links. Given a curve C, let (0, 0) = p0,p1, . . . ,pk = (m,n) be the lattice points on C
listed from left to right. For i = 1, 2, . . . , k, let Ci be the part of C connecting pi−1 to pi. The
curves C1, C2, . . . , Ck are called the lattice segments of C, and we write C = [C1C2 · · ·Ck].
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Sk+
q,t(T− D) SḦ+

N ;q,t

Sk+
q−1(T) E+

q,q−1 E+
q,t

Sk+
q−1(A) Λq Λq,t

Schur positive
for convex curves?

Skq−1(D) C(a, q1/2) C(a, q1/2, t1/2) KR homology
for some convex curves?

[MS21]

fill Dt=q−1 N→∞[SV11]

fill solid torus

[MS17]

∼

act on 1

t=q−1

act on 1

[Tur88, AM98]

∼

fill interior plethysm plethysm

t=q−1

[FYH+85, PT87]

∼
t=q−1

Figure 1. A commutative diagram. See Figure 10 for a description of each
map.

We denote k(C) := k. We say that C is primitive if k(C) = 1, i.e., if C passes through no
lattice points in the interior of [0,m]× [0, n].

Let T = R2/Z2 be the torus and π : R2 → T be the quotient map. To a curve C, we
associate a link LC in T× [0, 1], whose link diagram is drawn on T. Suppose first that C is
primitive. Consider the projection C := π(C) of C to T. Thus, C is a curve of homology
class (m,n). To convert it into a link diagram of LC , for each self-intersection of C involving
projections of points (x1, y1), (x2, y2) ∈ [0,m] × [0, n] with x1 < x2, we draw the segment
containing (x1, y1) below the segment containing (x2, y2).

Alternatively, if a primitive curve C is a plot of an increasing function f : [0,m] → [0, n]
then the link LC is a concatenation of two curves in T× [0, 1]: the curve (π(x, f(x)), x/m),
x ∈ [0,m], and the vertical line segment connecting ((0, 0), 1) to ((0, 0), 0).

The point π(0, 0) = π(m,n) ∈ T is called the corner of C.
If C = [C1C2 · · ·Ck] is not necessarily primitive, the link LC will have k components

LC1 , LC2 , . . . , LCk . The link diagrams of LC1 , LC2 , . . . , LCk are drawn on top of each other so
that for i < j, LCi is drawn below LCj .

1.3. Skein of a punctured torus. Given an oriented surface S, the skein algebra Skt(S)
is the algebra of linear combinations of (isotopy classes of oriented) links inside S × [0, 1]
subject to the HOMFLY skein relation1

(1.1) − =
(
t1/2 − t−1/2

)
.

The multiplication in Skt(S) is given by “stacking the links on top of each other in the [0, 1]
direction,” i.e., by applying the homeomorphism (S×[0, 1])∪(S×[1, 2]) = S×[0, 2] ∼= S×[0, 1].

Given a curve C = [C1C2 · · ·Ck], the link LC may be naturally viewed as an element of
Skt(T) which we denote CT, and we have

CT = CT
1 · CT

2 · · ·CT
k .

For example, in Figure 2, CT = CT
1 · CT

2 is obtained by drawing CT
2 on top of CT

1 .

1Strictly speaking, we consider framed links, for which there is an extra framing change relation involving
another variable v; see (5.1). All our links are assumed to have blackboard framing; see Section 5.1.
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(a) C = [C1C2] (b) CT
1 (c) CT

2 (d) CT = CT
1 · CT

2

Figure 2. Projecting a curve to the torus (Section 1.3). In the projection,
the red and blue segments of the curve are slightly shifted up for clarity.

Let T− D be the punctured torus, obtained by removing a small disk D from T. Our main
construction associates an element of Skt(T− D) to a curve C. More precisely, we will work
with

Skq,t(T− D) := Skt(T− D)⊗ C(q1/2).

Fix a small ε > 0 and suppose that T− D is obtained by removing a ball of radius ε/2 around
(0, 0) from T. Let C be a primitive curve, and let C+ := C + (−ε, ε) and C− := C + (ε,−ε).
When projecting C± to T, the puncture in T− D will be slightly below the corner of C+ and
slightly above the corner of C−. Viewing the links LC± as elements of the skein Skt(T− D),

we obtain elements CT−D
± ∈ Skt(T− D). We define

(1.2) CT−D :=
1

1− q (CT−D
+ − qCT−D

− ) ∈ Skq,t(T− D).

If C = [C1C2 · · ·Ck] is not necessarily primitive, we set

(1.3) CT−D := CT−D
1 · CT−D

2 · · ·CT−D
k .

Remark 1.1. There is a natural algebra homomorphism Skq,t(T− D)→ Skq−1(T) obtained
by setting t = q−1 and filling in the puncture D. For any curve C, this map sends CT−D 7→ CT.

Remark 1.2. Recall that A denotes the annulus. Then A × [0, 1] is homeomorphic to the
solid torus, and thus we have a natural action of Skq−1(T) on Skq−1(A) by identifying T with
the boundary of the solid torus. It is well known (see Theorem 5.2) that the skein of A may
be identified with the algebra Λq of symmetric functions. Thus, each curve C gives rise to a
symmetric function CT ·1 ∈ Λq which is the t = q−1-specialization of the symmetric function
FC ∈ Λq,t of interest to us, defined in (1.10).

1.4. DAHA and EHA elements. Morton and Samuelson [MS21, Theorem 5.7] (see also
[BCMN23, Theorem 5.10]) construct a map from the skein of T− D to the EHA. This map
is obtained by constructing, for each N = 1, 2, . . . , a map from the skein of T− D to the
spherical part of the DAHA ḦN ;q,t, and then taking a limit as N → ∞. We compute the
images of CT−D inside the DAHA and the EHA under the maps of [MS21].

By definition, ḦN ;q,t is a C(q1/2, t1/2)-algebra generated by elements X±1
i , Y ±1

i for i =
1, . . . , N and T±1

i for i = 1, . . . , N − 1 satisfying certain relations (see Section 2.1). The

spherical DAHA SḦN ;q,t is defined by SḦN ;q,t := eNḦN ;q,teN , where eN ∈ ḦN ;q,t is a
symmetrizing idempotent satisfying e2

N = eN and TieN = eNTi = t−1/2eN for all i; see (2.8).
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C+ CT
+ C− CT

− C0 CT
0

Figure 3. Monotone curves from (0, 0) to (2, 2) and their projections to the
torus.

Denote

(1.4) γN ;t := 1− tN and δq,t :=
1

t1/2(1− q) .

Definition 1.3. For a curve C, let PC be the highest up-right lattice path from (0, 0)

to (m,n) staying weakly below C. We construct an element D
(N)
C ∈ SḦN ;q,t obtained by

traversing PC from (0, 0) to (m,n), and taking the product of the following elements:

• γN ;teN for each lattice point of C ∩ PC other than (m,n);
• eN for the lattice point (m,n);
• Y1 for each up step of PC ;
• Y1X1Y

−1
1 for each right step of PC .

Example 1.4. For the three curves C+, C−, C0 shown in Figure 3, we have PC+ = RURU ,
PC− = RRUU , and PC0 = RU ∗ RU , where R and U indicate right and up steps and ∗
indicates the places where the curve passes through a lattice point other than (0, 0) and
(m,n). We have

D
(N)
C+

= γN ;teNY1X1Y1X1eN , D
(N)
C−

= γN ;teNY1X1X1Y1eN , D
(N)
C0

= γ2
N ;teNY1X1eNY1X1eN .

We are ready to state our first main result.

Theorem 1.5. Let C be a curve. The image of CT−D under the map

(1.5) Sk+
q,t(T− D)→ SḦ+

N ;q,t

of [MS21] is given by

(1.6) δ
k(C)
q,t D

(N)
C .

The elements CT−D
± belong to the positive part Sk+

t (T− D) of Skt(T− D) defined in Sec-

tion 5.1.4, while the elements D
(N)
C ∈ SḦN ;q,t belong to the positive part SḦ+

N ;q,t of SḦN ;q,t

defined in (3.5). By [SV11, Theorem 4.6], the positive part E+
q,t of the EHA can be realized

as a limit of SḦ+
N ;q,t as N →∞.

Theorem 1.6. Let C be a curve. The elements D
(N)
C ∈ SḦ+

N ;q,t for N = 1, 2, . . . give rise
to a well-defined limiting element

(1.7) lim
N→∞

D
(N)
C = DC ∈ E+

q,t.
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An explicit algorithm for expressing DC in terms of the standard generators of E+
q,t is given

in Section 4. An immediate consequence of Definition 1.3 (using that e2
N = eN) is that for

any curve C = [C1C2 · · ·Ck], the elements D
(N)
C and therefore DC satisfy

(1.8) D
(N)
C = D

(N)
C1
·D(N)

C2
· · ·D(N)

Ck
and DC = DC1 ·DC2 · · ·DCk ,

where the products are taken in SḦ+
N ;q,t and E+

q,t, respectively.

1.5. Skein relation and piecewise almost linear curves. It turns out that the elements

D
(N)
C and DC satisfy the following skein relation.

Theorem 1.7. Consider curves C+, C−, C0 which pass above, below, and through some lattice
point p, respectively, and agree outside a small neighborhood of p. Then

(1.9) D
(N)
C+

= qtD
(N)
C−

+D
(N)
C0

and DC+ = qtDC− +DC0 .

This relation allows one to express any element DC in terms of elements associated to
piecewise almost linear curves, defined as follows.

Definition 1.8. A primitive curve C from (0, 0) to (m,n) is called (m,n)-almost linear, or
simply almost linear, if it passes just above the diagonal connecting (0, 0) and (m,n). (That
is, it passes above each of the gcd(m,n)−1 lattice points in the interior of the diagonal, and
above/below all lattice points which are strictly below/above the diagonal.)

As we explain in Section 7.1, for C an almost linear curve, the operators DC are exactly
the symmetric function operators appearing in various versions of the shuffle conjecture.

Definition 1.9. A curve C = [C1C2 · · ·Ck] is called piecewise almost linear if each lattice
segment Ci of C is almost linear.

Remark 1.10. Applying (1.9) repeatedly, we may express the element DC for an arbitrary
curve C as a linear combination of elements of the form DC′ , where C ′ is a piecewise almost
linear curve. Combining this with (1.8) allows one to express an arbitrary element DC in
terms of products of elements DC′i

corresponding to almost linear curves C ′i.

1.6. Symmetric functions. The EHA E+
q,t acts on the ring Λq,t of symmetric functions over

C(q1/2, t1/2) as described in Section 3.3. We will be particularly interested in the action DC ·1
of DC on 1 ∈ Λq,t. The DAHA admits a polynomial representation described in Section 2.2.

For N = 1, 2, . . . , the element D
(N)
C · 1 is a symmetric polynomial in x1, . . . , xN obtained

from the symmetric function DC · 1 by setting xN+1 = xN+2 = · · · = 0.
It is convenient to consider the plethystically transformed (cf. Section 7) symmetric func-

tions

(1.10) FC := (DC · 1)

[
X

1− t

]
∈ Λq,t,

where X := x1 + x2 + · · · ∈ Λq,t. Using another plethystic substitution, we define the EHA
superpolynomial

(1.11) PEC(a, q, t) := FC
[
a− a−1

]
.

In the notation of Theorem 1.7, we therefore get

(1.12) FC+ = qtFC− + FC0 and PEC+
= qtPEC− + PEC0

.
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(a) almost linear (b)
piecewise

almost linear
(c)

not Schur
positive

(d) convex (e)
weakly Z-convex
not Z-convex

Figure 4. Examples of monotone curves. See also Table 1.

As explained in Remark 3.4, the symmetric function FC is q, t-symmetric (i.e., unchanged
under swapping q and t).

Note that (1.8) does not extend to symmetric functions: for C = [C1C2 . . . Ck], knowing
the symmetric functions DC1 · 1, DC2 · 1, . . . , DCk · 1 does not allow one to reconstruct

DC · 1 = DC1 · (DC2 · (· · ·DCk · 1 · · · )).
1.7. Convex curves. The following class of curves is motivated by our results on cohomol-
ogy of open positroid varieties [GL20, GL21].

Definition 1.11. We say that a curve C is convex if it is a plot of a (weakly) convex function
f : [0,m]→ [0, n].

We also consider the following slightly more general class of curves.

Definition 1.12. A set A ⊂ R2 is called Z-convex if Conv(A) ∩ Z2 = A ∩ Z2. For a curve
C passing through lattice points (0, 0) = p0,p1, . . . ,pk = (m,n), let AC be the set of all
lattice points in [0,m]× [0, n] strictly above C together with the set of (non-lattice) points
{pi + (−ε, ε) | i = 0, 1, . . . , k}, where ε > 0 is small. We say that C is Z-convex if AC is a
Z-convex set.

For example, the curves in Figure 4(a,b,d) are Z-convex while the curves in Figure 4(c,e)
are not.

It is clear that any convex curve is Z-convex, but the converse need not hold. For instance,
an almost linear curve (Definition 1.8) from (0, 0) to (m,n) is always Z-convex but it is
convex only if gcd(m,n) = 1. It is not hard to check that a piecewise almost linear curve
C = [C1C2 . . . Ck], where each Ci is (mi, ni)-almost linear, is Z-convex if and only if

(1.13)
m1

n1

≥ m2

n2

≥ · · · ≥ mk

nk
.

The following conjecture extends [BHM+21, Conjecture 7.1.1] in view of Remark 7.9.

Conjecture 1.13. For a Z-convex curve C, the formal power series

(1.14)
1

(1− t)k(C)−1
FC

is q, t-Schur positive.

Here 1
1−t = 1 + t+ t2 + · · · is viewed as a formal power series. See Example 1.15, Section 1.9,

Figure 4, and Table 1 for examples.
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Remark 1.14. In fact, computational evidence (see Example 1.15) suggests that the class
of Z-convex curves can be slightly enlarged, as follows. In the notation of Definition 1.12,
let A′C be the set of all lattice points in [0,m]× [0, n] strictly above C together with {p0 +
(−ε, ε),pk + (−ε, ε)}. We say that C is weakly Z-convex if A′C is Z-convex. We conjecture
that the formal power series (1.14) is Schur positive for all weakly Z-convex curves.

Example 1.15. For 1 ≤ m,n ≤ 7, there are 24, 319 monotone curves. Among them:

(1) 6, 781 (27%) have Schur positive formal power series (1.14);
(2) 4, 257 (17%) are weakly Z-convex;
(3) 3, 313 (13%) are Z-convex;

and we have inclusions (1) ⊃ (2) ⊃ (3).

Remark 1.16. Let C be a straight line segment from (0, 0) to (m,n). Then LC is the
(m,n)-torus link. If gcd(m,n) = 1, then LC has a single component, and is the (m,n)-torus
knot. If instead C is the almost linear curve from (0, 0) to (m,n) then LC is a knot which we
call the (m,n)-almost torus knot. This knot is algebraic and corresponds to a plane curve
singularity with Puiseaux exponents (n,m,m+ 1) studied in [Pio07, GMO22]; see Section 8
for further discussion.

The following class includes the coaxial torus links considered in [EN85, Section 17b)].

Definition 1.17. When C is a piecewise almost linear curve, we call LC a coaxial almost
torus link. If C is in addition Z-convex, then LC is called a Z-convex coaxial almost torus
link.

Recall that an algebraic link is an intersection of a small 3-sphere (inside C2 ∼= R4) with
the zero set {(x, y) ∈ C2 | f(x, y) = 0} of solutions to a polynomial equation. We prove the
following in Section 8.

Proposition 1.18. Z-convex coaxial almost torus links are algebraic.

In Corollary 4.3, we give an explicit formula expressing the element DC for an arbitrary
Z-convex curve C in terms of Z-convex piecewise almost linear curves. In particular, the
invariants we associate to Z-convex links are expressed (with predictable alternating signs)
in terms of invariants of algebraic links. We do not have an analog of this result where
“Z-convex” is replaced with “weakly Z-convex.” See Figure 4(e).

1.8. Khovanov–Rozansky homology. To a link L, one can associate a link invariant
PKR(L; a, q, t) which is a Laurent polynomial in a, q1/2, t1/2 encoding the graded dimensions
of Khovanov–Rozansky (KR) homology of L; see [KR08a, KR08b, Kho07].2 When the odd
KR homology of L vanishes, PKR(L; a, q, t) becomes a Laurent polynomial in a, q, t (involving
no half-integer powers of q, t).

It is well known that at t = q−1 (more precisely, at t1/2 = −q−1/2), PKR(L; a, q, t) special-
izes to the HOMFLY polynomial PHOMFLY

L (a, q) of L. We show that the same holds for the
superpolynomial PEC(a, q, t) defined in (1.11).

Proposition 1.19. For any curve C, we have

(1.15) δ
k(C)

q,q−1 · PEC(a, q, t = q−1) = aw(C) · PHOMFLY
LC

(a, q),

2More precisely, the link invariant PKR
LC

(a, q, t) differs from the triply-graded Poincaré series encoding the

dimensions of KR homology by a monomial in a, q1/2, t1/2.
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where w(C) ∈ Z is the writhe of the braid βA
C associated to C in Definition 6.5.

An explicit formula for w(C) in terms of lattice points below C is given in (6.9). Here
PHOMFLY
L (a, q) has slightly non-standard normalization; see (5.2).
A natural question arises: what is the relationship between PEC(a, q, t) and PKR

LC
(a, q, t)?

For arbitrary curves, it is easy to find examples where these two polynomials disagree: see
Figure 4(c) and Example A.2. However, the two polynomials appear to be very closely
related for the class of Z-convex curves. The following question has motivated most of our
results.

Question 1.20. For which Z-convex curves C do we have

(1.16) PEC(a, q, t) = (1− t)k(C)−1PKR
LC

(a, q, t)

(up to multiplication by an explicit monomial in a, q1/2, t1/2)?

Note that if (1.16) holds for C then the odd KR homology of LC vanishes. We refer to
Example A.3 for an example of a convex curve C (discovered by A. Mellit and brought to
our attention by M. Mazin) for which (1.16) does not hold. In particular, this example
disproves [GL21, Conjecture 7.1(ii,iv)].

Remark 1.21. It was shown in [HM19, Corollary 1.4] (see also [Mel16, EH19, Mel22]) that
torus links have vanishing odd KR homology. Recall from Remark 1.16 that torus links are
special cases of links LC when C is a straight line segment from (0, 0) to (m,n). It would
be interesting to verify directly using the results of [HM19] that (1.16) holds for torus links.
This case is also covered by the conjectures of Cherednik–Danilenko [CD17].

Remark 1.22. It would be interesting to interpret the skein relation (1.9) in terms of KR
homology. We note the similarity to the results of Gorsky and Neguţ (for example [GN22,
Theorem 5.3]) on traces in the affine Hecke category, which is related to annular, or affine
KR homology. See also Remark 5.12.

Conjecture 1.23. Equation (1.16) holds for convex curves C such that the link LC is alge-
braic.

1.9. An example. Let (m,n) = (2, 2), and consider the convex curves C+, C−, C0 shown
in Figure 3; see also Figure 12. Thus, L+ := LC+ is the (positive) trefoil knot, L− := LC− is
the unknot, and L0 := LC0 is the (positive) Hopf link. The associated symmetric functions

FC and normalized EHA superpolynomials P̂EC(a, q, t) := PEC(a, q, t)/(a− a−1) are given by

FC+ = s11 + (q + t)s2, FC− = s2, FC0 = s11 + (q + t− qt)s2;(1.17)

P̂EC+
= a3 ·

(
q + t

a2
− 1

a4

)
, P̂EC− = a1 · 1, P̂EC0

= a3 ·
(
q + t− qt

a2
− 1

a4

)
.(1.18)

(See Example 4.2 for the full computation.) We see that the skein relation (1.12) holds in this
case. All of the above expressions are q, t-symmetric. In addition, FC+ , FC− are q, t-Schur
positive, and so is

1

1− tFC0 = (1 + t+ t2 + t3 + · · · )s11 + (q + t+ t2 + t3 + · · · )s2,

in agreement with Conjecture 1.13. Finally, computing KR homology of L+, L−, L0 (see e.g.
[HM19, Theorem 1.2], [Mel22, Section 1.2], or [GL20, Section 3.5]), one checks that indeed
the odd KR homology of L+, L−, and L0 vanishes, and (1.16) holds for these links. We have
w(C+) = 3, w(C−) = 1, w(C0) = 3, in agreement with (1.15).
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1.10. Comparisons and specializations. Various special cases of our operators DC have
appeared before in the literature, and we list some comparisons in Section 7. The operator
DC simplifies considerably when t = 1, and we show in Proposition 7.12 that

FC |t=1 =
∑
P

qarea(PC)−area(P)hP ,

summed over lattice paths P weakly below C, such that P passes through all the lattice
points that C passes through. Here, hP denotes a complete homogeneous symmetric function
and area(PC)− area(P) is a statistic on lattice paths to be defined in Section 7.

1.11. Structure of the paper. We give background on DAHA and EHA in Sections 2

and 3, respectively. Along the way, we analyze the operators D
(N)
C associated to almost

linear curves. In Section 4, we prove the skein relation (Theorem 1.7) and use it to prove
Theorem 1.6. We also give a non-recursive formula (Corollary 4.3) expressing an arbitrary
Z-convex curve in terms of Z-convex piecewise almost linear curves. In Section 5, we discuss
the skein-theoretic formalism of [MS17, MS21] and prove Theorem 1.5. In Section 6, we
describe the maps in the diagram in Figure 1, the image of a curve C under these maps, and
check that the diagram commutes. In Section 7, we explain how our objects are related to
the objects studied in [BHM+21, BGLX15, Neg14, GL21, OR17]. In particular, we identify
monotone links in an annulus with Coxeter links in Proposition 7.5 and discuss the t = 1
specialization of our results in Section 7.6. In Section 8, we review the results of [EN85] on
algebraic links and prove Proposition 1.18. Finally, we list some examples in Appendix A.

Acknowledgments. We are grateful to Misha Mazin, Eugene Gorsky, and José Simental
for stimulating discussions.

2. From curves to DAHA

In this section, we review the background on the DAHA and associate an element D
(N)
C ∈

SḦN ;q,t in the spherical DAHA to a monotone curve C.

2.1. Double affine Hecke algebra. Let N ≥ 1. The double affine Hecke algebra (DAHA)
introduced by Cherednik [Che05] is the C(q1/2, t1/2)-algebra generated by X±1

i , Y ±1
i for i =

1, 2, . . . , N , and Ti for i = 1, 2, . . . , N − 1 subject to the following relations:

(Ti + t1/2)(Ti − t−1/2) = 0, TiTi+1Ti = Ti+1TiTi+1,(2.1)

TiTk = TkTi if |i− k| > 1,(2.2)

XjXk = XkXj and YjYk = YkYj for all 1 ≤ j, k ≤ N,(2.3)

TiXiTi = Xi+1, T−1
i YiT

−1
i = Yi+1,(2.4)

TiXk = XkTi and TiYk = YkTi if |i− k| > 1,(2.5)

Y1X1X2 · · ·XN = qX1X2 · · ·XNY1,(2.6)

X−1
1 Y2 = Y2X

−1
1 T−2

1 .(2.7)

Notation 2.1. In the above relations, we follow the conventions of [SV11, MS21], which
differ from those of [Che05, GN15] by substituting t1/2 7→ t−1/2.
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Notation 2.2. Following [MS21] (cf. Notation 5.9), we represent each Ti by a negative

crossing in our figures. Thus, (2.1) is consistent with (1.1).

Let SN denote the symmetric group on N letters. For a permutation w ∈ SN , let `(w) be
the number of inversions in w. Given a reduced word w = si1si2 · · · si`(w)

, where si = (i, i+1)
are simple transpositions, we let Tw := Ti1Ti2 · · ·Ti`(w)

; the result depends only on w.
The symmetrizing idempotent is given by

(2.8) eN :=

∑
w∈SN t

−`(w)/2Tw∑
w∈SN t

−`(w)
.

The symmetrizer eN satisfies

(2.9) TieN = eNTi = t−1/2eN and e2
N = eN .

The spherical DAHA is defined by

SḦN ;q,t := eNḦN ;q,teN .

For 1 ≤ i ≤ j ≤ N , let S[i,j] := {w ∈ SN | w(k) = k for k < i or k > j}, and set

(2.10) e[i,j] :=

∑
w∈S[i,j]

t−`(w)/2Tw∑
w∈S[i,j]

t−`(w)
.

Thus, e[1,N ] = eN . The partial symmetrizers e[k,N ] satisfy (2.9) for all i = k, k+1, . . . , N−1,
and can be computed inductively using the following well-known recurrence (see e.g. [EH19,
Section 1.2] and Remark 5.12):

(2.11) e[k+1,N ]Tk · · ·TN−1TN−1 · · ·Tk = −t(1− t−N−1+k)e[k,N ] + te[k+1,N ], e[N,N ] = 1.

2.2. Polynomial representation and SL2(Z)-action. The DAHA ḦN ;q,t admits a poly-
nomial representation φN on C(q1/2, t1/2)[x1, . . . , xN ]. For a polynomial f(x1, . . . , xN), set

(ρ · f)(x1, . . . , xN−1, xN) := f(qxN , x1, . . . , xN−1),

(si · f)(. . . , xi, xi+1, . . . ) := f(. . . , xi+1, xi, . . . ).

The operator φN(Xi) acts by multiplication by q−1xi, and Ti, Yi correspond to the following
operators; cf. [SV11, Lemma 4.2]:

φN(Ti) = t−1/2si +
t−1/2 − t1/2
xi/xi+1 − 1

(si − 1),(2.12)

φN(Yi) = t(N−1)/2φN(Ti · · ·TN−1)ρφN(T−1
1 · · ·T−1

i−1).(2.13)

Notation 2.3. We usually omit φN from the notation and write D · f in place of φN(D) · f
for D ∈ ḦN ;q,t and f ∈ C(q1/2, t1/2)[x1, . . . , xN ].

Remark 2.4. Let φ′N be the representation defined in [SV11, Lemma 4.2] and [SV13, Sec-
tion 1.4]. Then we have φN(Ti) = φ′N(Ti), φN(Xi) = q−1φ′N(Xi), and φN(Yi) = t(N−1)/2φ′N(Yi).
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This rescaling is consistent3 with the rescaling PN
i,j 7→ yi1y

j
2P

N
i,j in [SV13, Equation (1.12)],

with y1 = q−1 and y2 = t(N−1)/2.

Consider the braid group B3 with generators τ+, τ− and relations τ+τ
−1
− τ+ = τ−1

− τ+τ
−1
− .

We have an action of B3 by automorphisms on ḦN ;q,t defined by4

τ+(Ti) = Ti, τ+(Xi) = Xi, τ+(Yi) = YiXi(T
−1
i−1 · · ·T−1

1 )(T−1
1 · · ·T−1

i−1);(2.14)

τ−(Ti) = Ti, τ−(Yi) = Yi, τ−(Xi) = XiYi(Ti−1 · · ·T1)(T1 · · ·Ti−1).(2.15)

In particular,

τ+(X1) = X1, τ+(Y1) = Y1X1, τ−(X1) = X1Y1, τ−(Y1) = Y1, τ+(eN) = τ−(eN) = eN .

The operators τ+, τ− preserve SḦN ;q,t, and under the identification

(2.16) τ+ 7→
(

1 1
0 1

)
, τ− 7→

(
1 0
1 1

)
,

we obtain an action of SL2(Z) on SḦN ;q,t. See e.g. [MS21, Proposition 5.2] for an explicit
check of the SL2(Z) relation (τ+τ

−1
− τ+)4 = id.5

For any polynomial f(x1, . . . , xN), the polynomial eN ·f is symmetric in x1, . . . , xN . Thus,

the polynomial representation of ḦN ;q,t restricts to an action of SḦN ;q,t on the space of ΛN ;q,t

of symmetric polynomials in N variables over C(q1/2, t1/2).
We denote

Z≥ := {x ∈ Z | x ≥ 0}, Z> := {x ∈ Z | x > 0}, and

Z := Z2, Z∗ := Z \ {(0, 0)}, Z≥ := Z≥ × Z, Z> := Z> × Z, Z+ := Z> t ({0} × Z≥).

For d ≥ 1, let

(2.17) P
(N)
d,0 := qdeN

N∑
i=1

Xd
i eN and P

(N)
0,d := eN

N∑
i=1

Y d
i eN .

For an arbitrary vector (m,n) ∈ Z∗ with gcd(m,n) = d, choose an element g ∈ SL2(Z)
sending (d, 0) to (m,n) and set

(2.18) P (N)
m,n := gP

(N)
d,0 .

The resulting element does not depend on the particular choice of g. By [SV11, Proposi-

tion 2.5], the elements P
(N)
x ,x ∈ Z∗ generate SḦN ;q,t as a C(q1/2, t1/2)-algebra.

3The formula for φ′N (Ti) in [SV13, Section 1.4] appears to contain a typo: t1/2si should be replaced

with t−1/2si. Additionally, below [SV13, Equation (1.12)], the authors set y1 = 1 as opposed to y1 = q−1.
However, in order for P∞1,0 to act by multiplication by p1 as claimed in [SV13, Proposition 1.4], one needs to

set y1 = q−1.
4Note that both [SV11, Section 2.1] and [GN15, Equation (13)] contain the same typo in the formu-

las (2.14)–(2.15): their Ti should be T1.
5We thank José Simental for discussions regarding the relation (τ+τ

−1
− τ+)4 = id.
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εr′

Xr′Yr′
Yr′

τ−←−− εr

Xr

Yr
τ+−−→ εr′

Xr′

Yr′Xr′

Figure 5. The action of τ+, τ− on π1(T∗r, 0) agrees with the action (2.14)–

(2.15) on SḦN ;q,t. See Lemma 2.5.

2.3. Comparing two SL2(Z)-actions. The group SL2(Z) acts on SḦN ;q,t, and it also acts
linearly on R2 (and thus on curves in R2). The goal of this section is to show that these two
actions are compatible with Definition 1.3; see Corollary 2.6.

Choose a nonzero vector r ∈ R2
≥0 \ {0}. Consider the r-punctured torus T∗r := T \ {εr}

for some small ε > 0. In other words, T∗r = R2,∗
r /Z2, where R2,∗

r = R2 \ {p + εr | p ∈ Z}.
Since T∗r is homotopy equivalent to a wedge of two circles, its fundamental group π1(T∗r, 0)
(with loops based at 0 ∈ T∗r) is the free product Z ∗Z. We choose two particular generators
Xr, Yr ∈ π1(T∗r, 0) such that the loop representing Xr (resp., Yr) lifts to a path in R2,∗

r from
(0, 0) to (1, 0) (resp., from (0, 0) to (0, 1)) passing below (resp., to the left of) the point εr
as shown in Figure 5(middle). Since π1(T∗r, 0) is freely generated by Xr, Yr, we can define a
group homomorphism

ψ(N)
r : π1(T∗r, 0)→ Ḧ×N ;q,t : Xr 7→ X1, Yr 7→ Y1.

Let C : [0, 1]→ R2,∗
r be an arbitrary curve with C(0), C(1) ∈ Z2. Applying the projection

R2 → T, we get a curve C : [0, 1]→ T∗r with C(0) = C(1) = 0, which therefore represents an

element of π1(T∗r, 0), also denoted C. We will be interested in the element ψ
(N)
r (C) ∈ ḦN ;q,t.

We have a homomorphism B3 → SL2(Z) defined by (2.16). Let B+
3 ⊂ B3 be the monoid

generated by τ+, τ−. In the following lemma, g ∈ B+
3 is simultaneously treated as an auto-

morphism of ḦN ;q,t as well as a linear map R2 → R2 (induced by the image of g in SL2(Z)
which we also denote by g).

Lemma 2.5. Suppose that g ∈ B+
3 , and let C : [0, 1]→ R2,∗

r be a curve with C(0), C(1) ∈ Z2.

Let r′ := g(r) ∈ R2
≥0 \ {0} and C ′ := g ◦ C : [0, 1] → R2,∗

r′ . Then the action of g on ḦN ;q,t

sends ψ
(N)
r (C) to ψ

(N)
r′ (C ′).

Proof. The linear map g : R2 → R2 restricts to a homeomorphism R2,∗
r

∼−→ R2,∗
r′ and to

a bijection Z2 ∼−→ Z2. Therefore composition with g gives rise to a group isomorphism

g∗ : π1(T∗r, 0)
∼−→ π1(T∗r′ , 0). Our goal is to show that the group homomorphism ψ

(N)
r coincides

with ψ
(N)
r′ ◦ g∗.

It suffices to consider the cases g = τ+, τ−, and only to check the equality ψ
(N)
r (Z) =

ψ
(N)
r′ (g∗(Z)) when Z = Xr, Yr is a generator of π1(T∗r, 0). This is done in Figure 5. �

Let C = [C1C2 · · ·Ck] be a curve from (0, 0) to (m,n) ∈ (Z>)2. Choosing r := (1, 0)
and ε > 0 small enough, we see that whenever C passes through a lattice point p 6= (m,n),

it passes above the point p + εr. Thus, we find that the element D
(N)
C constructed in

Definition 1.3 is given by

D
(N)
C = γN ;teN · ψ(N)

r (C1) · γN ;teN · ψ(N)
r (C2) · · · γN ;teN · ψ(N)

r (Ck) · eN .
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Since the maps τ+, τ− send monotone curves to monotone curves and eN to eN , Lemma 2.5
implies the following result.

Corollary 2.6. If g ∈ B+
3 , then for any curve C, we have

g(D
(N)
C ) = D

(N)
g(C).

2.4. Almost linear elements. For an almost linear curve C from (0, 0) to (m,n) (cf.
Definition 1.8), denote

D(N)
m,n := D

(N)
C .

A natural question arises: how is D
(N)
m,n expressed in the generators P

(N)
x of SḦN ;q,t defined

in (2.18)? The goal of this subsection is to prove the following result.

Theorem 2.7. For all m,n,N ≥ 1, the element D
(N)
m,n is expressed as a C(q1/2, t1/2)-linear

combination of products of generators P
(N)
x with coefficients that do not depend on N .

The above coefficients are expressed in the language of symmetric functions; see [Sta99]
for background and notation.

First, we would like to understand the relationship between the elements D
(N)
m,n ∈ SḦN ;q,t

and the SL2(Z)-action. For d ≥ 1, define

(2.19) D
(N)
d,0 := γN ;teN · Y1X

d
1Y
−1

1 · eN .

Lemma 2.8. Let m,n ≥ 1 and d := gcd(m,n). Then there exists g ∈ B+
3 such that the

corresponding element of SL2(Z) sends (d, 0) to (m,n). For any such g, we have

(2.20) gD
(N)
d,0 = D(N)

m,n.

Proof. First, it is well known (Euclid’s algorithm) that the monoid B+
3 contains an element

g sending (d, 0) to (m,n). Let g ∈ B+
3 be any such element.

Let Cd,0 be a curve from (0, 0) to (d, 0) proceeding monotonously from left to right slightly
above the x axis. We extend Definition 1.3 to Cd,0, with the lattice path PCd,0 consisting of

d right steps. The resulting element D
(N)
Cd,0

coincides with the element D
(N)
d,0 given by (2.19).

The result now follows from Corollary 2.6. �

Let XN := x1 + · · ·+ xN . We start by computing the action of D
(N)
d,0 on 1 ∈ Λq,t.

Proposition 2.9. For d,N ≥ 1, we have

(2.21) D
(N)
d,0 · 1 = (−t)ded

[
(1− t−1)XN

]
.

Here ed ∈ Λq,t denotes the d-th elementary symmetric function, and the square brackets
denote plethystic substitution; see Section 7.

Proof. We have

D
(N)
d,0 · 1 = γN ;teNY1X

d
1Y
−1

1 eN · 1 = γN ;teNY1X
d
1Y
−1

1 · 1 = γN ;teNY1X
d
1 · 1 = γN ;teNY1 · q−dxd1.

Applying (2.13) and then (2.9), we find

D
(N)
d,0 · 1 = γN ;teN t

(N−1)/2T1 · · ·TN−1 · xdd = γN ;teN · xdd.
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By (2.10), we have

eN = e[1,N ] =
1− t−1

1− t−N

(
N∑
i=1

t−
N−i
2 Ti · · ·TN−1

)
e[1,N−1].

Observe that γN ;t
1−t−1

1−t−N = (1− t)tN−1. Thus, γN ;teN = ANe[1,N−1], where we set

AM := (1− t)tM−1

(
M∑
i=1

t−
M−i

2 Ti · · ·TM−1

)
for 1 ≤M ≤ N .

(For i = M , the term t−
M−i

2 Ti · · ·TM−1 is equal to 1.) Thus, AN = t1/2AN−1TN−1+(1−t)tN−1.
Since e[1,N−1] · xN = xN , we get

(2.22) γN ;te[1,N ] · xdN = ANe[1,N−1] · xdN = AN · xdN = t1/2AN−1TN−1 · xdN + (1− t)tN−1xdN .

We now prove by induction on M = 1, 2, . . . , N that

(2.23) AM · xdM = (−t)ded
[
X̃M

]
,

where X̃M := XM(1− t−1). The desired result follows from (2.23) with M = N .
Denote x̃i := xi(1− t−1). By a simple computation as in [Ber09, Section 3.8], we see that

(2.24) (−t)ded[x̃i] = (1− t)xdi .
From here, the base case follows since for M = 1, both sides of (2.23) become equal to
(1− t)xd1.

For the induction step, observe that

(2.25) TN−1x
d
N = t−1/2xdN−1 + (t−1/2 − t1/2)

(
xdN +

d−1∑
i=1

xiN−1x
d−i
N

)
.

Each Ti, 1 ≤ i < N − 1 treats xN as a constant (although note that Ti · P = t−1/2P for any
polynomial P such that si · P = P ), and thus AN−1x

d
N = (1 − tN−1)xdN . Combining this

with (2.22) and (2.25), we get

AN · xdN = (−t)ded
[
X̃N−1

]
+ (1− t)xdN +

d−1∑
i=1

(−t)iei
[
X̃N−1

]
(1− t)xd−iN .

By (2.24), we have (1− t)xkN = (−t)kek [x̃N ] for all k ≥ 1. Substituting, we find

AN · xdN = (−t)d
(
ed

[
X̃N−1

]
+ ed [x̃N ] +

d−1∑
i=1

ei

[
X̃N−1

]
ed−i [x̃N ]

)
= (−t)ded

[
X̃N

]
using ed[Y + Z] =

∑d
i=0 ed−i[Y ]ei[Z]; see [Hag08, Equation (1.64)]. �

Recall that for a partition λ = (λ1, λ2, . . . , λr), we have the power sum symmetric function
pλ := pλ1pλ2 · · · pλr . Let |λ| be the number of boxes in λ, `(λ) be the number of nonzero parts
of λ, and mi be the number of parts of λ equal to i. We set ελ := (−1)m2+m4+··· = (−1)|λ|−`(λ)

and zλ := 1m1m1!2m2m2! · · · as in [Sta99, Section 7.7]. We now express the right-hand side
of (2.21) in terms of power sum symmetric functions.
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Proposition 2.10 ([Sta99, Proposition 7.7.6]). For all d ≥ 1,

ed[X(1− t−1)] =
∑
λ`d

pλελz
−1
λ

∏
i

(1− t−λi).

Finally, for a partition λ = (λ1, λ2, . . . , λr) of d, write P
(N)
d,0;λ := P

(N)
λ1,0

P
(N)
λ2,0
· · ·P (N)

λr,0
. (The

elements P
(N)
k,0 pairwise commute for different k.)

Proposition 2.11. For all d,N ≥ 1, the element D
(N)
d,0 is expressed in (P

(N)
k,0 )k≥0 with the

same coefficients as (−t)ded [X(1− t−1)] is expressed in (pk)k≥0. Explicitly, we have

(2.26) D
(N)
d,0 =

∑
λ`d

cdλP
(N)
d,0;λ, where cdλ = (−t)dελz−1

λ

∏
i

(1− t−λi).

Proof. We have [SV11, Equation (2.10)]

(2.27) Y1X1Y
−1

1 = qT1 · · ·TN−2T
2
N−1TN−2 · · ·T1X1.

Thus, D
(N)
d,0 = qdγN ;teNDeN , where D is a product of Ti-s and X1-s. It is clear from (2.12)

that for f ∈ C[x1, . . . , xN ]SN and g ∈ C[x1, . . . , xN ], Ti · (fg) = fTi · g. Since Xj · (fg) =
q−1xjfg = fXj · g, we see that for any operator D which is a product of Ti-s and Xj-s,
eNDeN acts on C[x1, . . . , xN ]SN as the operator of multiplication by eNDeN · 1. It follows

that D
(N)
d,0 acts by multiplication by (−t)ded [(1− t−1)XN ] while P

(N)
k,0 defined in (2.17) acts

by multiplication by pk(x1, . . . , xN). It remains to note that the polynomial representation

of SḦ+
N ;q,t on C[x1, . . . , xN ]SN is faithful; cf. [SV13, Section 1.4]. �

Example 2.12. Let m = n = 1. We find

(2.28) (−t)1e1

[
XN(1− t−1)

]
= (1− t)p1, and thus D

(N)
1,1 = (1− t)P (N)

1 .

Next, let m = n = 2. Using Proposition 2.10, we find

(−t)2e2

[
XN(1− t−1)

]
=

1

2
(1− t2)p2 +

1

2
(1− t)2p11.

Thus, Proposition 2.11 yields

(2.29) D
(N)
2,2 =

1

2
(1− t2)P

(N)
2,2 +

1

2
(1− t)2(P

(N)
1,1 )2.

Proof of Theorem 2.7. By (2.18) and (2.20), for m,n,N ≥ 1 with d := gcd(m,n), we have

(2.30) D(N)
m,n =

∑
λ`d

cdλP
(N)
m,n;λ.

Here, the coefficients cdλ are given in (2.26), and for λ = (λ1, λ2, . . . , λr), we set P
(N)
m,n;λ :=

P
(N)
λ1m0,λ1n0

P
(N)
λ2m0,λ2n0

· · ·P (N)
λrm0,λrn0

, where (m0, n0) := 1
d
(m,n). �

3. From DAHA to EHA

In this section, we review the background on the elliptic Hall algebra (EHA) Eq,t, intro-

duced in [BS12]. We then explain how the elements D
(N)
C ∈ SḦ+

N ;q,t give rise to elements of

E+
q,t in the limit N →∞.
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3.1. Generators and relations. For a vector x = (m,n) ∈ Z2, we write d(x) := gcd(m,n),
and we call x primitive if d(x) = 1. By definition, Eq,t is an algebra over C(q1/2, t1/2)
generated by elements ux, x ∈ Z2, subject to the following relations (see [SV11, Section 1.5]
and [MS21, Section 2.1]).

• If x,x′ belong to the same line in Z2 then [ux, ux′ ] = 0.
• Assume that x is primitive and that the triangle with vertices 0,x,x + y has no

interior lattice points. Then

(3.1) [uy, ux] = εx,y
θx+y

α1

,

where εx,y := sign(det(xy)) and θz, z ∈ Z2 is defined by

∞∑
i=0

θiz0z
i = exp

(
∞∑
i=1

αiuiz0z
i

)
.

Here, z0 ∈ Z2 is primitive and

(3.2) αi =
1

i
(1− q−i)(1− t−i)(1− (qt)i).

It follows directly from the above relations that SL2(Z) acts on Eq,t by g · ux = ug·x.

Example 3.1. When x+ y is primitive, we have θx+y = α1 and (3.1) becomes

(3.3) [uy, ux] = εx,yux+y.

On the other hand, letting x = (1, 0) and y = (1, 2), we have

(3.4) u2,2 =
2qt

(1 + q)(1 + t)(1 + qt)
[u1,2, u1,0]− (1− q)(1− t)(1− qt)

(1 + q)(1 + t)(1 + qt)
u2

1,1.

3.2. Taking the limit. Define the positive parts SḦ+
N ;q,t ⊂ SḦN ;q,t (resp., E+

q,t ⊂ Eq,t) to be

the subalgebras generated by the elements P
(N)
x (resp., ux) for x ∈ Z+:

(3.5) SḦ+
N ;q,t := 〈P (N)

x | x ∈ Z+〉 and E+
q,t := 〈ux | x ∈ Z+〉.

By [SV11, Proposition 4.1], we have a surjective algebra map SḦ+
N ;q,t → SḦ+

N−1;q,t, P
(N)
x 7→

P
(N−1)
x for all x ∈ Z+. Let SḦ+

∞;q,t be the corresponding projective limit, generated by
{Px | x ∈ Z+}.
Theorem 3.2 ([SV11, Theorem 4.6]). The assignment

(3.6) ux 7→
1

qd(x) − 1
Px

induces an isomorphism E+
q,t
∼−→ SḦ+

∞;q,t.

In view of (3.6), we denote

(3.7) P Ex := (qd(x) − 1)ux.

According to [SV11, Theorem 3.1], the isomorphism (3.6) is the restriction of a Z2-graded

SL2(Z)-equivariant surjective algebra homomorphism Eq,t → SḦ∞;q,t. In particular, the
isomorphism (3.6) commutes with the action of B+

3 . Applying Theorem 2.7, we obtain the
following.
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Corollary 3.3. For each m,n ≥ 1, the sequence D
(N)
m,n, N = 1, 2, . . . , gives rise to a well-

defined limit Dm,n ∈ SḦ+
∞;q,t.

We continue to denote by Dm,n ∈ E+
q,t the image of Dm,n under the identification SḦ+

∞;q,t
∼=

E+
q,t.

3.3. Action on symmetric functions. We follow the exposition of [SV13]; cf. Remark 2.4.

Consider the automorphism θ of SḦ+
N ;q,t given by

θ(P
(N)
0,d ) = P

(N)
0,d −

1− tdN
1− td , d ∈ Z>; θ(P

(N)
i,j ) = P

(N)
i,j , (i, j) ∈ Z>.

Then φ̃N := φN ◦ θ is a representation of SḦ+
N ;q,t on ΛN ;q,t, where φN is defined in Sec-

tion 2.2. Letting ρN : Λq,t → ΛN ;q,t be the operator setting xN+1 = xN+2 = · · · = 0, we get

φ̃N−1(P
(N−1)
i,j ) ◦ ρN−1 = ρN−1 ◦ φ̃N(P

(N)
i,j ) ◦ ρN for (i, j) ∈ Z+. Thus, we may take the limit of

φ̃N as N →∞. The resulting representation φ̃∞ of SḦ+
∞;q,t

∼= E+
q,t on Λq,t may be described

explicitly in terms of the Macdonald polynomials Pλ(q, t) ∈ Λq,t: for d ∈ Z>, we have

(3.8) φ̃∞(u0,d) · Pλ(q, t−1) =

(∑
i

qdλi − 1

qd − 1
td(i−1)

)
Pλ(q, t

−1),

and φ̃∞(u1,0) is the operator of multiplication by 1
q−1

p1; see [SV13, Corollary 1.5].

Remark 3.4. Observe from (3.2) that the parameters q, t, (qt)−1 enter symmetrically into
the definition of Eq,t. Even though it may appear that (3.8) breaks the q, t-symmetry, note
that the plethysm

[
X

1−t

]
from (1.10) turns Macdonald polynomials Pλ into modified Mac-

donald polynomials H̃λ. Using the well-known q, t-symmetry H̃λ(q, t) = H̃λ′(t, q) (where
λ′ denotes the conjugate partition), one may deduce that the symmetric function FC is
q, t-symmetric.6 Alternatively, q, t-symmetry of FC may be seen directly from (7.7). See
also [GN15, Section 6.2].

4. Skein relation

The goal of this section is to prove Theorem 1.7. We will give an algebraic proof based on
the diagrammatic formalism of Morton–Samuelson [MS21]; see Section 5 and Remark 5.12.
Along the way, we will also prove Theorem 1.6. We start with a version of Theorem 1.7 for
finite N .

Theorem 4.1. Consider curves C+, C−, C0 which pass above, below, and through some lattice
point p as in Theorem 1.7. Then

(4.1) D
(N)
C+

= qtD
(N)
C−

+D
(N)
C0
.

Proof. Consider the elements D
(N)
C+
, D

(N)
C−
, D

(N)
C0
∈ SḦN ;q,t associated to C+, C−, C0 via Defini-

tion 1.3. The paths PC+ , PC− , PC0 differ locally so that PC+ = · · ·UR · · · , PC− = · · ·RU · · · ,
PC0 = · · ·U ∗R · · · , where U and R indicate up and right steps, respectively, and ∗ indicates

6An equivalent description of E+q,t is given in [BGLX15] (cf. Section 7.1.3), where the formulas for the

action on Λq,t are manifestly (q, t)-symmetric.
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that PC0 passes through the lattice point p. In particular, the elements D
(N)
C+
, D

(N)
C−
, D

(N)
C0

are
given by

D
(N)
C+

= AY1Y1X1Y
−1

1 B, D
(N)
C−

= AY1X1Y
−1

1 Y1B, and D
(N)
C0

= AY1 · γN ;teN · Y1X1Y
−1

1 B

for some A,B ∈ SḦN ;q,t. According to Definition 1.3, A = γN ;teNA
′ for some A′ ∈ SḦN ;q,t.

We have eN = e[1,N ] = e[1,N ]e[2,N ], and e[2,N ] commutes with X1, Y1, and eN . Thus, we have
AY1 = AY1e[2,N ]. Applying (2.27), we find

D
(N)
C+

= AY1Y1X1Y
−1

1 B = AY1 · e[2,N ] · qT1T2 · · ·TN−1TN−1 · · ·T2T1X1 ·B.
Applying (2.11) for k = 1, we get

D
(N)
C+

= qAY1·
(
−t(1− t−N)eN + te[2,N ]

)
X1·B = qt−N+1γN ;tAY1·eNX1·B+qtAY1·e[2,N ]X1·B.

Since AY1 = AY1e[2,N ], the second term on the right-hand side becomes qtAY1X1B = qtD
(N)
C−

.

We claim that the first term equals D
(N)
C0

. Indeed, by (2.27) and (2.9), we get

D
(N)
C0

= AY1 · γN ;teN · Y1X1Y
−1

1 B = AY1 · γN ;teN · qT1T2 · · ·TN−1TN−1 · · ·T2T1X1 ·B
= qt−N+1γN ;tAY1 · eNX1 ·B.

This proves (4.1). See Figure 9 for a diagrammatic interpretation of the above argument. �

Proof of Theorems 1.6 and 1.7. As explained in Remark 1.10, each element D
(N)
C may be

expressed via (4.1) in terms of products of almost linear elements D
(N)
m0,n0 with coefficients not

depending on N . By Corollary 3.3, for each curve C, we get a well-defined limit DC ∈ SḦ+
∞;q,t

of D
(N)
C as N → ∞. This shows Theorem 1.6. The resulting limiting elements satisfy (1.9)

by construction, which shows Theorem 1.7. �

Example 4.2. We calculate the elements DC+ , DC− , DC0 for the three curves in Figure 3.
By (1.8), (2.28), and (3.7), we have

DC0 = D2
1,1 = (1− t)2(q − 1)2u2

1,1.

Next, by (2.29) and (3.7), we find

DC+ = D2,2 =
1

2
(1− t2)(q2 − 1)u2,2 +

1

2
(1− t)2(q − 1)2u2

1,1.

Therefore, by (1.9),

DC− =
1

2qt
(1− t2)(q2 − 1)u2,2 −

1

2qt
(1− t)2(q − 1)2u2

1,1.

We may now compute the symmetric functions FC+ , FC− , FC0 . One way to do that is by
using the polynomial representation of the DAHA, i.e., by combining Example 1.4 with
Section 2.2. Alternatively, we can use commutation relations, such as (3.4), together with
Section 3.3. Both computations lead to the following result:

DC+ · 1 = (1− t)
(
(1− t2 − qt)s11 + qs2

)
;(4.2)

DC− · 1 = (1− t) (−ts11 + s2) ;(4.3)

DC0 · 1 = (1− t)2 ((1 + t− qt)s11 + qs2) .(4.4)

Applying the plethysm (1.10) yields (1.17), and applying (1.11) yields (1.18).
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For a Z-convex curve C, Remark 1.10 may be used to obtain a non-recursive formula
expressing DC in terms of piecewise almost linear convex curves.

Corollary 4.3. Let C be a Z-convex curve passing through no lattice points other than (0, 0)
and (m,n). Then

DC =
∑

C′=[C′1C
′
2···C′k]

Z-convex piecewise almost linear

(−1)k−1

(qt)k−1+a(C,C′)
·DC′1

·DC′2
· · ·DC′k

,

where the summation is over all Z-convex piecewise almost linear curves C ′ weakly above C,
k = k(C ′) is arbitrary, and a(C,C ′) is the number of lattice points strictly between C and C ′.

Proof. By (1.8), we have DC′ = DC′1
· DC′2

· · ·DC′k
. The result is obtained by induction on

the number of lattice points between C and the almost linear curve from (0, 0) to (m,n).
For the base case, when C is itself almost linear, the result is vacuously true. The induction
step consists of applying (4.1). �

We now translate Proposition 2.11 via (3.6) to express the almost linear elements Ddx in
terms of the renormalized generators P Ex ∈ Eq,t introduced in (3.7).

Corollary 4.4. For all d ≥ 1 and primitive x ∈ Z+, the element Ddx is expressed in
(P Ekx)k≥0 with the same coefficients as (−t)ded [X(1− t−1)] is expressed in (pk)k≥0.

5. Skein algebras and modules

We review the background on the skein-theoretic approach of [MS17, MS21] and use it to
prove Theorem 1.5.

5.1. Skein of a surface. Let S be a surface. A framed (oriented) link L is an embedding of
a disjoint union of several ribbons S1× [0, 1] into S× [0, 1], where each component of L is the
image of S1×{1/2}. If an unframed oriented link L is drawn in the plane, we often equip it
with the blackboard framing, so that each ribbon is obtained by taking a thin neighborhood
of the corresponding component of L in the plane.

Definition 5.1. The skein algebra Skq−1(S) is the algebra of C(v, q1/2)-linear combinations
of isotopy classes of framed oriented links inside S× [0, 1] subject to the relations

(5.1) − =
(
q−1/2 − q1/2

)
and = v−1 .

Since the relation (5.1) preserves homology classes of curves, we see that Skq−1(S) is H1(S)-
graded.

We will be interested in the surfaces S ∈ {T − D,T,A,D}, where T = R2/Z2 is a torus,
A = (R/Z)× [0, 1] is an annulus, and D is a two-dimensional disk.

5.1.1. Disk. The HOMFLY polynomial P(L) = PHOMFLY
L (a, q) of an (oriented, unframed)

link L in a disk is defined by the skein recurrence

(5.2) aP( )− a−1P( ) =
(
q−1/2 − q1/2

)
P( ) and P( ) =

a− a−1

q−1/2 − q1/2
.

Here, denotes the unknot, and this normalization is chosen so that the value of P on the
empty link is equal to 1.
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In order to relate the variable v in (5.1) to the variable a in (5.2), we apply [MS17,
Theorem 6.1]. Given a framed link L in D, let L′ be a (link diagram of a framed) link
isotopic to L such that the framing of L′ coincides with the blackboard framing. Then define
the writhe w(L) ∈ Z of L to be the number of positive crossings in L′ minus the number of
negative crossings in L′. Applying [MS17, Theorem 6.1] and using the fact that (5.2) gives
rise to a well-defined link invariant, we find that the identity

(5.3) L|v=a−1 = aw(L)PHOMFLY
L (a, q)

holds inside Skq−1(D), where L is an arbitrary framed link and the right-hand side is consid-
ered as a multiple of the empty link.

5.1.2. Annulus. The positive part Sk+
q−1(A) ⊂ Skq−1(A) consists of linear combinations of

links whose lift to the universal cover R × [0, 1] only intersects vertical grid lines x = k,
k ∈ Z from left to right.

The algebra Sk+
q−1(A) is easily seen to be commutative. One may view it as the algebra

of linear combinations of closures of N -strand braids, where N = 0, 1, 2, . . . .

Theorem 5.2 ([Tur88, Ais96, AM98]). The algebra Sk+
q−1(A) is isomorphic to the algebra

Λq of symmetric functions over C(q1/2).

We describe this isomorphism explicitly in two different ways. First, for each N =
0, 1, 2, . . . , let

(5.4) WA
N ;q :=

q1/2 − q−1/2

qN/2 − q−N/2
N−1∑
i=0

Ai,N−1−i,

where Ai,N−1−i is the annular closure of the braid σ1 · · ·σi · σ−1
i+1 · · ·σ−1

N−1; see the figure
above [MS17, Remark 2.4].

Notation 5.3. In our figures, the generators σi of BN are depicted with positive crossings

; cf. Notation 5.9. The homomorphism BN → HN ;q−1 sends σi 7→ T−1
i .

Remark 5.4. The braids βi,N−1−i := σ1 · · ·σi · σ−1
i+1 · · ·σ−1

N−1 and β′N−1−i,i := σ−1
1 · · · σ−1

N−1−i ·
σN−i · · ·σN−1 are conjugate, and thus the element WA

N ;q does not depend on whether one
takes Ai,N−1−i to be the annular closure of βi,N−1−i or of β′N−1−i,i.

By definition, the isomorphism of Theorem 5.2 sends

(5.5) WA
N ;q 7→ pN for N = 0, 1, . . . .

(For N = 0, we set WA
0;q := 1 ∈ Sk+

q−1(A) and p0 := 1 ∈ Λq.)
Alternatively, let HN ;q−1 be the Hecke algebra generated by T1, . . . , TN−1 modulo relations

(5.6) TiTi+1Ti = Ti+1TiTi+1 and (Ti − q1/2)(Ti + q−1/2) = 0.

Note that the second relation is equivalent to T−1
i − Ti = (q−1/2 − q1/2); cf. (5.1) and

Notation 2.2. Upon setting q = t−1, we recover the relation (2.1).
The algebra Skq−1(A) is H1(A) = Z-graded, and the graded piece of Sk+

q−1(A) of degree

m ≥ 0 is isomorphic (as a vector space over C(v, q1/2)) to H′m;q−1 ⊗ C(v), where H′m;q−1 :=
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Hm;q−1/[Hm;q−1 ,Hm;q−1 ]. We thus have an identification

(5.7) Sk+
q−1(A) ∼=

∞⊕
m=0

H′m;q−1 ⊗ C(v).

The irreducible representations Vλ of Hm;q−1 are well known [GP93] to be indexed by
Young diagrams λ with m boxes. For instance, the trivial representation V(m) (resp., the
sign representation V(1m)) is the one-dimensional representation where each Ti acts by mul-

tiplication by q1/2 (resp., by −q−1/2).
Define a map

(5.8) TrΛq : Hm;q−1 → Λq, x 7→
∑
λ`m

Tr(x;Vλ)sλ,

where sλ is a Schur function [Sta99, Section 7.10]. Clearly, this map factors through the
quotient map Hm;q−1 → H′m;q−1 .

The map TrΛq composed with (5.7) gives another description of the isomorphism of The-
orem 5.2.

Proposition 5.5 ([GW23, Corollary 2.22]). The isomorphism (5.5) coincides with the com-
position of (5.7) and (5.8).7

Example 5.6. For N = 2, the only two irreducible representations of the Hecke algebra
H2;q−1 are V2 (trivial) and V11 (sign). Thus,

(5.9) TrΛq(T
r
1 ) = (−1)rq−

r
2 s11 + q

r
2 s2 for all r ∈ Z.

On the other hand, (5.4) gives WA
2;q = 1

q1/2+q−1/2 (T1 + T−1
1 ), under the identification (5.7).

Thus,
TrΛq(W

A
2;q) = −s11 + s2 = p2,

in agreement with Proposition 5.5.

We can also relate Sk+
q−1(A) to Sk+

q−1(D) as follows. Observe that any embedding S → S′
of surfaces gives rise to a homomorphism

(5.10) Skq−1(S)→ Skq−1(S′)
of the associated skein algebras. In particular, identifying A with D− εD for some 0 < ε < 1,
we obtain an algebra homomorphism

(5.11) Sk+
q−1(A)→ Skq−1(D).

5.1.3. Torus. The algebra Skq−1(T) is generated by certain elements W T
x;q, x ∈ Z∗, defined as

follows. (See [MS17] for a beautiful description of relations between these elements.) When
x is primitive, we let W T

x;q correspond to the embedded curve of homology class x. Suppose
now that x = kx0, where k ≥ 1 and x0 is primitive. Consider a primitive curve Cx0 of
homology class x0. For N ≥ 1 and a braid β ∈ BN , we may consider a β-decoration of
Cx0 , which is obtained by taking the image of the annular closure of β inside A under the
homeomorphism from A to a small neighborhood of Cx0 . We extend this construction to
linear combinations of braids, and define W T

x;q as the WA
k;q-decoration of Cx0 .

7Comparing the proof of [GW23, Proposition 2.6] with [GW23, Lemma 2.5], we see that hn in [GW23,
Proposition 2.6] should be replaced with en. This mistake appears to affect some further results in [GW23,
Section 2]. In particular, the (−1)k in [GW23, Corollary 2.22] should be omitted.
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T A → A

T

Figure 6. Wrapping the torus around the annulus; see Definition 5.7.

The algebra Skq−1(T) is H1(T) = Z2-graded. We let ψv : Skq−1(T)
∼−→ Skq−1(T) be the

graded automorphism multiplying each (i, j)-graded component by vj.

Definition 5.7. The action of Skq−1(T) on Skq−1(A) is obtained by first applying ψv and
then “wrapping T around A” as shown in Figure 6. More precisely, Skq−1(A) consists of
framed links inside A × [0, 1], and A × [0, 1] is homeomorphic to the solid torus S1 × D.
Identifying T with the boundary of S1 ×D, we obtain the desired action. See Definition 6.5
for a more precise description.

The positive part Sk+
q−1(T) ⊂ Skq−1(T) consists of linear combinations of elements W T

x;q for

x ∈ Z+. In particular, the action of Skq−1(T) on Skq−1(A) restricts to an action of Sk+
q−1(T)

on Sk+
q−1(A).

5.1.4. Punctured torus. Let T− D be the punctured torus, obtained from T by removing a
small disk D. We consider the algebra Skt(T− D). Let x ∈ Z∗, and suppose that x = kx0

with x0 primitive and k ≥ 1. Let Cx0 be a primitive curve of homology class x0 avoiding
the puncture D. As before, we let W T−D

x;t−1 ∈ Skt(T−D) be obtained by decorating the curve

Cx0 by the element WA
k;t−1 .

Applying (5.10) to the inclusion T− D ↪→ T, we get a homomorphism

(5.12) Sk+
t (T− D)→ Sk+

t (T).

Morton–Samuelson [MS21, Definition 5.6] define the positive part Sk+
t (T−D) ⊂ Skt(T−D)

to be the subalgebra generated by W T−D
x;t−1 , x ∈ Z+.

5.2. Braid and tangle skein algebras. We recall the construction of [MS21, Section 3.1]
of the braid skein algebra BSkN ;q,t(T, ∗) of a torus T. Let N ≥ 1 and 0 < ε < 1. Place
N points pi := ε

N+1
(i, i), i = 1, 2, . . . , N in T, and let p∗ := (ε, ε). The base string is the

line segment p∗ × [0, 1] ⊂ T × [0, 1]. By definition, a braid is a collection of N curves in
T × [0, 1] connecting {(p1, 0), . . . , (pN , 0)} to {(p1, 1), . . . , (pN , 1)} (in some order), so that
the [0, 1]-coordinate of each curve is monotone increasing. The curves are required to be
disjoint from each other and from the base string. See Figure 7 for examples.

Let BSkN ;q,t(T, ∗) consist of C(q1/2, t1/2)-linear combinations of such braids subject to the
local relations

(5.13) − =
(
t1/2 − t−1/2

)
and

∗
= q−1

∗
,

where ∗ denotes the base string. The first relation coincides with (1.1). The multiplication
comes from stacking in the [0, 1] direction.
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Figure 7. The toric braids Ti, Xi, Yi from Definition 5.8.

Definition 5.8. We have braids Ti for i = 1, 2, . . . , N − 1 and Xi, Yi for i = 1, 2, . . . , N
shown in Figure 7:

• Ti rotates the points pi and pi+1 clockwise;
• Xi moves the point pi to the right by vector (1, 0);
• Yi moves the point pi up by vector (0, 1).

Notation 5.9. Our notation is obtained from that of [MS21] by substituting (xi, yi, σi, c, s) 7→
(Xi, Yi, T

−1
i , q−1/2, t1/2). In particular, their generators σi are represented by positive cross-

ings, in agreement with Notation 2.2.

Theorem 5.10 ([MS21, Theorem 3.7]). The map (Ti, Xi, Yi) 7→ (Ti, Xi, Yi) induces an iso-
morphism

(5.14) BSkN ;q,t(T, ∗) ∼−→ ḦN ;q,t.

Next, we consider the algebra SkN ;q,t(T, ∗) of framed tangles. By definition, a tangle is a col-
lection ofN oriented curves in T×[0, 1] connecting {(p1, 0), . . . , (pN , 0)} to {(p1, 1), . . . , (pN , 1)},
together with some closed curves in T× [0, 1]. As before, the curves are required to be dis-
joint from each other and from the base string. (However, they are no longer required to
be monotone in the [0, 1] direction.) In a framed tangle, each curve is additionally given to-
gether with a framing. The algebra SkN ;q,t(T, ∗) consists of C(q1/2, t1/2)-linear combinations
of such framed tangles modulo the relations (5.13), and the multiplication again comes from
stacking in the [0, 1] direction.

By [MS21, Theorem 4.1], we have a homomorphism

(5.15) BSkN(T, ∗)→ SkN ;q,t(T, ∗)
obtained by taking a braid and choosing its framing in a canonical way: for instance, one
can let the framing be spanned by the braid strand and the vector (1, 0, 0), which is never
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Figure 8. Toric braids and tangles in the proof of Theorem 1.5, each shown
in plan view and front view; cf. Figure 7(a).

tangent to the strand. By [MS21, Theorem 4.2], this homomorphism is surjective. That
is, given a framed tangle, one can apply the skein relations (5.13) to express it as a linear
combination of braids equipped with canonical framing. It turns out that this map is actually
an isomorphism.

Theorem 5.11 ([MS21, Conjecture 1.5] and [BCMN23, Theorem 5.10]). The map (5.15) is
an isomorphism.

5.3. From monotone curves to DAHA. Let C be a primitive curve given as a plot of
a monotone function f : [0,m] → [0, n]. Recall from Section 1.2 that we may consider a
curve C1 in T × [0, 1] parameterized by C1(t) = (x, f(x), x/m) for x ∈ [0,m]. The curve
C1 connects (0, 0, 0) to (m,n, 1) = (0, 0, 1) in T × [0, 1]. Let C2 be a vertical line segment
connecting (0, 0, 1) to (0, 0, 0). The union CT := C1 ∪ C2 is a closed curve in T× [0, 1].

Suppose that T − D is a punctured torus such that the puncture D contains the line
segment [0,p∗], where p∗ = (ε, ε). For N ≥ 1, we have a homomorphism

(5.16) Sk+
t (T− D)→ SkN ;q,t(T, ∗)

obtained by inserting the identity N -braid with a base string into D; see Figure 8(a).
Let C be a primitive curve, and consider the curves C± obtained by shifting C by (∓ε,±ε)

as in Section 1.3. Thus, we may consider the elements CT−D
± ∈ Skt(T− D) and CT−D ∈

Skq,t(T− D) defined in Section 1.3. The map (1.5) is the composition

(5.17) Skq,t(T− D)→ SkN ;q,t(T, ∗) ∼−→ BSkN ;q,t(T, ∗) ∼−→ ḦN ;q,t → SḦN ;q,t.

of (5.16), the inverse of (5.15), (5.14), and the idempotent projection ḦN ;q,t → SḦN ;q,t,
x 7→ eNxeN .

Proof of Theorem 1.5. Let C be a primitive curve. Recall from Definition 1.3 that PC is the
highest up-right lattice path below C. The neighborhood of the corner (i.e., the beginning
and the end) of CT−D

+ (resp., CT−D
− ) is shown in Figure 8(a) (resp., Figure 8(c)).
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Figure 9. A diagrammatic proof of the skein relation (1.9) (front view); cf
Remark 5.12. Compare with [Hog18] or [EH19, Equation (1.2)].

For i = 0, 1, . . . , N , let CT−D
i;+ be obtained by replacing the leftmost i undercrossings in

Figure 8(a), front view, with overcrossings; see Figure 8(b) and (5.4). For i = 1, . . . , N , let
ZT−D
i be obtained from CT−D

i;+ by uncrossing the i-th overcrossing; see Figure 8(d). Thus,

CT−D
0;+ = CT−D

+ and CT−D
N ;+ = qCT−D

− by the second relation in (5.13). Applying the first
relation in (5.13), we obtain

CT−D
+ = CT−D

0;+ = CT−D
1;+ +

(
t−1/2 − t1/2

)
ZT−D

1

= CT−D
2;+ +

(
t−1/2 − t1/2

)
(ZT−D

1 + ZT−D
2 )

= · · ·
= qCT−D

− +
(
t−1/2 − t1/2

)
(ZT−D

1 + ZT−D
2 + · · ·+ ZT−D

N ).

Each tangle ZT−D
i is isotopic to a braid (also denoted ZT−D

i ). The braid ZT−D
1 is obtained as

a product of:

• Y1 for each U step of PC ;
• Y1X1Y

−1
1 for each R step of PC .

For i = 1, 2, . . . , N , let Zi ∈ ḦN ;q,t be the image of the braid ZT−D
i ∈ BSkN ;q,t(T, ∗) under

the map (5.14). We see that Zi = T−1
i−1 · · ·T−1

2 T−1
1 Z1T

−1
1 T−1

2 · · ·T−1
i−1. Projecting to SḦN ;q,t

and applying (2.9), we find eNZieN = tieNZ1eN . Comparing the above description of ZT−D
1

to Definition 1.3, we find D
(N)
C = γN ;teNZ1eN . Summarizing, the image of CT−D

+ − qCT−D
− in

SḦN ;q,t under the composition (5.17) is given by(
t−1/2 − t1/2

)
γN ;t

(1 + t+ · · ·+ tN−1)D
(N)
C = t−1/2D

(N)
C .

Thus, the image of CT−D under (5.17) is indeed given by (1.6) when C is primitive. The
case of arbitrary C follows by (1.3) and (1.8). �

Remark 5.12. The recurrence (2.11) may be represented diagrammatically; see e.g. [EH19,
Equation (1.2)]. Similarly, our proof of the skein relation (1.9) given in Section 5 may be
interpreted as shown in Figure 9. Given that (2.11) admits a lift to the level of Rouquier
complexes computing KR homology [Hog18, EH19, Mel22], it is natural to expect that our
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t=q−1

act
on 1
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∼
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(N)
C

A

CT δkq,tDC |t=q−1 δkq,tDC
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CA (−q1/2)−mωTrΛq(T
A
C ) δkq,tDC · 1
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CD aw(C)PHOMFLY
L (a, q) δkq,tPEC(a, q, t)

Figure 10. An expanded version of Figure 1. Here, C is a curve from (0, 0)
to (m,n) with k := k(C) lattice segments.

skein relation admits a similar lift to KR homology or, perhaps, to some other (yet to be
constructed) homology theory associating a symmetric function to a link in a punctured
torus.

6. A commutative diagram

In this section, we explore the commutative diagram in Figure 10, which is an expanded
version of the diagram in Figure 1. The maps between the various algebras and modules are
shown on the left, and the images of a curve C under these maps are shown on the right. For
each of the squares A , B1 , B2 , C1 , C2 , we will discuss the maps involved and check
that the square commutes. Throughout this section, we let Cx be an almost linear curve
from (0, 0) to x := (m,n). We set d := gcd(m,n), x0 := 1

d
x, and recall that δq,t := 1

t1/2(1−q) ;

cf. (1.6). In particular, δq,q−1 = 1
q−1/2−q1/2 .

6.1. Square A . By Theorem 1.5, for any curve C, the image of CT−D under (5.17) is

δ
k(C)
q,t D

(N)
C , and by Theorem 1.6, its limit under N →∞ is δ

k(C)
q,t DC . We now check that the

isomorphism Sk+
q−1(T)

∼−→ E+
q,q−1 constructed in [MS17] sends CT 7→ δ

k(C)
q,t DC |t=q−1 .

Notation 6.1. Our notation is obtained from that of [MS17] via8

(6.1) (q, t, s, v, Px) 7→ (q−1, t, t1/2, v,W T
x;q).

We claim that the isomorphism of [MS17, Theorem 5.6] is given by

(6.2) Sk+
q−1(T)

∼−→ E+
q,q−1 , W T

kx0;q 7→ −q−k/2P Ekx0
|t=q−1 .

Indeed, in the notation of [MS17, Theorem 5.6], the isomorphism Sk+
q−1(T)

∼−→ E+
q,q−1 sends

Px 7→ (qd(x)/2 − q− d(x)/2)ux. Converting this to our notation and applying (3.7), we ob-
tain (6.2).

8For instance, the substitution (q, t) 7→ (q−1, t) comes from comparing (3.2) to the definition of αi in [MS17,
Section 5].
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C CT−D
+ CT−D

−

Figure 11. For an almost linear curve C from (0, 0) to (2, 2), CT−D
+ is a σ1-

decoration of a curve C(1,1) in T− D of homology class (1, 1) while CT−D
− is

not. The shaded ellipse represents the puncture D in T− D.

The element CT
x is obtained by taking a straight line segment Cx0 from (0, 0) to x0 and

decorating CT
x0

by the Coxeter braid σ1σ2 · · ·σd−1.9 By Notation 5.3 and [GW23, Proposi-
tion 2.6], we have

TrΛq(T
−1
1 T−1

2 · · ·T−1
d−1) =

(−1)d−1

q1/2 − q−1/2
ed[X(q1/2 − q−1/2)].

Embedding A into a small ribbon neighborhood of Cx0 and applying (5.10), we obtain a
homomorphism Skq−1(A) → Skq−1(T). Combining this with Proposition 5.5, we obtain the
following result.

Corollary 6.2. The element CT
x is expressed in (W T

kx0;q)k≥0 with the same coefficients as
(−1)d−1

q1/2−q−1/2 ed[X(q1/2 − q−1/2)] is expressed in (pk)k≥0.

By [MS21, Theorem 5.7], the map (5.17) sends W T−D
kx0;t−1 7→ tk/2−t−k/2

qk−1
P Ekx0

. For t = q−1,

this recovers the isomorphism (6.2) of [MS17]; see also [MS21, Remark 2.5]. Recall that
the substitution pk 7→ −q−k/2pk corresponds to the plethystic substitution Λq → Λq, F 7→
F [−q−1/2X]. We obtain the following.

Corollary 6.3. The image of CT
x under (6.2) is expressed in (P Ekx0

)k≥0 with the same coef-

ficients as (−1)d−1

q1/2−q−1/2 ed[X(q−1 − 1)] is expressed in (pk)k≥0.

Proposition 6.4. Square A in Figure 10 is commutative.

Proof. Recall that by Theorems 1.5 and 1.6, the image of CT−D
x in E+

q,t is given by δq,tDx.

Substituting t = q−1 into Corollary 4.4, we see that δq,tDx|t=q−1 = 1
q−1/2−q1/2Dx|t=q−1 is

expressed in (P Ek,0)k≥0 with the same coefficients as (−q−1)d

q−1/2−q1/2 ed [X(1− q)] is expressed in

(pk)k≥0. Since these coefficients agree with those in Corollary 6.3, it follows that the image
of CT

x under (6.2) agrees with the t = q−1-specialization of the image of CT−D
x under (5.17).

In other words, square A in Figure 10 is commutative for almost linear curves.

Since all maps involved respect multiplication, we see that square A commutes for
piecewise almost linear curves. We now check that the map (6.2) also respects the skein

relation (1.9). (This is clear for all other maps involved in square A .) Substituting

9Letting Cx,+ and Cx,− be the shifts of Cx as in Section 1.3, we see that CT−D
x,+ is a σ1σ2 · · ·σd−1-decoration

of CT
x0

. However, the same is not true for CT−D
x,− , since the puncture “gets stuck” inside the decoration; see

Figure 11.
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CT
+ βA

C+
= σ3

1 CT
− βA

C−
= σ1 CT

0 βA
C0

= σ2
1

Figure 12. Computing the braid βA
C associated to a curve C; see Defini-

tion 6.5.

D
(N)
C 7→ δ

− k(C)
q,t CT (cf. (1.6)) into the skein relation (1.9) and letting t = q−1, we arrive

at the identity

(6.3) CT
+ = CT

− + (q−1/2 − q1/2)CT
0

for C+, C−, C0 as in Theorem 1.7. This agrees with (5.1) since C+ contains a positive crossing

where C− contains a negative crossing . Thus, (6.3) indeed holds inside Skq−1(T),

which by Remark 1.10 implies that square A in Figure 10 is commutative for arbitrary
curves. �

6.2. Squares B1 and B2 . Recall from Definition 5.7 that the vertical map Sk+
q−1(T) →

Sk+
q−1(A) consists of first applying an automorphism ψv of Sk+

q−1(T) sending CT 7→ vnCT and
then inserting a solid torus inside T as shown in Figure 6.

Definition 6.5. Let C be a curve from (0, 0) to (m,n). Consider the link LC whose link
diagram is drawn on T as in Section 1.2. For each x ∈ [0, 1] such that the point (x, 1)
(equivalently, (x, 0)) belongs to the link diagram of LC , draw a vertical line segment from
(x, 1) to (x, 0) passing above all other strands of LC . The result is a planar link diagram
drawn on A, where the link is obtained as the annular closure of an m-strand braid denoted
βA
C . We let TA

C ∈ Hm;q−1 be the image of βA
C under the standard homomorphism Bm →

Hm;q−1 , and let CA ∈ Sk+
q−1(A) be the image of TA

C under the identification (5.7). See
Figure 12.

Remark 6.6. The “wrapping” procedure described in Definition 5.7 produces a framed
link L′C which coincides with LC (with blackboard framing) except that the framing of L′C
contains n extra full twists. This discrepancy is accounted for by the application of the
automorphism ψv in Definition 5.7.

The horizontal map φA : Sk+
q−1(A)

∼−→ Λq is then defined as follows. For a braid β ∈ Bm,
we set

(6.4) φA(β̂) := (−q1/2)−mωTrΛq(Tβ),

where ω is the omega involution [Sta99, Section 7.6]. It is clear that φA is an algebra
homomorphism.

Proposition 6.7. Squares B1 and B2 in Figure 10 are commutative.
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Proof. The result is obvious for B2 . To check the commutativity of B1 , we need to show
that for any curve C from (0, 0) to (m,n), we have

(6.5)
(
q−1/2 − q1/2

)− k(C)
DC · 1|t=q−1 = (−q1/2)−mωTrΛq(T

A
C ).

This may be deduced from [MS17, Proposition 7.17] after matching our conventions to theirs;
see also (6.1) and [MS17, Section 7.1.1 and Equation (7.7)]. �

Example 6.8. Consider the three curves in Figure 3. We compute the left-hand side of (6.5)
using (4.2)–(4.4). For the right-hand side, we first use Figure 12 to find TA

C+
= T−3

1 , TA
C−

=

T−1
1 , TA

C0
= T−2

1 , and then apply (5.9). We calculate that for C = C+, C−, C0, both sides

of (6.5) are given by q−
5
2 s11 − q

1
2 s2, q−

3
2 s11 − q−

1
2 s2, q−2s11 + s2, respectively.

6.3. Squares C1 and C2 . Before discussing the maps in squares C1 and C2 , we revisit

the symmetric function FC introduced in (1.10). By definition, FC is obtained from δ
k(C)
q,t DC ·1

via the map F 7→ δ
− k(C)
q,t F

[
X

1−t

]
. Specializing t = q−1 and applying (6.5), we get

(6.6) FC |t=q−1 =
(
q−1/2 − q1/2

)k(C)
TrΛq(T

A
C )

[
X

q−1/2 − q1/2

]
.

Next, let the right vertical map in square C2 be given by

(6.7) Λq,t → C(a, q1/2, t1/2), F 7→ F

[
a− a−1

1− t

]
.

Specializing t = q−1, we define the left vertical map in square C2 by

(6.8) Λq → C(a, q1/2), F 7→ F

[
a− a−1

1− q−1

]
.

The left vertical map in square C1 is given by (5.11).
Recall the braid βA

C from Definition 6.5. Our goal is to compute the writhe w(C) of βA
C ,

defined as the sum of exponents e1 + e2 + · · ·+ et of the expression βA
C = σe1i1 σ

e2
i2
· · ·σetit of βA

C

in terms of the standard generators of Bm.

Proposition 6.9. For a curve C from (0, 0) to (m,n),

(6.9) w(C) = (k(C)− 1) + (m− 1) + 2 b(C),

where b(C) is the number of lattice points in [1,m− 1]× [1, n− 1] strictly below C.

Proof. The result is readily checked by induction on b(C). For the induction base, when
b(C) = 0 and C is primitive, we have βA

C = σ1σ2 · · ·σm−1. Next, suppose that C+, C−, C0

are three curves passing above, below, and through some lattice point p as in Theorem 1.7.
The associated braids satisfy w(βA

C+
) − 1 = w(βA

C0
) = w(βA

C−
) + 1. Thus, if (6.9) holds for

C− then it holds for C0 and C+, which gives the induction step. �

Proposition 6.10. Squares C1 and C2 in Figure 10 are commutative.

Proof. Square C2 commutes by construction. The fact that square C1 commutes follows
by combining (5.3), (6.9), and [GW23, Proposition 2.3(b)]. �

Proof of Proposition 1.19. This follows from the commutative diagram Figure 10. The left-
hand side of (1.15) is the image of δkq,tPEC(a, q, t) under the bottom horizontal map (t = q−1)

in square C2 . �
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7. Comparisons and specializations

In this section, we view the EHA element DC as an operator on symmetric functions. We
first recall the formalism of plethysm. If A is an expression in terms of some variables, we
define pk[A] to be the result of substituting ak for each variable a, and define f [A] for any
f ∈ Λ by extending pk 7→ pk[A] to an algebra homomorphism f 7→ f [A]. Note that the
symbols q, t also count as variables. By convention, the plethysm f [X] is obtained by taking
X = x1 + x2 + · · · . Let φ : Λq,t → Λq,t be the automorphism of symmetric functions given
by the plethysm f 7→ f

[
X

1−t

]
, and recall the involution ω : Λq,t → Λq,t.

For a monotone curve C, let D̃C := φ ◦DC ◦ φ−1 denote the symmetric function operator
obtained by conjugating DC by φ. Thus by definition FC = D̃C · 1.

7.1. Shuffle conjectures. Let C be the almost linear curve from (0, 0) to (m,n); then LC
is the (m,n)-almost torus knot. The associated operator D̃m,n is well studied, going back to
[GN15] (and [Che13, AS15]) for the case gcd(m,n) = 1 of a torus knot. In particular, the
(compositional) rational shuffle conjecture [BGLX15, Mel16] gives a positive, combinatorial
expression for D̃m,n · 1:

(7.1) ω(D̃m,n · 1) =
∑

π∈Parkn,m

tarea(π)qdinv(π)Fides(π).

Here, Parkn,m denotes a certain set of parking functions, and Fides(π) denotes a fundamental
quasisymmetric function. We refer the reader to [BGLX15] for definitions of area, dinv, ides.

7.1.1. The original shuffle conjecture [HHL+05] proved in [CM18] is a combinatorial expres-
sion for the symmetric function ∇en. The operator ∇ of [BG99] can be interpreted in terms
of the SL2(Z)-action on Eq,t as the following identity of operators on Λq,t:

φ ◦ um,m+n ◦ φ−1 = (ω ◦ ∇ ◦ ω)(φ ◦ um,n ◦ φ−1)(ω ◦ ∇ ◦ ω)−1.

7.1.2. Up to a transformation t 7→ t−1, and a factor of (1 − t) (see (2.28)), our Dm,n is
equal to the element Pm,n defined as a limit in [GN15, Section 3] of the elements PN

m,n below
[GN15, Definition 2.5].

Remark 7.1. On the other hand, for an almost linear curve C from (0, 0) to (n, n+ 1), we
have FC = D̃n,n+1 ·1 = ω(∇en), in contrast to [GN15, Corollary 6.5], where ∇en is obtained.
This discrepancy appears to arise due to the use of [GN15, Proposition 2.3], which differs
from our symmetric function actions by the automorphism ω. For instance, according to
[GN15, Proposition 6.4 and Corollary 6.5], we have P̃0,1 · pn = P̃n,1 · 1 = en. We believe that

one should instead have P̃0,1 · pn = qn−1
1−t−1hn and P̃n,1 · 1 = 1

1−t−1hn in the notation of [GN15];
see [GN15, Equations (20) and (31)]. The factor qn − 1 appears to be missing from [GN15,
Equation (22)].

7.1.3. The symmetric function operators Qn,m : Λq,t → Λq,t appearing in the shuffle conjec-
tures of [BGLX15] are related to ours by

(7.2) D̃m,n = (−1)m+gcd(m,n)ω ◦Qn,m ◦ ω.
Thus, (7.1) is a rephrasing of [BGLX15, Conjecture 3.1].
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7.1.4. We give an explicit description of the operator D̃m,1. Set M := (1− t)(1− q). Fol-
lowing [BHM+21], define Dk, k ∈ Z by the identity

(7.3)
∑
k∈Z

(−z)−kDk := Ω[−z−1X]•Ω[zMX]⊥

where for f ∈ Λ, we denote by f • the multiplication operator by f , and by f⊥ the adjoint
operator to f • for the Hall inner product.10 The following equality of symmetric function
operators is a special case of (7.2):

(7.4) D̃m,1 = ω ◦Dm ◦ ω.
7.2. Positroid links. In [GL20], we introduced positroid links Lf associated to positroid
varieties in the Grassmannian, or to bounded affine permutations. In [GL21], we studied
repetition-free positroids, which led us to the study of convex curves. The following result
follows from [GL22, Section 2.1] where concave curves were used instead. Specifically, the
curves of [GL21, GL22] are related to our curves by a 180◦-rotation, and the associated links
LC coincide. Note that in Definition 6.5, the vertical line segments are drawn above all
other strands, while they are drawn below all other strands in [GL21, GL22] (see e.g. [GL22,
Figure 1(d)]).

Proposition 7.2. Let C be a convex monotone curve, possibly passing through some lattice
points. Then LC is a positroid link.

The positroid knots appearing in Proposition 7.2 coincide with the positroid knots associ-
ated to repetition-free permutations of [GL21]. Outside of the convex class, we do not know
the answer to the following question.

Question 7.3. Which monotone links are isotopic to positroid links?

For example, the monotone curve Figure 4(c) is not convex, however, it coincides with the
positroid knot discussed in [GL20, Example 4.21]. See Example A.2 for further discussion.

7.3. Coxeter links. We relate our monotone links to the Coxeter links introduced in [OR17].
Consider a pair (b, ε), where b = (b1, b2, . . . , bm) is a sequence of nonnegative integers and
ε = (ε1, ε2, . . . , εm−1) is a 0, 1-sequence.

Let cox(ε) := σε11 σ
ε2
2 · · ·σεm−1

m−1 be the quasi-Coxeter braid associated to ε; cf. Notation 5.3.
For i = 1, 2, . . . ,m, let `i := σi−1 · · ·σ1σ1 · · ·σi−1 be a Jucys–Murphy element. By convention,
`1 is the identity braid. Finally, define

(7.5) βcox
b,ε := `b11 `

b2
2 · · · `bmm cox(ε).

Braids of the form (7.5) are called Coxeter braids, and their annular closures are called
Coxeter links.

Let C be a curve from (0, 0) to (m,n). For i = 0, 1, . . . ,m, let λi be the maximal integer
such that the point (m−i, λi) is weakly below C. (In particular, λ0 = n.) For i = 1, 2, . . . ,m,
set bi := λi−1 − λi and let bC := (b1, b2, . . . , bm) be the resulting sequence of nonnegative
integers. We also let SC be the set of i ∈ {1, 2, . . . ,m − 1} such that C passes through a
lattice point (m − i, j) for some j ∈ Z. Let εC := (ε1, ε2, . . . , εm−1) be given by εi := 1 if
i /∈ SC and εi := 0 otherwise.

We set cox(C) := cox(εC) and βcox
C := βcox

bC ,εC
.

10In [BHM+21], the operator Dk was denoted Dk. It differs from the operator denoted Dk in [BGLX15,
Equation (2.1)] by a sign (−1)k; cf. the discussion after [BHM+21, Equation (35)].
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(a)
bC = (1, 0, 1, 2)
εC = (1, 1, 0)

(b) C ′ (c) (C ′)T (d) βcox
C := `1

1`
0
2`

1
3`

2
4 cox(C)

Figure 13. From monotone links to Coxeter links.

Example 7.4. For the curve C in Figure 13(a), we have (λ0, λ1, . . . , λm) = (4, 3, 3, 2, 0),
bC = (1, 0, 1, 2), SC = {3}, and εC = (1, 1, 0).

Proposition 7.5. The braid βcox
C is conjugate to the braid βA

C constructed in Definition 6.5.
In particular, any monotone link, when viewed as a link in A× [0, 1], is a Coxeter link, and
any Coxeter link can be obtained in this way.

Proof. This result was shown for primitive monotone curves in [GL22, Section 4.4]. We
briefly reproduce the argument here, extending it to arbitrary curves. Let C = [C1C2 . . . Ck]
be a monotone curve from (0, 0) to (m,n). The map C 7→ CT described in Sections 1.2
and 1.3 may be extended from monotone curves to curves from (0, 0) to (m,n) whose first
coordinate is strictly monotone increasing (dropping the monotonicity assumption on the
second coordinate). Let us call such curves x-monotone. It is easy to see that the map
C 7→ CT is invariant under applying an isotopy Ci(t), t ∈ [0, 1], to each segment Ci of C,
such that the endpoints of Ci(t) are fixed (i.e., do not depend on t) and for each t, Ci(t)
passes through no lattice points other than the endpoints; see also [GL22, Corollary 4.1].
Furthermore, we may shift each Ci vertically by some vector (0, yi); the projected curve Ci

will be shifted vertically; its diagram will be drawn above Cj for j < i and below Cj for
j > i, and thus such a vertical shift results in an isotopy inside T.

Applying the above operations, we may transform each segment Ci of C into a “lattice
path” segment C ′i as shown in Figure 13(b). Namely, let πC ∈ SN be the permutation
associated to the braid cox(C). For each i = 0, 1, . . . ,m−1, consider the part of C connecting
(i, yi) to (i + 1, yi+1) for some yi < yi+1. Let ji := byic and ji+1 := byi+1c. Let ε > 0 be
small. Consider a new x-monotone curve passing through the following points:

• start at
(
i, ji + i+1

m+1

)
;

• proceed horizontally to
(
i+ 1− i+1

m+1
− ε, ji + i+1

m+1

)
;

• proceed (almost) vertically11 to
(
i+ 1− i+1

m+1
+ ε, ji+1 + i+1

m+1

)
;

• proceed horizontally to
(
i+ 1− 1

m+1
, ji+1 + i+1

m+1

)
;

• end at
(
i+ 1, ji+1 + πC(i)+1

m+1

)
.

Let C ′ be the union of these curves for i = 0, 1, . . . ,m − 1. By the above discussion,
the projected curves CT, (C ′)T are related by isotopy in T; the curve (C ′)T is shown in

11Here we have inserted ε to keep the curve x-monotone.
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Figure 13(c). Applying the map (C ′)T 7→ βA
C′ from Definition 6.5, we obtain the braid

βA
C′ = βcox

C ; see Figure 13(d). Thus, the braids βA
C and βcox

C are conjugate. �

7.4. Shuffle algebra. We relate the operators D̃C to variants of Neguţ’s shuffle algebra ele-
ments. Let S denote the shuffle algebra, which we consider a subspace of Q(q, t)[x±1

1 , x±1
2 , . . .],

endowed with a noncommutative “shuffle product”, and an isomorphism of algebras ψ : S →
E+
q,t; see [SV13]. The precise description of S will not be important for us since we are only

interested in certain distinguished elements. The shuffle algebra has an action on Λq,t com-
patible with ψ and the action of E+

q,t on Λq,t discussed in Section 3.3, conjugated by the
plethysm φ. Under this action,

xa11 · · · xakk acts by Da1 · · ·Dak ,

where Da is defined in (7.3).
Let (b, ε) be as in Section 7.3. Define the rational functions

η′b,ε =
xb11 · · · xbmk∏m

i=2(1− qtxi−1/xi)εi−1

The following result is a variant of [Neg14, Proposition 6.2].

Proposition 7.6. There are elements ηb,ε ∈ S characterized by the equality

Hq,t(ηb,ε) = Hq,t(η
′
b,ε).

where Hq,t denotes the q, t-symmetrization operator of [BHM+21, Equation (46)].

In particular, ηb,ε are Laurent polynomials.
The following skein relation is a generalization of the second displayed equation in [Neg14,

Proof of Proposition 6.13].

Proposition 7.7. The skein relation holds for the elements ηb,ε:

ηbC+
,εC+

= qtηbC− ,εC− + ηbC0
,εC0

.

Proof. This follows from linearity of Hq,t and the equality

η′bC+
,εC+

= qtη′bC− ,εC−
+ η′bC0

,εC0
. �

Proposition 7.8. For a curve C, we have the equality of symmetric function operators

(7.6) D̃C = ω ◦ ηbC ,εC ◦ ω.
Furthermore, we have (cf. [BHM+21, Equation (146)])

FC = D̃C · 1 = ω(DbC ,εC · 1) = Hq,t

(
xb11 · · ·xbmk∏m

i=2(1− qtxi−1/xi)εi−1

)
pol

,

where (· · · )pol denotes the “polynomial part” operator, removing all Laurent monomials in
xi that are not polynomials; see [BHM+21, Section 2.3].

Proof sketch. When C is an almost linear curve, the result follows from the discussion in
Section 7.1 and known relations between the shuffle algebra and E+

q,t; see [Neg14, GN15].
By Proposition 7.7 and (1.9) both sides of (7.6) satisfy the skein relation. Finally, both
sides of the stated equality are compatible with composition of operators, or concatenation
of monotone curves. It follows that (7.6) holds for all monotone curves.

The second statement follows from [BHM+21, Proposition 3.5.2]. �
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Remark 7.9. Proposition 7.8 implies that the operators Db1,...,bl of [BHM+21] are special

cases of our operators D̃C .

Remark 7.10. In [Neg14, Proposition 6.4], for each (m,n), certain elements in the shuffle
algebra, and thus the EHA, are constructed, depending on a binary string δ = (δ1, . . . , δd−1)
where d = gcd(m,n). Let Cδ be the primitive monotone curve from (0, 0) to (m,n), staying
close to the diagonal, and passing above or below a diagonal lattice point depending on
whether δi = 0 or 1. Then the image of Neguţ’s Xδ in Eq,t coincides with our operator DCδ .

Specifically, for (m,n) = (d, 0), using D
(N)
Cδ

instead of D
(N)
d,0 , we would obtain sRδ [X(1− t−1)]

instead of ed [X(1− t−1)] in Proposition 2.11, where Rδ is a ribbon skew shape with d boxes.
Note however that the operators DCδ do not in general satisfy the positivity Conjecture 1.13.

7.5. Magic formula. We state a slight generalization of the magic formula of [Neg14, GN15]
expressing the symmetric function FC as a sum over standard Young tableaux. We follow
the exposition of [GHSR20]. We draw Young diagrams in French notation, so that the
boxes are located in the nonnegative orthant with the bottom left box having coordinates
(1, 1). Let T be a standard Young tableau with m boxes. For i = 1, 2, . . . ,m, we set
zi := zi(T ) := qc−1tr−1, where the box of T containing i has coordinates (r, c). For a {0, 1}-
sequence ε = (ε1, ε2, . . . , εm−1) and a standard Young tableau T , we set

wt(T ; ε) :=
m∏
i=2

1

(1− z−1
i )(1− qtzi−1/zi)εi−1

∏
i<j

(1− zi/zj)(1− qtzi/zj)
(1− qzi/zj)(1− tzi/zj)

,

where the zero factors in the numerator and denominator are omitted by convention. Given
a sequence b = (b1, b2, . . . , bm) of integers, introduce a symmetric function

(7.7) Fb,ε :=
∑

T∈SYT(m)

wt(T ; ε)zb11 z
b2
2 · · · zbmm ∇−1H̃sh(T ),

where the summation is over all standard Young tableaux T with m boxes, sh(T ) is the shape
of T , H̃λ are the modified Macdonald polynomials, and ∇ is the nabla operator of [BG99].

When ε = (1, 1, . . . , 1), Equation (7.7) is obtained from [GHSR20, Equation (3)] by in-
serting the term ∇−1H̃sh(T ). We thank E. Gorsky for suggesting this modification to us.

The proof of the following formula (also known as the magic formula; see [EH19]) may be
obtained by adapting the methods in the proof of [GN15, Theorem 1.1].

Proposition 7.11. For any curve C, we have

FC = ωFbC ,εC .

7.6. The specialization t = 1. Let P denote an up-right lattice path from (0, 0) to (m,n).
We let area(P) denote the number of unit squares within the rectangle and below P . Recall
that PC denotes the highest lattice path staying weakly below a monotone curve C. Define
hP := ha0ha1 · · ·han ∈ Λq,t, where the maximal horizontal portions of the path P are of
sizes a0, a1, . . . , an. Note that hP always has degree m. The following result is a variant of
[BHM+21, Equation (148)].

Proposition 7.12. For a monotone curve C, we have

(7.8) FC |t=1 =
∑
P

qarea(PC)−area(P)hP
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summed over lattice paths P weakly below C, such that P passes through all the lattice points
that C passes through.

Proof. When C is an almost linear curve, this follows from the shuffle conjecture (i.e., the
right-hand side of (7.1)). More generally, when C is a primitive monotone curve, the state-
ment follows from [BHM+21, Equation (148)] and Remark 7.9, after translating their nota-
tion into ours. Finally, it is straightforward to see that if (7.8) holds for two of the curves
in (1.12), then the skein relation implies that it holds for the third. This proves (7.8) for all
monotone curves by induction on the number of lattice points that C passes through. �

Remark 7.13. It follows from [KT22, Proposition 4.9] that D̃C |t=1 acts on Λq,t by multi-
plication by FC |t=1. We thank Eugene Gorsky for pointing out this reference.

Corollary 7.14. The coefficient of sm in FC |t=q=1 is equal to the number of lattice paths P
weakly below C, such that P passes through all the lattice points that C passes through.

In view of Conjecture 1.13, we have the following problem.

Problem 7.15. For a primitive Z-convex curve C, find a statistic dinv on lattice paths so
that the coefficient of sm in FC is given by

〈sm, FC〉 =
∑
P

qarea(PC)−area(P)tdinv(P)

summed over lattice paths P weakly below C.

7.7. The specialization t = q−1. At t = q−1, we do not have a combinatorial formula for
FC . However, we record the following consequence of Figure 10, giving the precise meaning
of FC in terms of the skein of the annulus.

Proposition 7.16. Under the isomorphism φA : Sk+
q−1(A)

∼−→ Λq defined in (6.4), the image

of CA is equal to
(
q−1/2 − q1/2

)− k(C)
FC |t=q−1 [X(1− q−1)].

8. Z-convex coaxial almost torus links are algebraic

We shall use the language of iterated torus cables and splice diagrams, and refer the reader
to [EN85] for a thorough treatment. The (m,n)-torus cable of a knot K (or of a component
K of a link L) in R3 is defined as follows. The boundary of a tubular neighborhood N(K)
of K in R3 is a torus S = ∂N(K). The topological longitude Ltop and meridian M are the
simple closed curves on S characterized (up to isotopy) by the following relations (see [EN85,
p.21]):

M ∼ 0 and Ltop ∼ K in H1(N(K));

lk(M,K) = 1 and lk(K,Ltop) = 0,

where lk(A,A′) denotes the linking number of the knots A,A′. By definition, the (m,n)-cable
of K is obtained by replacing K by the simple closed curve γ on S satisfying γ ∼ mLtop+nM .

Let (m,n) be a pair of positive integers and with d = gcd(m,n), we write m = dp and
n = dq. Let T ′(m,n) be the (d, dpq+1)-cable of the torus knot Tp,q. It has the splice diagram:

+ +
q 1

p

dpq+1 1

d
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The + vertices are called nodes ; the remaining vertices are called leaves. Roughly speaking,
each node represents a 3-manifold, and each edge incident to a node represents a 2-torus
boundary component. An arrowhead leaf represents a component of a link, and the edge
incident to it represents the 2-torus obtained as the boundary of its tubular neighborhood.
A bulletpoint leaf represents a 2-torus boundary component that has been filled in with a
solid torus.

Recall the definition of an almost torus knot from Remark 1.16.

Lemma 8.1. Let C be an almost linear curve from (0, 0) to (m,n). Then the (m,n)-almost
torus knot LC is isotopic to the knot T ′(m,n).

Proof. Let S = ∂N(Tp,q) denote the boundary of a tubular neighborhood of the torus knot
Tp,q. Recall that we have defined curves Ltop and M on S. Consider the torus T = R2/Z2

equipped with a standard embedding T ↪→ R3. Viewing Tp,q ⊂ T as the projection of
a straight line segment Cp,q from (0, 0) to (p, q), the projection of Cp,q + (−ε, ε) can also
be viewed as a longitude Lalg on S, called the algebraic longitude. The linking number of
Lalg and S is given by lk(S, Lalg) = pq, and thus Lalg ∼ Ltop + pqM (cf. [EN85, Proof of
Proposition 1A.1 on p.52]). By definition, T ′m,n is (isotopic to) the simple closed curve on S
satisfying T ′m,n ∼ dLtop + (dpq + 1)M .

Recall from Section 6.1 that C is a σ1σ2 · · · σd−1-decoration of Cp,q. The annular closure
of the braid σ1σ2 · · ·σd−1 is a (d, 1)-torus knot, which we may view as embedded in S. Thus,
the projection of C to S is isotopic to a curve on S with homology class C ∼ dLalg + M ∼
dLtop + (dpq + 1)M , as required. �

Using Lemma 8.1, we can construct a splice diagram of LC for an arbitrary piecewise
almost linear curve C. Let (m1, n1), . . . , (mr, nr) be a sequence of pairs of positive integers.
Let T1,T2, . . . ,Tr be tori in R3 with the same central circle S1, and strictly decreasing radii.
Place the almost torus knot T(mi,ni) on Ti. The coaxial almost torus link T(m1,n1),...,(mr,nr)

is the r-component link in R3 obtained as the union of all these almost torus knots. In
particular, if gcd(p, q) = 1, the r-component link T(p,q),...,(p,q) is the torus link Trp,rq. Note
that if mi/ni = mi+1/ni+1 then swapping the order of (mi, ni) and (mi+1, ni+1) results in an
isotopic link.

The splice diagram of a coaxial almost torus link T(m1,n1),...,(mr,nr) is given as follows.
Suppose that mi+1/ni+1 = mi+2/ni+2 = · · · = mi+s/ni+s = p/q, where i, s are chosen so that
s ≥ 1 is maximal and gcd(p, q) = 1. Define d1, . . . , ds so that (mi+j, ni+j) = (djp, djq) for
j = 1, 2, . . . , s. Then the splice diagram will contain 1 + #{j | dj > 1} nodes, arranged as
in Figure 14(a). We place a node N in the left column incident to s + 2 edges. For each
j = 1, 2, . . . , s, if dj = 1 then we add an edge connecting N to an arrowhead leaf in the right
column. Otherwise, we draw an edge connecting N to another node in the right column with
three edges labeled (djpq+ 1, 1, dj) connecting it to N , an arrowhead leaf, and a bulletpoint
leaf, respectively.

We also create two vertical edges labeled q and p emanating from N up and down, re-
spectively. The resulting pieces are then connected to each other using these vertical edges,
ordered from top to bottom according to decreasing radii of the tori. For example, the
splice diagram of T(3,2),(6,4),(6,4),(6,15),(2,5),(2,5) is shown in Figure 14(b), where the two slopes
are p/q = 3/2 and p/q = 2/5.
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(d1=1)

+ +

+

q

p

1
1

1
...

d2pq+1 1

d2

d3pq+1 1

d3

+ +

+

+ +

2

3

1
1

1
13 1

2

13 1

2

5

2

1

1
1

31 1

3

(a) (mi+j, ni+j) = (djp, djq), j = 1, 2, . . . , s (b) T(3,2),(6,4),(6,4),(6,15),(2,5),(2,5)

Figure 14. Constructing the splice diagram of a coaxial almost torus link.

Proposition 8.2. The coaxial almost torus link T(m1,n1),...,(mr,nr) is isotopic to the link LC,
where C = C(m1,n1),...,(mr,nr) = [C1C2 · · ·Cr] is a piecewise almost linear curve, and each Ci
is an (mi, ni)-almost linear curve.

The coaxial almost torus link T(m1,n1),...,(mr,nr) is called Z-convex if C(m1,n1),...,(mr,nr) is Z-
convex. This is the case if and only if m1

n1
≥ m2

n2
≥ · · · ≥ mr

nr
; see (1.13).

Proposition 8.3. Z-convex coaxial almost torus links are algebraic.

Proof. According to [EN85, Theorem 9.4], for each edge connecting two nodes A and B, we
need to check the inequality xy >

∏
i zi, where x and y are the two labels on the edge, and

zi-s are the other labels on edges incident to either A or B. This inequality follows from the
Z-convexity condition. �

Appendix A. Examples

Example A.1. Table 1 lists FC for all curves C from (0, 0) to (m,n) with 1 ≤ m,n ≤ 3.

Example A.2. Let m = n = 3 and let C be the curve in Figure 4(c). It is the unique
primitive curve from (0, 0) to (3, 3) which is not Z-convex; cf. Table 1. Moreover, the
associated symmetric function FC is not Schur positive. Even though C is not convex, it
turns out that the associated link LC is still a positroid link. Namely, it is the smallest known

12Here (m,n) = (10, 7), and one can check that for any primitive convex curve with m+n < 17, the EHA
superpolynomial is q, t-unimodal.
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C

PC

Figure 15. The smallest12 primitive convex curve C (shown together with the
lattice path PC) such that the EHA superpolynomial PEC is not q, t-unimodal;
see Example A.3.

positroid link (associated to a positroid variety in the Grassmannian Gr(7, 14)) whose odd
KR homology does not vanish; see [GL20, Example 4.21]. The coefficient of s3 in FC is

q4 + q3t+ q2t2 + qt3 + t4 + q2t+ qt2 − qt.
By contrast, the top a-degree coefficient of PKR

LC
, computed in [GL20, Example 4.21], is

q4 + q3t+ q2t2 + qt3 + t4 + q2t+ qt2 − (qt)
3
2 .

Example A.3. The following example was discovered by A. Mellit and communicated to us
by M. Mazin. Consider the primitive curve C in Figure 15, shown together with the highest
lattice path

PC = RRRURRRURURRUURUU

below C; cf. Definition 1.3. The coefficient of sm in FC is given by

q16 + q15t+ q14t2 + q13t3 + q12t4 + q11t5 + q10t6 + q9t7 + q8t8 + q7t9 + q6t10 + q5t11

+ q4t12 + q3t13 + q2t14 + qt15 + t16 + q14t+ q13t2 + q12t3 + q11t4 + q10t5 + q9t6 + q8t7

+ q7t8 + q6t9 + q5t10 + q4t11 + q3t12 + q2t13 + qt14 + q13t+ 2 q12t2 + 2 q11t3 + 2 q10t4

+ 2 q9t5 + 2 q8t6 + 2 q7t7 + 2 q6t8 + 2 q5t9 + 2 q4t10 + 2 q3t11 + 2 q2t12 + qt13

+ q12t+ 3 q11t2 + 4 q10t3 + 4 q9t4 + 4 q8t5 + 4 q7t6 + 4 q6t7 + 4 q5t8 + 4 q4t9

+ 4 q3t10 + 3 q2t11 + qt12 + 2 q10t2 + 5 q9t3 + 6 q8t4 + 6 q7t5 + 5 q6t6 + 6 q5t7

+ 6 q4t8 + 5 q3t9 + 2 q2t10 + 2 q8t3 + 5 q7t4 + 8 q6t5 + 8 q5t6 + 5 q4t7 + 2 q3t8.

(A.1)

The terms 6 q7t5 + 5 q6t6 + 6 q5t7 highlighted in red violate the q, t-unimodality property
of [GL20, Theorem 1.5]. Since C is convex, by the results of [GL21, GL22], we see that LC
is a positroid knot. The right-hand side of (1.16) was shown to be q, t-unimodal in [GL20].
Therefore, (1.16) cannot hold for C. Moreover, the top a-degree coefficient of the HOMFLY
polynomial PHOMFLY

LC
of the link LC is not parity-unimodal :

PHOMFLY
LC

=
(
q32 + q30 + q29 + 2 q28 + 2 q27 + 3 q26 + 4 q25 + 5 q24 + 5 q23 + 8 q22 + 7 q21 + 9 q20

+ 10 q19 + 9 q18 + 13 q17 + 8 q16 + 13 q15 + 9 q14 + 10 q13 + 9 q12 + 7 q11 + 8 q10

+ 5 q9 + 5 q8 + 4 q7 + 3 q6 + 2 q5 + 2 q4 + q3 + q2 + 1
) 1

a32
+ · · · .
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FC

Y Y s1

Y Y s1

Y Y s2

Y Y s2

Y Y s11 + (q + t) s2

Y Y s11 + (q + t− qt) s2

Y Y s2

Y Y s11 + (q + t) s2

Y N (q + t) s11 + (q2 + qt+ t2) s2

Y N (q + t− qt) s11

+ (q2 + qt+ t2 − q2t− qt2) s2

Y Y s11 + (q + t− qt) s2

Y Y s3

Y Y s21 + (q + t) s3

Y N (q + t) s21 + (q2 + qt+ t2) s3

Y Y s21 + (q + t− qt) s3

Y N (q + t− qt) s21

+ (q2 + qt+ t2 − q2t− qt2) s3

C s-
p

os
it

iv
e?

Z-
co

n
ve

x
?

FC

Y Y s3

Y Y s21 + (q + t) s3

Y Y (q + t) s21 + (q2 + qt+ t2) s3

Y Y (q + t) s21 + (q2 + qt+ t2) s3

Y Y s111 + (q2 + qt+ t2 + q + t) s21

+ (q3 + q2t+ qt2 + t3 + qt) s3

N N (q + t− 1) s111 + (q3 + q2t+ qt2 + t3 + q2 + 2qt+ t2 − q − t) s21

+ (q4 + q3t+ q2t2 + qt3 + t4 + q2t+ qt2 − qt) s3

Y Y s21 + (q + t− qt) s3

N N (q + t− 1− qt) s111 + (q3 + t3 + q2 + 2qt+ t2 − q − t− q3t− q2t2 − qt3) s21

+ (q4 + q3t+ qt3 + t4 + q2t+ qt2 − qt− q4t− q3t2 − q2t3 − qt4) s3

Y Y (q + t− qt) s21

+ (q2 + qt+ t2 − q2t− qt2) s3

Y Y s111 + (q2 + qt+ t2 + q + t− q2t− qt2) s21

+ (q3 + q2t+ qt2 + t3 + qt− q3t− q2t2 − qt3) s3

Y Y s111 + (q2t2 + q2 + qt+ t2 + q + t− 2q2t− 2qt2) s21

+ (q3t2 + q2t3 + q3 + q2t+ qt2 + t3 + qt− 2q3t− 2q2t2 − 2qt3) s3

Y Y (q + t− qt) s21

+ (q2 + qt+ t2 − q2t− qt2) s3

Y Y s111 + (q2 + qt+ t2 + q + t− q2t− qt2) s21

+ (q3 + q2t+ qt2 + t3 + qt− q3t− q2t2 − qt3) s3

Table 1. The symmetric functions FC for all monotone curves C with 1 ≤
m,n ≤ 3. Here, Y/N indicates whether each curve is s-positive (i.e., has (q, t)-
Schur positive series (1.14)) and Z-convex (Definition 1.12).

(By (1.19), this coefficient is obtained by plugging t = q−1 into (A.1) and multiplying the
result by q16/a32.) Combining this with the results of [GL20], we see that the odd KR
homology of LC cannot vanish. This disproves [GL21, Conjecture 7.1(ii,iv)].
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