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0 Introduction
I am addressing the topic of the EFI workshop through a discussion of basic math-
ematical structural concepts, in particular those of natural number and set. I will
consider what they are, what their role is in mathematics, in what sense they might
be complete or incomplete, and what kind of evidence we have or might have for
their completeness or incompleteness.

I share with Kurt Gödel and Solomon Feferman the view that mathematical
concepts, not mathematical objects, are what mathematics is about.3 Gödel, in the
text of his 1951 Gibbs Lecture, says:

Therefore a mathematical proposition, although it does not say any-
thing about space-time reality, still may have a very sound objective
content, insofar as it says somethng about relations of concepts.4

Though probably neither Feferman nor I would put it this way, we both basically
agree. There are some differences that I have with each of the them. My view
is closer to Gödel’s than to Feferman’s. Nevertheless, there is a great deal that
I agree with in Feferman’s conceptual structuralism, which he describes in, e.g.,
[8].

One point of disagreement is that Feferman takes mathematical concepts to
be human creations. He calls them objective, but the objectivity seems ultimately
only intersubjective. Gödel thinks that mathematical concepts are genuine objects,
part of the basic furniture of the world. For him they are non-spatio-temporal
entities. I would say that I stand in between the two, but in fact I don’t have much

1I would like to thank Peter Koellner for numerous corrections and for valuable comments and
suggestions about the earlier version of this paper that was posted at the EFI website.

2I would like to thank Penelope Maddy for probing questions about another earlier version,
questions that have led me to try to make the current version of the paper more explicit and more
clear about what my views are.

3Actually Gödel counts concepts as objects. What I am calling objects he calls “things.”
4Gödel [14], p. 321.
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to say about the ontology of mathematical concepts. I think that it is correct to
call them objective and that it is more correct to say that they were discovered
than that they were created by us. I don’t think that this is incompatible with our
having epistemic access to them.

Gödel admits two kinds of evidence for truths about mathematical concepts.
In current terminology, these are intrinsic evidence and extrinsic evidence. I think
he is right in admitting both. Feferman seems to allow only intrinsic evidence,
though perhaps he just has very high standards for extrinsic evidence. At least
superficially, I am more with Feferman than with Gödel on how we get intrinsic
evidence. Gödel says that it is a through a kind of non-sensory perception, which
he calls “mathematical intuition.” It is not hard to understand how Gödel could be
led to such a view. Having placed mathematical concepts in another world, he is
impelled to come up with a mechanism for our getting in contact with them. It is
not clear, though, how literally we should take the word “perception.” Except for
the use of this word, everything he says makes it seem that our direct knowledge
of mathematical concepts comes from garden-variety grasping or understanding
them.

The question on which Feferman, Gödel, and I most clearly and directly dis-
agree is that of the status of the Continuum Hypothesis CH. Feferman is sure that
CH has no truth-value. Gödel is sure that it has a truth-value. I believe that the
question of whether it has a truth-value is open, and one of the goals of this paper
is to understand both possible answers.

The basic mathematical concepts I will be discussing are concepts of struc-
tures. The specific concepts that I will consider are the concept of the natural
numbers, that of the natural numbers and the sets of natural numbers, etc., the
general iterative concept of the sets, and extensions of this concept. These are
examples of concepts with two properties. (1) We normally construe them as con-
cepts of single structures. (2) Each of them can be understood and studied without
a background knowledge or assumptions about other structural concepts. In say-
ing that the concepts mentioned in the second sentence of this paragraph have
property (1), I don’t want to imply that they are not at bottom concepts of kinds
of structures. As I will formulate these concepts, each of them is a concept of a
kind of structure, and we regard the structures of this kind as being of a single
isomorphism type. To what extent regarding them in this way is justified is one of
the topics of this paper.

Some of the main points of my view are the following:

(1) Mathematical concepts differ from other concepts mainly in that they are
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amenable to mathematical study. Basic mathematical concepts, insofar as they
are taken as basic rather than as being defined from other mathematical concepts,
do not come with anything like certifiably precise characterizations. Gödel thinks
that basic mathematical concepts are not definable in any reductive way.5 He also
thinks that they have to be objects in something like Frege’s third world, and he
thinks that our knowledge of them comes from a kind of perception. My views
about mathematics have a lot in common with Gödel’s, but his reification of math-
ematical concepts is one of two main points of difference (the other main point
concerning instantiation of basic concepts). His talk of perception is a third differ-
ence, but—as I suggested above—it might be a somewhat superficial difference.

(2) The concept of the natural numbers and that of the sets are both concepts
of kinds of structures. When I speak of a “structure,” I mean some objects and
some relations and functions on the objects. Hence my structures are like models,
except that I don’t require that the objects of a structure form a set.

Thinking that, for example, the concept of the sets determines what it is for
an object to be a set is very common but, I believe, wrong. I will thus treat the
concept as does (one kind of) structuralist, but nothing important will turn on this.6

(3) A fundamental question about a basic structural concept is the question
of which statements are implied by the concept. I get the phrase “implied by the
concept” from Gödel. An example of his use of the term is his saying, on page
182 of [12], “there may exist, besides the ordinary axioms, the axioms of infinity
and the axioms mentioned in footnote 17, other (hitherto unknown) axioms of set
theory which a more profound understanding of the concepts underlying logic and
mathematics would enable us to recognize as implied by these concepts.” I intend
to use the phrase in the same way as Gödel does. On my reading of the quoted
passage and other similar ones, Gödel does not treat the notion as an epistemic
one. A statement could, in principle, be implied by a concept without this being
known—or even knowable. One of my reasons for reading Gödel in this way

5For some evidence that he thinks this, see the following: the remark about “set of x’s” quoted
on page 16 below; the statement on page 321 of [14] that the comprehension axiom for sets of
integers, which he expresses in terms of well-defined properties, “cannot be reduced to anything
substantially simpler”; the discussion on page 139 of [11] of the sense of “analytic” as true in
virtue of meaning, “where this meaning may perhaps be undefinable (i.e., irreducible to anything
more fundamental)”.

6The reader will notice that I use somewhat odd terminology for basic concepts. E.g., I say “the
concept of the sets” instead of the usual “the concept of set.” This done to stress that it is structures,
not individual objects, that may instantiate the concept. This terminology has a downside. For
example, the phrase “the concept of the natural numbers” might suggest misleadingly suggest that
at most one structure could instantiate the concept.
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is that he thinks that the concept of the sets determines truth-values for, e.g., all
first-order set-theoretic statements,7 and thus he seems to think that, for every
such sentence σ, either σ or its negation is implied by the concept. Whether I am
right or wrong about Gödel’s use, I will always use “implied be the concept” in a
non-epistemic sense.8

I will treat “implied by the concept” as a primitive notion. In Section 3, I will
discuss whether and in what way it might be correct to say that a statement is
implied by a basic concept just in case it would have to be true in any structure
that instantiated the concept.

One important point is that I regard the question of whether a statement is
implied by a basic concept to be meaningful independently of whether there are
any structures that instantiate the concept.

(4) The concept of the natural numbers is first-order complete: it determines
truth-values for all sentences of the usual first-order language of arithmetic. That
is, it implies each first-order sentence or its negation but not both. (Other kinds of
completeness, such as second-order completeness or quantifier-free completeness,
are analogously defined.) In fact I think that the concept of the natural numbers
has a stronger property than first-order completeness. I will discuss this property,
which I call “full determinateness” in the next section. I regard it as an open
question whether the concept of the sets—or even, say, the concept of the natural
numbers and the sets of natural numbers—is first-order complete.

(5) The concepts of the sets and of the natural numbers are both categorical:
neither has non-isomorphic instantiations. (A more conservative statement would,
for the concept of the sets, replace “categorical” with “categorical except for the
length of the rank hierarchy.”)

(6) We do not at present know that the concept of the sets—or even just the
concept of the sets of sets of natural numbers—is instantiated. I do not have
an opinion as to whether it is known that the concept of the natural numbers is
instantiated. But I have no real quarrel with those who say it is known that that
the concept is instantiated. I will explain this in the next section.

7See, e.g.,the first full paragraph of page 262 of [13]. In the last part of Section 1, I will discuss
this paragraph and its implied assertion that the concept of the sets is instantiated.

8 I don’t know of any passages in which Gödel uses “implied by the concept” in a way that sug-
gests that it has an epistemic component. However, there is one passage in each CH paper where
Gödel uses the seemingly related phrase “intrinsic necessity” in what seems to be an epistemic
sense. I will quote one of these two nearly identical passages right after the second paragraph
of Section 4. I will discuss, on page 26 and again on page 31, what Gödel might mean in these
passages by “intrinsic necessity.”
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(7) It is irrelevant to pure mathematics whether either of these concepts is in-
stantiated. My main reason for making this assertion is that our number-theoretic
and set-theoretic knowledge—including our axioms—is based entirely on con-
cepts.

(7) is something I believe, but it will not really play a central role in this paper.
My main concern in the paper is (3). I will be investigating what statements are
implied by the basic mathematical concepts, and this seems an important question
even if mathematics is ultimately about abstract objects.

I will say a bit about (7) now and in the next section but I won’t say much
more about it in the rest of the paper. I believe that mathematical objects (e.g.,
numbers and sets) are not what mathematics is about, that the truth or falsity
of mathematical statements does not depend on mathematical objects or even on
whether they exist.

A partly superficial difference between my views and Gödel’s is in the role of
mathematical objects in mathematics. Gödel believed that they play an important
role. For one thing, he considered mathematical concepts to be a species of math-
ematical objects. Since he characterized mathematical truth in terms of relations
of concepts, his view has to count as object-based. But the role of he ascribes
to non-concept mathematical objects such as numbers and sets is limited. It is, I
believe, more limited than I said it was in [18]. I will discuss Gödel’s views about
the role of such objects in the next section.

1 Mathematical Objects

Most philosophical accounts of mathematics are object-based. They take the sub-
ject matter of mathematics to be mathematical objects. They characterize mathe-
matical truth in terms of structures composed of objects.

What seems to me the strongest argument in favor of object-based accounts is
that they—or, at least, some of them—allow one to take mathematical discourse
at face value. Euclid’s theorem that there are infinitely many prime numbers is,
on face value, about a particular domain of objects, the positive integers. What
makes it true is, on face value, that infinitely many of these objects have a certain
property.

Of course, many object-based accounts accounts involve taking mathematical
discourse at something other than face value. Some structuralist accounts are
examples. But such accounts take one aspect of mathematical language at face
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value: its existential import. The statement that there are infinitely many prime
numbers seems to assert the existence of some things, and pretty much all object-
based accounts construe such statements as genuinely assertions of existence.

There are major problems that object-based accounts must face. There the
problem, raised in Benacerraf [1], of how we can know truths about objects with
which we seemingly do not interact. There is the problem of how we know even
that these objects exist. There is the problem of just what objects such things as
numbers and sets are.

Dealing with these problems has led philosophers of mathematics to come up
with what seem to me strange sounding notions about mathematical objects. Here
are some of them:

• The natural numbers are (or are being) created by us.

• Mathematical objects are “thin” objects.

• Specifying the internal identity conditions for a supposed kind of mathe-
matical objects can be sufficient for determining what these objects are.

• Mathematical objects are “logical” objects, and this guarantees their exis-
tence.

For me the main problem with assuming as a matter of course that the ex-
istence of mathematical objects instantiating our mathematical concepts is that
such assumptions are not innocent. They can have consequences that we have
good reasons to question. Assume, for example, that we know that the concept of
the sets of sets of natural numbers is instantiated. I will argue later that this con-
cept is categorical. (This is an old argument, due to Zermelo.) But instantiation
and categoricity together imply that the concept is first-order complete, it would
seem—and I believe. This means that if we know instantiation then we know that
CH, which is a first-order statement about the concept in question, has a definite
truth-value. Do we really know that it has a truth-value? I don’t think so.9

There is a property of concepts short of being instantiated that has all the im-
portant consequences of instantiation. Say that a concept of a kind of structure
is fully determinate if is determined, in full detail, what a structure instantiating
it would be like. By “what it would be like” I mean what it would be like qua

9It is important to note that I do not deny that the concept of the sets is instantiated. I deny only
that we know at present that it is instantiated.
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structure. I don’t mean that it would be determined what the objects of an instan-
tiation would be. Most mathematicians—and I am included—think of the concept
of the natural numbers as having this property. Full determinateness follows from
categoricity plus instantiation. Full determinateness is what we want our basic
concepts to have. It does all the important work of instantiation. I do not see any
reason that full determinateness implies instantiation. However, all my worries
about too easily assuming instantiation apply just as well to too easily assum-
ing full determinateness. Hence I don’t mind if someone asserts that every fully
determinate mathematical concept is instantiated.

Gödel on mathematical objects

Gödel classifies objects into two sorts, things and concepts. The role he as-
cribes to mathematical concepts is a central one. Mathematical propositions are
about the relations of concepts. A true mathematical proposition is analytic, true
in virtue of meaning. In one place10 he says that the meaning in question is the
meaning of the concepts occurring in the propositon. In another place11—thinking
of propositions as linguistic—he says that it is the meaning of the terms occurring
in the proposition, where the meaning of the terms is the concepts they denote.

What role Gödel ascribes to mathematical things, e.g., to sets and numbers, is
less clear.

On the one hand, he says of classes (i.e., sets) and concepts:

It seems to me that the assumption of such objects is quite as legiti-
mate as the assumption of physical bodies and there is quite as much
reason to believe in their existence. They are in the same sense neces-
sary to obtain a satisfactory system of mathematics as physical bodies
are necessary for a satisfactory theory of our sense perceptions and in
both cases it is impossible to interpret the propositions one wants to
assert about these entities as propostions about the “data”, i.e., in the
latter case the actually occurring sense perceptions.

On the other hand, his account of mathematical truth makes it puzzling what
role sets and other mathematical “things” are supposed to play. The revised and
expanded version of his paper on the Continuum Hypothesis has passages that
look relevant to this puzzle. Here is one of them.

10Gödel [11], p. 139
11Gödel [14], p. 346
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But, despite their remoteness from sense experience, we do have
something like a perception also of the objects of set theory, as is
seen from the fact that the axioms force themselves upon us as being
true. I don’t see any reason why we should have less confidence in
this kind of perception, i.e., in mathematical intuition, than in sense
perception.12

It would be natural to suppose that Gödel is talking about both perception of con-
cepts and perception of sets. Nevertheless nothing he says in the paper (or else-
where, so far as I know) suggests that perception of sets could yield significant
mathematical knowledge. The ZFC axioms’ forcing themselves on us is surely
intended as evidence that we perceive the concept of the sets. When elsewhere
in the paper he discusses actual or imagined new axioms, the source of our cer-
tain knowledge of their truth is always characterized as the concept of the sets
and other concepts. He talks of large cardinal axioms that are suggested by the
“very concept of set” on which the ZFC axioms are based; of new axioms that
“only unfold the content of the concept of set”; of new axioms that “are implied
by the general concept of set”; of the possibility that new axioms will be found
via “more profound understanding of the concepts underlying logic and mathe-
matics.”13 There is nothing to suggest that perception of sets could help in finding
new axioms or played a role in finding the old ones.

A second relevant-looking passage is the following.

For if the meanings of the primitive terms of set theory as explained
on page 262 and in footnote 14 are accepted as sound, it follows
that the set-theoretical concepts and theorems describe some well-
determined reality, in which Cantor’s conjecture must be either true
or false. Hence its undecidability from the axioms being assumed
today can only mean that these axioms do not contain a complete de-
scription of that reality.14

What he explained on page 262 (of Benacerraf and Putnam [2]) and in footnote 14
was the iterative concept of the sets. The quoted passage thus seems to be saying
that if that concept of the sets is sound then it is instantiated by some structure

12Gödel [13], p. 268.
13See pp. 260-261.
14Gödel [13], p. 260.
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and, moreover, the instantiation is unique.15 In what sense the instantiation is
supposed to be unique is not clear. No doubt he at least intends uniqueness up to
isomorphism.

The argument given in the quoted passage seems to be the only argument given
in the Continuum Hypothesis papers for why the CH must have a truth-value. The
corresponding passage16 in the original version of the paper has what is probably
supposed to be the same argument. Instead of the assumption that the explained
meanings of the primitive terms of set theory are sound, there is the assumption
that “the concepts and axioms” have a “well-defined meaning.”17

Some naturally arising questions about the argument are:

(1) Is soundness of meaning the same as well-definedness of meaning? I.e., are
the two versions of the argument the same? A related question is: Why did
Gödel replace the first version by the second?

(2) Do these assumptions imply by definition the existence of an instantiation
(the well-determined reality)? I.e., is existence of a unique instantiation part
of what is being assumed?

(3) Does Gödel have reasons for thinking that the assumptions are true? Evi-
dently he does think they are true.

Whatever the answers to these individual questions are, the important question
is: Do we have good reasons for believing that the concept of the sets has a
unique instantiation? As I have already indicated, I think that the answer is yes
for uniqueness and no for existence, and I will say why later in this paper.

15There is a way of reading this passage on which no uniqueness is asserted and there is no
implication that the Continuum Hypothesis has a definite (instantiation-independent) truth-value.
But this is not the reading Gödel intends. He intends that the concept of the sets determines a
unique instantiantion—at least, one that is unique enough to determine a truth-value for CH.

16Gödel [12], p.181.
17The real reason for my qualification “seems to be” in the first sentence of this paragraph is not

this earlier version of the argument. It is another passage in the revised version that, on one reading,
gives a different argument for there being a truth-value for the CH. On page 268 of Gödel [13],
he says, “The mere psychological fact of the existence of an intuition which is sufficiently clear to
produce the axioms of set theory and an open series of extensions of them suffices to give meaning
to the question of the truth or falsity of propositions like Cantor’s continuum hypothesis.” If the
existence of “meaning to the question of the truth or falsity of propositions like Cantor’s continuum
hypothesis” is understood as implying that such propositions have truth-values, then the argument
seems very weak, so charity suggests that Gödel intended something weaker. See Parsons [19] for
a discussion of the passage.

9



2 The Concept of the Natural Numbers
Despite the title of this section, I will mainly discuss not the concept of the natural
numbers but the perhaps more general concept of an ω-sequence. The concept of
the natural numbers is often taken to be the concept of a single structure, a concept
that determines not just the isomorphism type of a structure but also the objects
that form the structure’s domain. Whether the concept of the natural numbers de-
termines, e.g., what object is the number 3 has long been debated. I don’t believe
the concept does this. Nor do I—an agnostic about the existence of such mathe-
matical objects—believe that the concept of the natural numbers determines what
3 has to be if it exists. But probably the concept does determine some properties
of the numbers. Perhaps, for example, it is part of the concept that numbers have
to be abstract objects and that being cardinalities has to be part of their essences.
By talking mainly about the concept of an ω-sequence, I will avoid these issues.

The concept of an ω-sequence—or that of the natural number sequence—may
be taken not as basic but as defined, usually as defined from the concept of the
sets. Throughout this section, I will take the concept as basic. An instantiation
of the concept will consist of some objects and a function, the successor function.
One can, if one wishes, think of the successor function as merely a relation, not
as an additional object. As I will explain shortly, ordering and basic arithmetical
functions are determined by the successor function, and so we might as well think
of them as belonging to the instantiation proper.

There are various ways in which we can explain to one another the concept
of the sequence of all the natural numbers or, more generally, the concept of an
ω-sequence. We can push upward the problem of explaining it, defining it in terms
of the stronger concept of the sets. Direct attempts at explaining it often involve
metaphors: counting forever; an endless row of telephone poles or cellphone tow-
ers; etc. If we want to avoid metaphor, we can talk of an unending sequence or
of an infinite sequence. If we wish not to pack to pack so much into the word
“sequence,” then we can say that that an ω-sequence consists of some objects or-
dered so that there is no last one and so that each of them has only finitely many
predecessors. This explanation makes the word “finite” do the main work. We
can shift the main work from one word to another, but somewhere we will use a
word that we do not explicitly define or we define only in terms of other words
in the circle. One might worry—and in the past many did worry—that all these
concepts are incoherent or at least vague and perhaps non-objective.

The fact that we can latch onto and communicate to one another concepts
that we cannot precisely define is not easily explained. It is a remarkable fact
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about us. Note, though, that this fact does not imply anything about what kinds of
computation we are capable of.

Is the concept of an ω-sequence a clear and precise one? In particular, is
it clear and precise enough to determine a truth-value for every every sentence
expressible in the language of first-order arithmetic? (To be specific, let’s declare
this to be the first-order language with 0, S, + and ·.) As I indicated earlier, I will
call the concept first-order complete if the answer is yes—if it does determine
truth-values for all these statements. First-order completeness does not mean that
the answers to all arithmetical questions are knowable by us. In terminology (of
Gödel) that I introduced earlier, it means that an answer is implied by the concept
and the opposite answer is not also implied by the concept.

I will use the phrase “first-order complete” in in a similar way in discussing
other concepts. E.g., by the question of whether the concept of the sets is first-
order complete I mean the question of whether that concept determines truth-
values for all sentences of the usual first-order language of set theory.

Of course, what one means by “first-order completeness” of a concept depends
on what functions and relations one includes. Since I am (mostly) taking the
concept of ω-sequence to be a concept of structures with only one unary operation,
it would perhaps seem more correct to define first-order completeness for that
concept in terms of the language with only with only S as the only non-logical
symbol. But order, addition, and multiplication are recursively definable from
successor, so it makes sense to include them. Indeed, it makes sense to take them
to be part of the concept. I won’t worry about whether doing so would yield a
different, or just an equivalent, concept.

The question of the first-order completeness of a concept may not be a clear
and precise one. If one is unsure about the answer in the ω-sequence case, one
may worry even about whether the notion of a first-order formula is clear and
precise.

I suspect that most mathematicians believe that the concept of an ω-sequence
is first-order complete. I believe that it is. I also suspect that most mathematicians
believe—as I do—that the concept is clear and precise in a stronger way, that it
has the property of full determinateness that was introduced on page 6.

It may be impossible to give a clear description of this property, but I will try
again here. Say that a structural concept is fully determinate if it fully determines
what any instantiation would be like. Another way to state this is to say that a
structural concept is fully determinate if and only if the concept fully determines
a single isomorphism type. I don’t think of isomorphism types as equivalence
classes of structures. As I conceive of them, isomorphism types are fully deter-
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minate ways that a structure could be. In the language of one sort of structuralist,
one might say that a fully determinate concept determines a single “structure.” All
it lacks for being a structure in my sense is having its “places” filled by objects. I
will make the following assumption.

Modal Assumption: Every very isomorphism type is or could have been the iso-
morphism type of a structure in my sense.

The idea behind the Modal Assumption is that (i) an isomorphism type will
be instantiated if there are enough objects to form an instantiation, and (ii) it is
possible that there are enough objects. The Modal Assumption is intended to be
less an assumption than a partial specification of the notion of possibility that I am
using.

I don’t take take full determinateness to imply that there are such objects as
isomorphism types or structuralist structures, but I don’t mind too much if it is
taken in that way. I don’t even mind if one says that the full determinateness of
the concept of an ω-sequence implies that such a sequence exists or even that the
natural numbers exist. My objection to assuming that there are instantiations of,
e.g., the concept of the sets is entirely based on uncertainty about whether the
concept is fully determinate.

I am now going to discuss some questions about the ω-sequence concept that
are related to first-order completeness and full determinateness but are—I believe,
importantly different questions.

One question that is not the same as the full determinateness question or the
first-order completeness question for a concept is the question of whether the con-
cept is a genuine mathematical concept. The concept of an ω-sequence is the
paradigm of a fundamental mathematical concept. It supports rich and intricate
mathematics. It is also fully determinate, but that is an additional fact about it.
There could be genuine basic mathematical concept that was not fully determi-
nate or even first-order complete. Some think that the concept of the sets is such
a concept.

Another question that is different from those of full determinateness and first-
order full completeness is the question of categoricity: Are any two structures
instantiating the concept isomorphic? Obviously a concept can be clear, precise,
and first-order complete without being categorical. The the concept of a dense
linear ordering without endpoints is an example. But I also think it possible that
a concept be categorical without being first-order complete. The concept of an
ω-sequence is not an example, but I do contend that (a) we know the concept of
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an ω-sequence to be categorical, but (b) this knowledge does not per se tell us that
the concept is first-order complete, and (c) we know the concept of the subsets
of Vω+1 to be categorical, but we do not know whether it is first-order complete.
Justifying each of these perhaps surprising assertions will take me some time.

The Peano Axioms

In arguing for categoricity of the concept of an ω-sequence, the first thing I
want to note is that the concept implies a version of the Peano Axioms, what I will
call the Informal Peano Axioms. These axioms apply to structures with a unary
operation S and a distinguished object 0. Nothing significant for my purposes
would be affected if we included binary operations + and · and axioms for them,
as in the usual first-order Peano Axioms.) The axioms of Informal Peano Axioms
are:

(1) 0 is not a value of S.

(2) S is one-one.

(3) For any property P , if 0 has P and if S(x) has P whenever x has P , then
everything has P .

Axiom (3), the Induction Axiom, is framed in terms of the notion of a property.
(Peano framed his Induction Axiom in terms of classes.) I have followed Bertrand
Russell in using the word “any” and not the word “all” in stating Induction. Rus-
sell’s distinction between any and all is—if I understand it—at heart a distinction
between schematic universal quantification and genuine universal quantification.
In the way I intend (3) to be taken, it is equivalent with the following schema.

(3′) If 0 has property P and if S(x) has P whenever x has P , then everything
has P .

Here there is no restriction on what may be substituted for “P ” to get an instance
of the schema—i.e., no restriction to any particular language. In the future, I will
speak of the Induction Axiom as the “Induction Schema” or—to distinguish it
from first-order induction schemas—as the “Informal Induction Schema.”

One might worry that the general notion of property is vague, unclear, or even
incoherent, and so that we do not have a precise notion of what counts as an in-
stance of the Induction Schema. Perhaps this is so. But as far as using the schema
is concerned, all that the worry necessitates is making sure that the instances one
uses all involve clear cases of properties.
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Understanding the open-ended Induction Schema does not involve treating
properties as objects. In particular, it does not involve an assumption that the
notion of property is definite enough to support genuine quantification over prop-
erties. Contrast this with the Second Order Induction Axiom, the induction axiom
of the Second Order Peano Axioms, i.e., the Peano Axioms as usually formulated
in the formal language of full second-order logic (with non-logical symbols “0”
and “S”). The language of full second order logic allows one to define proper-
ties by quantification—including nested quantification—over properties (or sets
or whatever else one might take the second-order quantifiers to range over).

Of course, if one is working in a background set theory and if one is consider-
ing only structures with domains that are sets, then quantifiers over properties can
be replaced by quantifiers over subsets of the domain. In this situation, the Infor-
mal Peano Axioms and the Second Order Peano Axioms are essentially the same.
But that is not our situation. In arguing for categoricity, the only objects whose
existence I want to assume are those belonging to the domains of the two given
structures satisfying the axioms. I do not even want to treat the two structures as
objects. Rather I will assume that are determined by their objects, properties and
relations.

Do the Informal Peano Axioms fully axiomatize the concept of an ω-sequence?
Would any structure satisfying the axioms have to instantiate the concept? In so
far as these are definite questions, the answer is yes. Consider a possible structure
M satisfying the axioms. Let P be the property of being an object of M that
comes from the 0 of M by finitely many applications of the S function of M. By
the instance of the Induction Schema given by P , every object of M has P . Hence
M is an ω-sequence. Since I think that P is a clear example of a property, I think
this argument is valid.

Of course, the axioms are not an axiomatization of the concept the way one
normally talks about axiomatization. They are not first-order axioms. It is not pre-
cisely specified exactly what the axioms are: what would count as an instance of
the Informal Induction Schema. As a tool for proving theorems about the concept,
they don’t seem to go much beyond the first-order axioms.

In any case, what will be used in proving categoricity of the concept is only
that the Informal Peano Axioms are implied by the concept, not the converse.

Categoricity.

The categoricity of the ω-sequence concept has been proved in more than one
way, and I will not be presenting a new way to prove it. But I do want to be care-
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ful about what I assume. In particular, I want to avoid non-necessary existential
assumptions. Dedekind’s proof (see [5]), is done in terms of sets (which he calls
“systems”), and uses various existence principles for sets.

Let M and N be structures satisfying the Informal Peano Axioms. We specify
a function f sending objects of M to objects of N as follows:

f(0)M = 0N;

f(SM(a)) = SN(f(a)).

Using the Informal Induction Schema in M, we can show that these clauses
determine a unique value of f(a) for every object a of M.18 By more uses of
the Informal Induction Schema in M, we can prove that this defined function is
one-one and is a homomorphism. Using the Informal Induction Schema in N,
we can prove that the defined function is a surjection. The properties involved in
the instances of Informal Induction are definable from the two models, so there is
nothing problematic about them.

Note that categoricity of the Informal Peano Axioms does not by itself imply
the first-order completeness of the axioms or the ω-sequence concept, for the triv-
ial reason that categoricity implies nothing if there is no structure satisfying the
axioms. Dedekind19 was well aware that categoricity by itself is worthless, and
that led him to his often maligned existence proof. What I am suggesting is that
the real reason for confidence in first-order completeness is our confidence in the
full determinateness of the concept of the natural numbers. Indeed, I believe that
full determinateness of the concept is the only possibly legitimate justification we
have for saying that the concept is instantiated or that the natural numbers exist.

3 The Concept of the Sets
The modern iterative concept has four important components:

(1) the concept of the natural numbers;

(2) the concept of the sets of x’s;

18Coding finite sequences of elements of each model by objects of the model, we apply Informal
Induction in M for the property of being an element b of M such there is a unique (code of) a
function from the M-predecessors of b into N that satisfies the inductive clauses. These functions
piece together to define f .

19Dedekind [5]
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(3) the concept of transfinite iteration;

(4) the concept of absolute infinity.

Perhaps we should include the concept of extensionality as Component (0). Com-
ponent (1) might be thought of as subsumed under the other three, but I have
treated it separately. In the way I am thinking of the concept of the sets, it is a
concept of a kind of structure, and so one does not have to add anything about
what kind of objects a set is.

The concept of absolute infinity comes from Cantor. He held that sequence
of the ordinal numbers is absolutely infinite, whereas sets are merely transfinite.
Cantor’s assertion justifies the Axiom of Infinity, the Axiom of Replacement, and
some large cardinal axioms. The concept—or some substitute for it—is an impor-
tant ingredient in the concept of the sets. Nevertheless, it will not play an major
role in this paper.

Sets of x’s.

The phrase “set of x’s” comes from Gödel. The x’s are some objects that form
a set and the sets of x’s are the sets whose members are x’s. It might have been
better, given what Gödel says in the quotation below, to speak of “class of x’s.”20

God̈el says

The operation “set of x’s” cannot be defined satisfactorily (at least
in the present state of knowledge), but only be paraphrased by other
expressions involving again the concept of set, such as: “multitude
of x’s”, “combination of any number of x’s”, “part of the totality of
x’s”; but as opposed to the concept of set in general (if considered a
primitive) we have a clear notion of the operation.21

For Gödel (and for me), this concept is—like the concept of the natural numbers—
typical of the basic concepts of mathematics. It is not definable in any straightfor-
ward sense. We can understand it and communicate it to one another, though what
we literally say in communicating it by no means singles out the concept in any
clear and precise way. As I said earlier, our ability to understand and communicate

20Gödel doesn’t say whether the concept applies if the x’s do not form a set. I am assuming
that it does not apply. It would be okay to let it apply, but then only “class of x’s” would give the
intended meaning.

21Gödel [12], p. 180.
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such concepts is a striking and important fact about us. Gödel says that the con-
cept is of the sets of x’s is “clear.” But Feferman says that the concept is unclear
for the case when the x’s are the natural numbers, so—one would presume—for
any case when there are infinitely many x’s. Feferman says that the concept of an
arbitrary set of natural numbers is “vague.” My own view is that the clarity—or,
in my language, the full determinateness—of the concept of the sets of x’s is an
open question, and that we cannot rule out that the answer varies with what the
x’s are, even when there are infinitely many.22

Let us first look at the general concept of the sets of x’s. This is a concept of
structures with two sorts of objects and a relation that we call membership that
can hold between objects of the first sort, the x’s, and objects of the second sort,
the sets of x’s. Clearly the following axioms are implied by the concept.

(1) If sets α and β have the same members, then α = β.

(2) For any property P , there is a set whose members are those x’s that have P .

Axiom (1) is, of course, the Axiom of Extensionality. Axiom (2) is a Comprehen-
sion Axiom, which I will interpret as an open-ended schema and call the Informal
Comprehension Schema, analogous to the Informal Induction Schema.

Do these axioms fully axiomatize the concept of the sets of x’s? It is very
plausible to say they do. Gödel seems to have thought so. In the posthumously
published version of his Gibbs Lecture, he says, of the case when the x’s are the
integers:

For example, the basic axiom, or rather axiom schema, for the concept
of set of integers says that, given a well-defined property of integers
(that is, a propositional expression ϕ(n) with an integer variable n)
there exists the set M of those integers which have the property ϕ.

It is true that these axioms are valid owing to the meaning of the
term “set”—one might even say that they express the very meaning of

22One argument in favor of the clarity of the concept is that it is not easy to see what could be the
source of unclarity. Vagueness does not seem to be the answer. What are generally regarded as the
two main characteristics of vagueness, borderline cases and the absence of sharp boundaries, are
nowhere to be seen. The cause of our worrying about the concept of the sets of x’s is not examples
of properties about whose definiteness we are unsure, and it is not because we see that there is an
absence of a sharp boundary. One proposed source of a lack of clarity is that the concept depends
upon the notion of all definite properties of x’s. The only way I could understand an unclarity
about what is meant by “all definite properties of x’s” would be if there were an unclarity in what
is meant by “definite property of x’s.”
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the term “set”—and therefore they might fittingly be called analytic;
however, the term “tautological”, that is, devoid of content, for them
is entirely out of place.23

I have omitted a few sentences between the two parts of the quotation, sentences
about why the axioms of the schema are not tautologies. The quotation occurs in
the midst of a section in which Gödel argues that mathematical truths are analytic
but are not mere tautologies.

There is a similar section in Gödel’s earlier “Russell’s mathematical logic.” In
it there is a passage like the one I have just quoted, except that Gödel there adds
the Axiom of Choice, saying that “nothing can express better the meaning of the
term ‘class’ than the axiom of classes. . . and the axiom of choice.” (The “. . . ”
replaces a reference to the number of an earlier page on which Russell’s axiom of
classes is discussed.)

Does one need to add Choice to fully axiomatize the concept of the sets of
x’s? I suppose that depends on how one construes the term “property” occurring
in the Informal Comprehension Schema. I will return to this issue below.

Gödel does not mention Extensionality, but clearly it is necessary for a full
axiomatization of “the sets of x’s.”

To “fully express” the concept, do we need to specify something more, for
example, what object the set whose only member is the planet Mars is? People
who think that the natural numbers can be any ω-sequence often think that sets
have to be particular objects. I do not think this is so, and I also don’t think
there is any way to make the specification, but I won’t argue these points here.
I will simply ignore any constraints the concept might put on what counts as a
set and what counts as membership other than structural constraints such as those
imposed by (1) and (2).

Axioms (1) and (2) are categorical for fixed x’s. I.e., any two structures satis-
fying the axioms and having the the same x’s are isomorphic by unique isomor-
phism that is the identity on the x’s. Here is the proof (essentially due to Zermelo,
whose Separation Axiom should, I believe, be viewed as an open ended schema).

Let M1 and M2 be structures satisfying (1) and (2) and having the same x’s. Let
∈1 and ∈2 be the relations of the two structures. With each α that is a set in the
sense of M1, we associate π(α), a set in the sense of M2. To do this, let P be the
property of being an x such that x ∈1 α. By the Informal Comprehension Axiom

23Gödel [14], p. 321.
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for M2, there is a set β in the sense of M2 such that, for every x of M2,

x ∈2 β ↔ P (β).

By Extensionality for M2, there is at most one such β. Let π(α) = β. Using
Informal Comprehension and Extensionality for M1, we can show that π is one-
one and onto, and so is an isomorphism.

Here are some comments on the proof.

(i) Since the axioms are implied by the concept of the sets of x’s, that concept
is categorical for fixed x’s, i.e., any two instantiations of the concept with the
same x’s are isomorphic.

(ii) The properties P used in the proof were defined from the given structures.
Hence there is no problem about the legitimacy of the instances of Informal Com-
prehension that were used, and there was no use of the Axiom of Choice.

(iii) The proof can obviously be modified to get an isomorphism when M1 has
x’s, M2 has y’s, and we are given a one-one correspondence between the x’s and
the y’s. The modified proof defines the unique isomorphism extending the given
correspondence. In particular, the x’s and y’s could be the objects of isomorphic
structures instantiating some categorical concept (e.g., the concept of the natural
numbers), and the given correspondence could be an isomorphism between the
two structures.

(iv) We could have only one sort of variable, with the language being the
language of set theory. The x’s and the y’s could be the objects of isomorphic
instantiations of the concept of some Vα, if there are such instantiations. Then M1

and M2 would be isomorphic instantiations of the concept of Vα+1.

As with the ω-sequence concept, categoricity does not by itself guarantee first-
order completeness. I.e., categoricity for fixed x’s does not by itself guarantee
that the concept of the sets of x’s determines, for any fixed x’s, a truth-value for
every first-order sentence in the associated two-sorted language. In order for it
to have such an effect, the concept has to have an instantiation with these as the
x’s, and the concept must determine a truth-value for every first-order sentence
true in all such instantiations. (Satisfying the second of these two requirements
for a sentence σ would rule out its being an accident that all instantiations give the
same truth-value to σ.)

We could think of a structure instantiating the general concept of the sets as
what is gotten by starting with the natural numbers and iterating the sets of x’s
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operation absolutely infintely many times.24 The usual construction, which gets
only pure sets, starts with the empty set: V0 = ∅; Vλ =

⋃
α<λ Vα for limit ordinals

λ; Vα+1 = P(Vα) = the set of all sets of x’s, where the x’s are the members of Vα.
Using comment (iv) above, one can show that, for any ordinal α, the categoric-

ity of the concept of Vα implies the categoricity of the concept of Vα+1.25 One can
also show how to get categorical axioms implied by the latter concept from any
given categorical axioms implied by the former.

Using the categoricity of the concept of an ω-sequence, one can show that the
concept of Vω is categorical. Categorical axioms implied by it are easily found
with Zermelo’s Separation Axiom (what I would call the “Informal Separation
Axiom”) as the one non-first-order axiom.

Note that everything said in the last two paragraphs remains true if “cate-
goricity” is replaced by “necessary categoricity” and “categorical” is replaced by
“necessarily categorical.”

There are, of course, more categoricity results involving the concept of the
sets. Zermelo’s categoricity-except-for-hierarchy-length theorem is one. In [17],
I argue that the general concept of the sets is categorical.

Here are two key concepts.

(1) the concept C1 of Vω+1;

(2) the concept C2 of Vω+2.

Both these concepts are necessarily categorical. Are they fully determinate?
Are they first-order complete?

I will first consider the conceptC2. (Consistency of terminology would require
me to call it something like “the concept of the sets of rank ≤ ω + 1,” but I won’t
be this consistent.) Much of what I say about this concept would also apply to
the concepts of higher Vα’s and, arguably, even to the concept of V , the general
concept of the sets.

CH is a first-order statement about of Vω+2. HenceC2 determines a truth-value
for CH if C2 is first-order complete.

Assume for definiteness that C2 has an instantiation M1 in which CH is true.26

By categoricity, CH is true in every instantiation of C2. Under our assumptions, it
seems very likely that C2 implies CH.

24On page 180 of [12], Gödel talks of a set as being “anything obtainable from the integers (or
some other well-defined objects) by iterated application of the operation of ‘set of’.”

25Talking about the “concept” of Vα for undefinable ordinals α is stretching the concept of
concept.

26The case that CH is false in some instantiation of C2 is treated similarly.
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How might C2 fail to imply CH? Clearly C2 fails to imply CH if there is a
fully determinate way that an instantiation of C2 falsifying CH could have been.
The way I am construing possibility, another way to state this is as follows. C2

does not imply CH if there is an isomorphism type that, had there been enough
objects, would have been the isomorphism type of an instantiation of C2 in which
CH is false. I will argue that this cannot happen.

I will use the “isomorphism type” terminology, but bear in mind that for me
an isomorphism type is just a fully determinate way for structures to be, whether
or not there are any structures of that isomorphism type.

Our Modal Assumption27 implies that, for any two isomorphism types Θ and
Θ′, it is possible that there are are structures of both isomorphism types. To see
this, apply the Modal Assumption to the isomorphism type of structures that are
the disjoint unions of a type-Θ structure and a type-Θ′ structure.

Let us say that an isomorphism type Θ conforms to a structural concept C if
structures of isomorphism type Θ are or would be instantiations of C.

In the situation that I am trying to rule out, there are two isomorphism types,
the isomorphism type Θ1 of M1 and another isomorphism type Θ2. Both Θ1 and
Θ2 conform to C2. While Θ1 satisfies CH, Θ2 does not. By our Modal Assump-
tion, there could have been instantiations of C2 of both isomorphism types. Since
C2 is necessarily categorical, Θ1 and Θ2 are the same. Hence we get the contra-
diction that they cannot differ about satisfying CH.

All our argument used about C2 was the assumption that C2 is a necessarily
categorical structural concept. Hence the argument shows that the Modal As-
sumption has the following consequence.

Isomorphism Type Uniqueness: For any necessarily categorical structural con-
cept C, there is at most one isomorphism type that conforms to C.

I regard Isomorphism Type Uniqueness as justifying the the following assump-
tion.

Concept Implication Assumption: Let C be a necessarily categorical structural
concept. If Θ is an isomorphism type conforming to C, then C is fully determinate
and every sentence satisfied by Θ whose truth is preserved under isomorphism is
implied by C.

What the Concept Implication Assumption says about a necessarily categor-
ical structural concept C is that if there is one and only one way that an instan-

27See page12.
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tiation of C could be, then everything that would be true in such an instantiation
is implied by C. It seems clear that this would be true for any reasonable way
sharpening the meaning of “implied by a concept.”

Does the Concept Implication Assumption provide a necessary and sufficient
condition? I.e., is does a necessarily categorical structural concept C imply a
sentence σ if and only if there is an isomorphism type (which has to be unique)
that conforms to C and satisfies σ.

To see why I say no, assume that the answer is yes and consider C2 in the
case when C2 does not determine a truth-value for CH. This is a case that I don’t
think we can at present rule out. Since there is at most one isomorphism type that
conforms to C2, there is no isomorphism type that conforms to C2; for if some
isomorphism type conformed to C2, then C2 would determine a truth-value for
CH. Since we are assuming that the answer to the italicized question is yes, there
is no sentence that is implied by C2. Hence C2 does not imply, e.g., the Axiom
of Extensionality. But Extensionality seems a paradigm of a sentence implied by
C2. Gödel would surely count it as implied by C2, and I am trying to agree with
his notion of being implied by a concept.

On page 4, I hinted that, for example, that there might be a sense in which “CH
is implied by C2” is equivalent with “Necessarily CH is true in any instantiation
of C2.” Here are two candidate versions of such an equivalence.

(1) CH is implied by C2 if and only if (a) there is no isomorphism type that
satisfies ¬CH and conforms to C2.

(2) CH is implied by C2 if and only if (b) there could not have been an isomor-
phism type that satisfied ¬CH and conformed to C2.

Let us first consider version (1).
If there is an isomorphism type that conforms to C2 and satisfies CH, then it

follows from (1) that CH is implied by C2 and Isomorphism Type Uniqueness.
The additional Concept Implication Assumption is not needed. The analogous
fact holds the obvious generalization of (1) to necessarily categorical structural
concepts.

Nevertheless I am not fully satisfied with (1), To see why, consider what hap-
pens if there is no isomorphism type that conforms toC2. By the Concept Implica-
tion Assumption, this case occurs if CH has no truth-value, and I believe that this
case is, at present, a genuine epistemic possibility. It, together with (1), has the
consequence that both CH and ¬CH are implied by C2, and so that C2 is inconsis-
tent. Thus (1) implies that either CH has a truth-value or else C2 is inconsistent.
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The natural generalization of (1) implies that a necessarily categorical structural
concept is first-order incomplete if and only if it is inconsistent. While I don’t rule
this out, it seems important to make the best possible attempt at finding a way for
incompleteness to occur without inconsistency.

Another worry about (1) is the negative character it assigns to the notion of
being implied by C2. (1) makes CH to follow from C2 not because of evidence
that it is somehow part of that concept but rather because of a lack of strong
evidence that its negation is part of the concept. For first-order concepts (concepts
given wholly by first-order theories), the proofs of Completeness show—even for
those us who are agnostic about instantiation—that there is an isomorphism type
(in my sense) conforming to the concept. Nevertheless, it is worth investigating
whether concepts like C2 might be consistent without there being isomorphism
types conforming to them.

Now let’s consider version (2).
If our modal logic satisfies S4 and if our Modal Assumption28 holds necessar-

ily, then (b) is equivalent with

(b′) There could not have been an instantiation of C2 that satisfied ¬CH.

(2)29 To see this, assume that S4 holds. Note first that (b′) follows from (b). For
the other direction, assume that there could have been an isomorphism type that
satisfied ¬CH and conformed to C2. By the necessity of our Modal Assump-
tion, it could have been the case that there could have been an instantiation of C2

satisfying ¬CH. The falsity of (b′) follows by S4.
With version (2), the Concept Implication Assumption seems needed to de-

duce thatC2 implies CH if some isomorphism type conforming toC2 satisfies CH.
In the case in which there is no isomorphism type that conforms to C2, the

inconsistency argument that applies to (1) may not go through for version (2).
The non-existence of an actual isomorphism type conforming toC2 may not imply
that there couldn’t have been such an isomorphism type—even an instantiated one.
Thus (2) and its natural generalization seem to allow for genuine incompleteness
of necessarily categorical concepts, not just for incompleteness via inconsistency.

My reasons for being uncomfortable with (2) are: (i) like (1), it negatively
characterizes the concept of being implied by C2 and (ii) it involves the ques-
tionable notion of possible, non-actual ways that structures could be. It seems

28See page 12.
29Something like (b′) version of (2) was what I had in mind in earlier versions of this paper.
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plausible that possible ways for structures to be are actual ways for structures to
be, in which case (2) is equivalent with (1).30

Nevertheless, I regard (2) is a better candidate than (1) for a notion of impli-
cation by concepts that allows for incompleteness of set-theoretical concepts.

If CH does not have a truth-value, then there is something defective about the
concept of the sets. Either it—even C2—is inconsistent, or C2 is consistent but
has no instantiations and there are no isomorphism types that could have been
isomorphism types of instantiations of C2.

Is the question of whether CH has a truth-value a concept-dependent question?
E.g., could the full concept of the sets determine a truth-value for CH without
that truth-value’s being implied by C2? I will consider questions of this kind in
Section 5, concluding that the answers are likely negative.

What about the case of C1, the concept of the subsets of Vω (or, equivalently,
the concept of the natural numbers and the sets of natural numbers)? Is this con-
cept fully determinate? If we had the sort of direct, intuitive evidence that we have
for the full determinateness of the concept of the natural numbers, then wouldn’t
this evidence apply to the concept of the sets of x’s in general? Wouldn’t intuitive
evidence allow us to see that whenever the concept of the x’s is fully determinate
then so is the concept of the sets of x’s? There are those who are convinced that
the general concept is fully determinate in this way. If they are right, then CH has
a definite truth-value.

There is room to try to separate, with respect to direct intuitive evidence of
full determinateness, the concept of Vω+1 from from the concepts of the Vα for
α > ω + 1. Since the concept of an ω-sequence is fully determinate, isn’t the
concept of an ω-sequence of, say, 0’s and 1’s a clear one? If so, what could be
wrong with the concept of all ω-sequences of 0’s and 1’s’? I don’t think that this
argument is without force, but I’m not quite convinced by it.

I do think that, given the evidence that we have at present, the case of C1 looks
very different from that of C2. A major part of the difference is that for the former
concept we have available a first-order theory for C1 that is supported by much
evidence and that seems as complete for the C1 as first-order PA is for the concept
of the natural numbers. The main contenders for problem cases analogous to CH
are provable or refutable by this theory. The evidence that supports the theory
is mainly extrinsic. I will discuss the theory and extrinsic evidence in the next

30I have somewhat the same feeling about instantiations of, e.g., the concept of the sets, because
it seems plausible that the possible purely abstract objects should be the same as the actual purely
abstract objects, and if the concept of the sets can be instantiated (necessarily by a proper class of
objects) then purely abstract objects should be enough to instantiate it.
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section.
As I am construing the third important component of the concept of set, the

concept of transfinite iteration, that concept is essentially the concept of ordinal
numbers or simply that of wellordering. It is also intimately related to the concept
of L—more specifically to the concept of a proper or non-proper intial segment
of L. There seems to be nothing that creates worries about it as CH does about
the concept of the sets of x’s. The intuition that supports confidence in the full
determinateness of the ω-sequence concept extends at least to small transfinite
ordinals and to the associated in initial segments of L. Since I am leaving length
of iteration out of the concept of transfinite iteration, that concept is not fully
determinate, but it—and so the concept of L—might well be fully determinate
except for length.

The concept of an initial segment of L has as much claim to be (informally)
axiomatized as the concepts of the natural numbers and the sets of x’s. An open-
ended Informal Wellfoundedness Axiom plays the role analogous to that of Infor-
mal Induction and Informal Comprehension. These axioms are categorical except
for length.

Cantor described the sequence of all the ordinal numbers as “absolutely infi-
nite,” so I am using the term “absolute infinity” for the concept that is the fourth
component of the concept of the sets. One can argue that the concept is categori-
cal, and that any two instantiations of the concept of the sets (of the concept of an
absolutely infinite iteration of the sets of x’s operation) have to be isomorphic.31

But it is hard to see how there could be a full informal axiomatization of the con-
cept of the sets. There are also worries about the coherence of the concept. People
worry, e.g., that if the universe of sets can be regarded as a “completed” totality,
then the cumulative set hierarchy should go even further. Such worries are one
of the reasons for the currently popular doubts that it is possible to quantify over
absolutely everything. I am also dubious about the notion of absolute infinity, but
this would not by itself make me question quantification over everything.

4 Extrinsic Evidence
By intrinsic evidence for the truth of, say, a statement about the the concept of the
sets, I mean direct evidence for the statement’s being implied by the concept of
the sets. Such evidence provides pretty conclusive support for the ZFC axioms,

31See [17].
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the informal ones as well as the first-order ones. It seems reasonable to say that
existence of some large cardinals—for example, inaccessible cardinals—follows
from the absolute infinity of the class of ordinals.

A hypothetical example of extrinsic evidence occurs in the following oft-
quoted statement of Gödel from the 1947 version of “What is Cantor’s Continuum
Problem?”

Furthermore, even disregarding the intrinsic necessity of a new ax-
iom, and even in case it had no intrinsic necessity at all, a decision
about its truth is possible in another way, namely, by studying its
“success”, that is, its fruitfulness in consequences and in particular its
“verifiable” consequences, i.e., consequences demonstrable without
the new axiom, whose proofs by means of the new axiom, however,
are considerably simpler and easier to discover, and make it possible
to condense into one proof many different proofs.32

Gödel goes on to say that say that the axioms for the real numbers are “to
some extent” an example, because statements of number theory are sometimes
first proved using analysis and are later shown to have elementary proofs. He
goes on to imagine axioms having a “much higher degree of verification.”

One thing to note about this passage is that it is hard to see how “even in case it
had no intrinsic necessity at all” fits with the rest of what Gödel says it this paper.
On the preceding page, Gödel says, “For if the meanings of the primitive terms of
set theory as explained on page 262 and in footnote 14 are accepted as sound, it
follows that the concepts and axioms of set theory describe some well-determined
reality, in which CH must be either true or false.” This seems to imply that Gödel
believes that all set-theoretic truths are implied by the concept of the sets. If Gödel
is using “intrinsically necessity” in the passage above as synonymous with “being
implied by the concept of the sets,” then one wonders why he didn’t say “even if
we did not know that it had intrinsic necessity” instead of “even it had no intrinsic
necessity”? Such thoughts suggest that Gödel takes intrinsic necessity to have an
epistemic component. On page 31, I will suggest what that epistemic sense might
be.

I will use the term “extrinsic evidence” for any kind of evidence that is not
intrinsic. It is often used in a narrower sense, so that extrinsic evidence for an
axiom or theory is evidence based on the consequences of that axiom or theory.

32[12], pp. 182-83. The same passage, with small changes in wording, occurs in the 1964
version of the paper.
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Is consequence-based evidence of the sort Gödel describes evidence for truth?
The intuition that it is evidence for truth is, at least for me, a strong one. For
mathematics as for empirical sciences, it is hard to find an argument that justifies
this intuition. Moreover it might seem that how well it is justified could depend on
one’s account of mathematical truth: that the degree of justification might be dif-
ferent if truth is about a hypothetical domain of objects than if truth is something
like being implied by a concept. In any case, I think that the intuition should be
trusted more that any account of mathematical truth, so I regard Gödel-style ex-
trinsic evidence as a clear example of genuine evidence. Furthermore, I don’t see
why one of the two mentioned sorts of accounts of truth makes it better evidence
than the other would.

Let us finally turn briefly to a discussion of the concept C1 of Vω+1—or, equiv-
alently the concept of the natural numbers and the subsets of the natural numbers.

At present this case looks very different from the case of C2. The standard
first-order axioms for C1 are what I have been calling Second-Order Arithmetic.
By adding to these axioms the schema of Projective Determinacy, one gets a first-
order theory that (1) seems as complete for C1 as the first-order Peano Axioms
are for the concept of the natural numbers and (2) for whose truth there is a large,
diverse and—to many of us—convincing body of evidence.33

The question of whether the evidence for determinacy axioms and large car-
dinal axioms justifies belief that these axioms are implied by the concept of the
sets is a difficult one. I would like to point out, though, that a lot of the evidence
for large cardinals and determinacy (and also much of the evidence Woodin has
cited in his endeavor to solve the continuum problem) does indeed feel like evi-
dence for truth and not just for satisfying methodological desiderata. Examples
of evidence of this kind are diverse. One example that I am particularly fond of
involves prediction and confirmation. This is the example of the Wadge degrees.
Wadge proved that determinacy for a class of subsets of Baire space implies that
the sets in that class are essentially linearly ordered by the relation “is a continuous
preimage of.” This ordering was later shown to be a well-founded. Wadge’s proof
from determinacy is about one line long. Wadge’s theorem for the special case
of Borel sets is a statement about Vω+1. Several years after Wadge’s proof, that
special case was proved from the ZFC axioms, by a fairly complex proof. Several
years after that, the Borel case was proved in Second-Order Arithmetic, by a very
long and complex proof. These facts seem to me a significant piece of evidence
for the truth of general determinacy hypotheses (and Projective Determinacy in

33See Koellner [15] for a statement of projective determinacy and material on (1) and (2).
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particular), and the body of extrinsic evidence for these hypotheses seems more
solid than any view about what such truth consists in.

Indeed projective determinacy seems a good example of the kind of axiom
Gödel envisioned in the passage quoted above. I believe that (1) and (2) provide
strong extrinsic evidence that that C1 is fully determinate and so that it is first-
order complete.

5 A Puzzling Phenomenon
I could have called this section “Intrinsic Evidence.” In it I will be talking about
what statements about a basic concept can, from intrinsic evidence alone, be
known to be implied by that concept. These are the statements that can be di-
rectly seen to be implied by the concept plus the statements that can be deduced
from such statements. I will call deductions from statements of the former kind
proofs directly from the concept. I will discuss what seem to be seem to be great
limitations on this method of getting knowledge. I will also discuss how extrin-
sic evidence about basic concepts can be often be gotten by proofs directly from
stronger concepts.

In this paper I have suggested that mathematical truth has to do with concepts
and not with objects, but I have not yet put forth a concept-based account of math-
ematical truth. A good try at giving such an account is to say that an arithmetical
truth is an arithmetical statement that is implied by the concept of the natural
numbers, that a set-theoretical truth is a set-theoretical statement that is implied
by the concept of the sets, etc. As we will see, the puzzling phenomenon of the
section title might make one worry that this account makes mathematical truth a
relative notion. E.g., the puzzling phenomenon might make one worry that there
are arithmetical statements that are not arithmetical truths but are set-theoretical
truths. (This is not a worry if one believes that the concept of the natural num-
bers is fully determinate, but analogous worries about higher order concepts are
serious.)

Here is one kind of example of the puzzling phenomenon in the special case
of arithmetical statements. There many sentences σ in the language of First-Order
(Peano) Arithmetic such that:

(i) σ is provable in Second-Order Arithmetic,34 whose axioms can be directly

34Recall that by, e.g., “Second-Order Arithmetic,” I mean the standard two-sorted, first-order
theory of the natural numbers and sets of natural numbers. I will sometimes call nth-Order arith-
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seen to be implied by the concept of the natural numbers and the sets of
natural numbers;

(ii) σ is not provable in First-Order Arithmetic and is not known to follow from
the Informal Peano Axioms without using (in applications of the induction
schema) properties defined using higher-order concepts.

Such a sentence σ is thus known by intrinsic evidence to be implied by the concept
of the natural numbers and the sets of natural numbers (equivalently, from the
concept C1 of Vω+1), but there is no known way to prove σ directly from the
concept of the natural numbers.

One species of examples is that of consistency statements, which are equiva-
lent to Π1 sentences of the language of First-Order Arithmetic. The consistency
of First-Order Arithmetic itself is probably not an example. While it is not prov-
able in First-Order Arithmetic, one can plausibly argue that it can be proved di-
rectly from the concept of the natural numbers. But the consistency statements
for various fragments of Second-Order Arithmetic provide examples, as do the
consistency statements for ZFC and fragments of it.

The phenomenon occurs at every level. For any positive integers n andm > n,
there are sentences σ in the language of nth-Order Arithmetic with the following
properties. (a) σ is provable in mth-Order Arithmetic. (b) σ is not provable in
Arithmetic of Order m−1. (c) there is no known way to prove σ directly from the
concept Cm−2.

The phenomenon also occurs with respect to the full concept of the sets. For
example, V 6= L is provable in ZFC + “There is a measurable cardinal” but not
in ZFC alone. While there is some intrinsic evidence that “There is a measurable
cardinal” is implied by the concept of the sets, this intrinsic evidence seems not
enough by itself to yield knowledge.

One might cling to the dream that the phenomenon is caused by our incomplete
understanding of our concepts. For example, one might hope that some radically
new method will be found that yields proofs that (a) are directly from the concept
of the natural numbers and (b) whose conclusions are arithmetical sentences of the
kind we have been talking about, including statements whose truth are equivalent
to the consistency of ZFC or even of strong large cardinal axioms. But this seems
a good example of a pipedream, and so do analogous dreams about higher-order
concepts. Thus it seems highly probable that, for each of our basic concepts, there
are questions about the concept that are not answerable on the basis of intrinsic

metic “Arithmetic of Order n.”
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evidence alone. We will see that this implies, in particular, that those of us who
believe that the concept of the natural numbers is fully determinate have to live
with the high probability that many first-order arithmetical sentences are implied
by the concept of the natural numbers and can be directly shown to follow from
higher-order concepts but will not—and perhaps cannot—be directly shown to
follow from the concept of the natural numbers.

The phenomenon we are discussing is also discussed in Gödel [14], in the
passage about axiomatizing the concept of the sets that begins near the bottom of
page 305 and continues through page 307.

Gödel says that we should regard the axiomatization of set theory as being
done stepwise, with the axioms arranged in levels. Consider first the finite levels.
In the sample account he gives of these levels, the 0th level contains the axioms
about the integers (construed as sets in some way). Level 1 adds the axioms about
the sets of integers, and so on. For general finite n, the nth level adds the axioms
for the sets belonging toPn(ω). (It would be more natural to let the levels 0, . . . , n
provide together the axioms for, say, Vω+n.)

Gödel says nothing explicit for any n about what “the axioms” of level n are.
One might initially think that he is leaving this open and perhaps that he allows
it change with time. But this does not fit well with the idea of a stepwise, level-
by-level process, and it also does not fit with the facts Gödel cites on page 307. It
is very likely that Gödel is thinking of the level-0 axioms as being those of first-
order Peano Arithmetic and the axioms of levels 0 through n as combining to give
the first-order theory I am calling “Arithmetic of Order n + 1.” The open-ended
sequence of limit-level axioms give closure conditions on the ordinals, conditions
whose purpose is to keep the set-theoretic hierarchy going. These axioms amount
to Infinity, Replacement, and what we would now regard as fairly weak large
cardinal axioms.

Gödel remarks on page 307 that each new level of axioms yields proofs of
arithmetical sentences not provable from the axioms for the lower levels.35 He
has great hopes for “set-theoretical number theory,” which, as he remarks, had so
far made use only of the level 1 axioms, in analytic number theory.

If I am right about what axioms Gödel is calling the axioms of set theory, then
it seems plausible that at the time of writing Gödel hoped that every mathematical
question is in principle answerable using this transfinite, open-ended sequence of

35One might take “each” to mean “each finite.” Gödel possibly intends something general,
thinking that each new level of axioms will yield a proof of the consistency of the set of all axioms
of the lower levels.
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axioms. In other words, it is plausible that he then thought that ZFC plus what we
now call weak large weak large cardinal axioms could answer every set-theoretical
question that we might ask. We now know that this is false.

Something that is still not obviously false is that such axioms can answer ev-
ery set-theoretical question whose answer can be known from intrinsic evidence
alone. Of course, Gödel does not use such terminology. But when he, in the
passage I quoted on page 26, talks of intrinsic necessity as a property that set-
theoretical statements might have or lack, I suspect that he has in mind what I am
calling “being knowable from intrinsic evidence about the concept of the sets” or
“being provable directly from the concept of the sets.” If this is so, then Gödel
seems to be allowing for the possibility that there are set-theoretical statements
that are implied by the concept of the sets but cannot be known by intrinsic evi-
dence to be implied by that concept.

Did Gödel believe, e.g., that there are arithmetical statements provable in set-
theoretical number theory but not provable directly from the concept of the natural
numbers? He certainly says nothing to suggest that this is not a possibility.

Consider the case of a proof in Second-Order Arithmetic of a sentence σ of
First-order Arithmetic. This proof counts as a proof of σ for at least the purely
sociological reason that any proof formalizable in ZFC counts as a mathematical
proof. Almost all mathematicians would count it as a proof of σ, though many
of them would be happier with an “elementary” proof, which would probably
amount to a proof in first-order Peano Arithmetic. Gödel clearly thinks that it
counts as a proof of σ.

What does the conceptualist notion of truth suggested on page 28 say about
such a proof. Since it is a proof directly from the concept C1, it demonstrates that
σ is implied by the the concept C1 and by stronger concepts such as that of the
sets. Hence it proves that σ counts as what we might call a second-order arithmetic
truth and as a set-theoretic truth. But does the proof show that it is an arithmetic
truth? Does it show that σ is implied by the concept of the natural numbers, or
does it prove only that σ is implied by the stronger concept of the natural numbers
and the sets of natural numbers? It provides what I would classify as extrinsic
evidence that σ is implied by the natural number concept. (I will discuss below
the strength of this evidence.) Should we demand that a proof that it is implied by
that concept be a proof directly from that concept? Should we demand of a proof
that a set-theoretic sentence is a set-theoretic truth that it be a proof directly from
that concept of the sets? I.e., it should use only axioms directly seen to follow
from that concept, e.g.,the informal ZFC axioms plus further principles justified
on the basis of the absolute infinity of the sequence of ordinal numbers?
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Whatever the answer to the questions just asked, there is a more important
question. Can proofs from higher-order concepts whose conclusions are sentences
of nth-order arithmetic show—or provide strong evidence—that these sentences
are implied by the nth order arithmetic concept? Can one justify, from the concep-
tualist point of view, the claim that a sentence σ of nth-order arithmetic is implied
by the concept Cn+1 of Vω+n+1 if one knows that σ is a theorem of, say, arithmetic
of order n + 3. Or is this just a fact about the stronger concept Cn+2. At least in
the special case n = 1, I think we can. This because we know, or at least have
strong evidence for, the following two assertions.

(1) The concept C2 is consistent.

(2) The concept of the natural numbers is fully determinate, and so it is first-
order complete.

(It would not seem unfair to say that we know (2) from intrinsic evidence.)
Assume that σ is a sentence of the first-order language of arithmetic, and as-

sume that
Third-Order Arithmetic ` σ.

By the first-order completeness of the concept of the natural numbers, that concept
implies σ or implies ¬σ. The concept of the natural numbers is contained in C2,
and so C2 implies whichever of σ and ¬σ is implied by the concept of the natural
numbers. We know that the axioms of Third Order arithmetic are implied by C2.
Hence C2 implies σ. By the consistency of C2, σ is implied by the concept of the
natural numbers.

To apply this kind of argument at a higher level, e.g., with the subsets of Vω in
the place of the natural numbers, we need to have evidence of full determinateness—
or at least first-order completeness—of the of the higher level concept. Do we,
then, have evidence for the full determinateness or the first-order completeness
of higher level concepts? For the concept of the subsets of Vω+1, the status of
CH keeps me from thinking we have evidence for first-order completeness would
justify a claim of knowledge.

What about the concept C1?
In the case of the natural numbers, what I regard as the strongest—though far

from the only—evidence for full determinateness comes from directly considering
the concept. We feel we know exactly what a structure instantiating it would have
to be like. Do we have such a feeling in the case of the subsets of Vω? I have
certainly heard people say that we do—or, at least, that they do. A strong version
of this claim would be that the concept of the sets of x’s can be directly seen to
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be fully determinate whenever there is a fully determinate concept of the x’s. The
truth of this claim would imply that we know that the concept of Vω+2 is fully
determinate, and hence that CH has a truth-value. Since I do not think we know at
present whether or not the CH has a truth-value, I do not think we now know that
the claim is true.

Is the claim be justified in the special case when the x’s are the subsets of
Vω or, equivalently, the sets of natural numbers? I.e., can we see directly that
the concept C1 is fully determinate? I said in the preceding section that we have
strong evidence for the truth of a theory, Second-Order Arithmetic + Projective
Determinacy, that is as complete for the natural numbers and the sets of natural
numbers as first-order Peano Arithemetic is for first-order the natural numbers. I
believe that this evidence, which is mainly extrinsic, counts as evidence for the full
determinateness—of the concept C1. Therefore I believe that therefore, examples
of our phenomenon whose conclusions are second-order arithmetical sentences as
evidence that those sentences are implied by the concept C1.

What should we say about the examples of the phenomenon whose conclu-
sions are higher-order sentences or general set-theoretic sentences?

Is the following a logical possibility? Our concepts of many of the levels
of the of the set-theoretic hierarchy and that of the full concept of the sets (and
of stronger concepts, such as those involving large cardinals) are not first-order
complete. Furthermore, for any of these concepts there are first-order questions
about the concept to which the concept implies no answer, but which are answered
by the standard first-order theory of a stronger concept from our stock of basic
concepts. One consequence of this would be that the suggested conceptualist
notion of truth is a relative notion. A sentence about, e.g., C2 might be neither a
third-order arithmetical truth or a third-order arithmetical falsehood but be, e.g., a
7th-order arithmetical truth.

The situation just described is obviously incompatible under (the generaliza-
tion of) version (1) of implication by concepts, but it does not seem incompatible
with version (2).

While I don’t see how to rule out the described situation, I think that, e.g.,
the provability in 7th-Order Arithmetic of a sentence of third-order arithmetic
provides extrinsic evidence that the sentence is implied by the concept C2. Even
though our direct epistemic access to C2 may come from stronger concepts like
C7, it seems a reasonable practice to treat that what we can prove about C2 using
C7 is implied by C2.

Here is a (perhaps distorted account of) a suggestion of Peter Koellner of a
way that we might try to justify such a practice. We might make a methodological
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defeasible assumption that our basic concepts are fully determinate or even that
they are instantiated.

This methodology fits nicely with regarding such evidence as evidence for
truth. If we follow it, we are assuming, for example, that all statements about C2

are third-order arithmetical truths. Our goal is to determine which ones are true.
Whether or not our assumption is correct, it is clear what, on the assumption, we
are looking for evidence of.

At the beginning of [7], Feferman quotes a statement I made in 1976:

Throughout the latter part of my discussion, I have been assuming
a naive and uncritical attitude toward CH. While this is in fact my
attitude, I by no means wish to dismiss the opposite viewpoint. Those
who argue that the concept of set is not sufficiently clear to fix the
truth-value of CH have a position which is at present difficult to assail.
As long as no new axiom is found which decides CH, their case will
continue to grow stronger, and our assertion that the meaning of CH
is clear will sound more and more empty. 36

Perhaps the statement, “This is in fact my viewpoint,” could be understood as a
declaration that I was following the methodology just discussed.

I still think what was said in the last quoted sentence is true, but I am actually
more optimistic now than I was then about there being truth values for statements
like CH. One of the main reasons for my optimism is the difficulty of getting
a plausible account of the absence of such truth-values. Categoricity rules out
multiple, non-isomorphic instantiations of concepts like C2. The simplest account
of concept implication, version (1) on page 22, countsC2 as inconsistent if CH has
no truth-value. Version (2) seems to avoid such inconsistency, but the assumptions
needed for avoidance are perhaps implausible. The obvious way to explain this
situation is to propose that there is no absence of truth-values.
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