Solutions to Exercises 5.3, 5.4, 5.5, and 5.6

Exercise 5.3. Assume that t is $u_{1} \cdot u_{2}$. Let $j_{1}=\left(u_{1}\right)_{\mathfrak{N}}$ and let $j_{2}=\left(u_{2}\right)_{\mathfrak{N}}$. By the fact that u_{1} and u_{2} are shorter than t,
(a) $\mathrm{Q} \vDash u_{1}=\mathbf{S}^{j_{1}} \mathbf{0}$
(b) $\mathrm{Q} \vDash u_{2}=\mathbf{S}^{j_{2}} \mathbf{0}$.

By mathematical induction, we show that $\mathrm{Q} \vDash \mathbf{S}^{j_{1}} \mathbf{0} \cdot \mathbf{S}^{k} \mathbf{0}=\mathbf{S}^{j_{1} \cdot k} \mathbf{0}$ for every $k \geq 0$. For $k=0$, this is given by Axiom (7). Assume that it is true for k. By Axiom (8),

$$
\mathrm{Q} \models \mathbf{S}^{j_{1}} \mathbf{0} \cdot \mathbf{S}^{k+1} \mathbf{0}=\mathbf{S}^{j_{1}} \mathbf{0} \cdot \mathbf{S}^{k} \mathbf{0}+\mathbf{S}^{j_{1}} \mathbf{0}
$$

Hence our induction hypothesis gives

$$
\mathrm{Q} \models \mathbf{S}^{j_{1}} \mathbf{0} \cdot \mathbf{S}^{k+1} \mathbf{0}=\mathbf{S}^{j_{1} \cdot k} \mathbf{0}+\mathbf{S}^{j_{1}} \mathbf{0}
$$

Applying Axiom (5) and applying Axiom (6) j_{1} times, we get that

$$
\mathrm{Q} \models \mathbf{S}^{j_{1}} \mathbf{0} \cdot \mathbf{S}^{k+1} \mathbf{0}=\mathbf{S}^{j_{1} \cdot k+j_{1}} \mathbf{0}
$$

Since $j_{1} \cdot k+j_{1}=j_{1} \cdot(k+1)$, this means that

$$
\mathrm{Q} \vDash \mathbf{S}^{j_{1}} \mathbf{0} \cdot \mathbf{S}^{k+1} \mathbf{0}=\mathbf{S}^{j_{1} \cdot(k+1)} \mathbf{0}
$$

Applying what we have proved by induction in the case $k=j_{2}$, we get that

$$
\mathrm{Q} \models \mathbf{S}^{j_{1}} \mathbf{0} \cdot \mathbf{S}^{j_{2}} \mathbf{0}=\mathbf{S}^{j_{1} \cdot j_{2}} \mathbf{0}
$$

This, together with (a) and (b), implies that $Q \models u_{1} \cdot u_{2}=\mathbf{S}^{j_{1} \cdot j_{2}} \mathbf{0}$.
Exercise 5.4. For addition, we use primitive recursion, with I_{1}^{1} as f and with $g\left(a_{1}, a_{2}, a_{3}\right)=S\left(I_{3}^{3}\left(a_{1}, a_{2}, a_{3}\right)\right)$. $(g$ comes by composition, with S as f and I_{3}^{3} as g_{1}.) We show by induction that the resulting h is addition:

$$
h(a, 0)=f(a)=I_{1}^{1}(a)=a=a+0
$$

If $h(a, b)=a+b$, then

$$
h(a, S(b))=g(a, b, h(a, b))=S\left(I_{3}^{3}(a, b, h(a, b))=S(h(a, b))=S(a+b)=a+S(b)\right.
$$

For multiplication, we use primitive recursion, with the constant 1argument function with value 0 as f and with $g\left(a_{1}, a_{2}, a_{3}\right)=I_{3}^{3}\left(a_{1}, a_{2}, a_{3}\right)+$ $I_{1}^{3}\left(a_{1}, a_{2}, a_{3}\right)$. (g comes by composition with $m=2$ and $n=3$.) We show by induction that the resulting h is multiplication:

$$
h(a, 0)=f(a)=0=a \cdot 0
$$

If $h(a, b)=a \cdot b$,

$$
\begin{gathered}
h(a, S(b))=g(a, b, h(a, b))=I_{3}^{3}(a, b, h(a, b))+I_{1}^{3}(a, b, h(a, b)) \\
=h(a, b)+a=a \cdot b+a=a \cdot S(b)
\end{gathered}
$$

For the factorial function, we use primitive recursion with the constant 0 -argument function with value 1 as f and with $g\left(a_{1}, a_{2}\right)=I_{2}^{2}\left(a_{1}, a_{2}\right)$. $S\left(I_{1}^{2}\left(a_{1}, a_{2}\right)\right) .(g$ comes by composition with $m=n=2$.) We show by induction the resulting h is the factorial function:

$$
h(0)=1=0!
$$

If $h(a)=a$!, then

$$
\begin{aligned}
& h(S(a))=g(a, h(a))=I_{2}^{2}(a, h(a)) \cdot S\left(I_{1}^{2}(a, h(a))\right) \\
& \quad=h(a) \cdot S(a)=n!\cdot S(n)=(S(n))!
\end{aligned}
$$

Exercise 5.5. First assume that $\varphi\left(v, \ldots, v_{n}\right)$ represents the relation R in Q. Let $\psi\left(v_{1}, \ldots, v_{n+1}\right)$ be

$$
\left(\varphi\left(v_{1}, \ldots, v_{n}\right) \wedge v_{n+1}=\mathbf{S} 0\right) \vee\left(\neg \varphi\left(v_{1}, \ldots, v_{n}\right) \wedge v_{n+1}=\mathbf{0}\right)
$$

For any a_{1}, \ldots, a_{n},

$$
\begin{aligned}
R\left(a_{1}, \ldots, a_{n}\right) & \Rightarrow \mathrm{Q} \models \varphi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}\right) \\
& \left.\Rightarrow \mathrm{Q} \vDash\left(\varphi\left(\mathbf{S}^{a_{1}} \mathbf{0}\right), \ldots, \mathbf{S}^{a_{n}} \mathbf{0}\right) \wedge \mathbf{S 0}=\mathbf{S 0} \wedge \mathbf{S 0} \neq \mathbf{0}\right) \\
& \Rightarrow \mathrm{Q} \models\left(\psi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}, \mathbf{S 0}\right) \wedge \neg \psi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}, \mathbf{0}\right)\right) ; \\
\neg R\left(a_{1}, \ldots, a_{n}\right) & \Rightarrow \mathrm{Q} \vDash \neg \varphi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}\right) \\
& \Rightarrow \mathrm{Q} \models\left(\neg \varphi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}\right) \wedge \mathbf{0}=\mathbf{0} \wedge \mathbf{0} \neq \mathbf{S 0}\right) \\
& \Rightarrow \mathrm{Q} \vDash\left(\psi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}, \mathbf{0}\right) \wedge \neg \psi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}, \mathbf{S} \mathbf{0}\right)\right)
\end{aligned}
$$

Since $\vDash \forall v_{n+1}\left(\psi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}, v_{n+1}\right) \rightarrow\left(v_{n+1}=\mathbf{S 0} \vee v_{n+1}=\mathbf{0}\right)\right)$, we get that $\mathrm{Q} \equiv \forall v_{n+1}\left(\psi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}\right) \leftrightarrow v_{n+1}=\mathbf{S}^{K_{R}\left(a, \ldots, a_{n}\right)} \mathbf{0}\right)$.

Now assume that $\varphi\left(v_{1}, \ldots, v_{n+1}\right)$ represents K_{R} in Q. Let $\psi\left(v_{1}, \ldots, v_{n}\right)$ be $\varphi\left(v_{1}, \ldots, v_{n}, \mathbf{S 0}\right)$. For any a_{1}, \ldots, a_{n},

$$
\begin{aligned}
R\left(a_{1}, \ldots, a_{n}\right) & \Rightarrow K_{R}\left(a_{1}, \ldots, a_{n}\right)=1 \\
& \Rightarrow \mathrm{Q} \models \varphi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}, \mathbf{S 0}\right) \\
& \Rightarrow \mathrm{Q} \models \psi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}\right) ; \\
\neg R\left(a_{1}, \ldots, a_{n}\right) & \Rightarrow K_{R}\left(a_{1}, \ldots, a_{n}\right) \neq 1 \\
& \Rightarrow \mathrm{Q} \models \neg \varphi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}, \mathbf{S 0}\right) \\
& \Rightarrow \mathrm{Q} \models \neg \psi\left(\mathbf{S}^{a_{1}} \mathbf{0}, \ldots, \mathbf{S}^{a_{n}} \mathbf{0}\right) .
\end{aligned}
$$

Exercise 5.6. We can get g from f using composition:

$$
g\left(a_{1}, a_{2}\right)=f\left(I_{2}^{2}\left(a_{1}, a_{2}\right), I_{1}^{2}\left(a_{1}, a_{2}\right)\right)
$$

