Solutions for More (Practice Problems) for 2nd Midterm

1. It is easy to show that multiplication is represented in Q by $v_{1} \cdot v_{2}=v_{3}$. (See the proof of Lemma 5.11.) It follows that the function $b \mapsto b \cdot b$ is represented in Q by $v_{1} \cdot v_{1}=v_{2}$. Since a is a square $\Leftrightarrow \exists b(b<S(a) \wedge b \cdot b=$ a), closure under bounded quantification implies that the set of squares is represented in Q .
2. $\exists v_{7}\left(v_{7}<\mathbf{S} v_{1} \wedge v_{7} \cdot v_{7}=v_{1}\right)$ is such a formula.
3. Define $g_{2}^{\prime}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ by setting $g_{2}^{\prime}\left(a_{1}, a_{2}\right)=g_{2}\left(I_{2}^{2}\left(a_{1}, a_{2}\right)\right)$. The function g_{2}^{\prime} is primitive recursive by closure under Compostion. Let $g_{3}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be the constant function with value 5 . Thus

$$
h\left(a_{1}, a_{2}\right)=f\left(g_{1}\left(a_{1}, a_{2}\right), g_{2}^{\prime}\left(a_{1}, a_{2}\right), g_{3}\left(a_{1}, a_{2}\right)\right) .
$$

