Solution to Practice Problems for 1st Midterm

Exercise 3.1:

1. $\forall v_2 \neg P v_2 \rightarrow \neg P v_1$ QAx 2. $\forall v_2 \neg P v_2 \rightarrow \forall v_1 \neg P v_1$ 1;QR 3. $\neg \forall v_1 \neg P v_1 \rightarrow \neg \forall v_2 \neg P v_2$ 2;SL $[\exists v_1 P v_1 \rightarrow \exists v_2 P v_2]$

Exercise 3.2:

1.	$\forall v_1 P v_1$	Premise
2.	$\forall v_1 P v_1 \to P v_1$	QAx
3.	$\forall v_1 \neg P v_1 \rightarrow \neg P v_1$	QAx
4.	$\exists v_1 P v_1$	1,2,3;SL

Exercise 3.3: We show that $\vdash (Pc \rightarrow \forall x(x = c \rightarrow Px))$ and that $\vdash (\forall x)((x = c \rightarrow Px) \rightarrow Pc)$. This is enough, since $(Pc \leftrightarrow \forall x(x = c \rightarrow Px))$ follows by SL from these two sentences.

By the Deduction Theorem, it is enough to show that $\{Pc\} \vdash \forall x(x = c \rightarrow Px)$ and that $\{\forall x(x = c \rightarrow Px)\} \vdash Pc$.

	1. <i>Pc</i> H	Premise
	2. $(x = c \rightarrow (\neg Px \rightarrow \neg Pc))$ I	dAx(b)
	3. $(x = c \rightarrow Px)$ 1	$,2;\mathrm{SL}$
	$4. \forall x(x=c \to Px) \qquad \qquad 3$	$3; { m Gen}$
1.	$\forall x(x=c \to Px)$	Premise
2.	$(\forall x(x=c \to Px) \to (c=c \to Pc))$	c)) QAx
3.	$(c = c \to Pc)$	1,2; MP
4.	c = c	QAx(a)
5.	Pc	$3,4;\mathrm{MP}$

Exercise 3.4:

1.	$\forall v_1 \forall v_2 (Pv_1v_2 \lor Pv_2v_1)$	Premise
2.	$\forall v_1 \forall v_2 (Pv_1v_2 \lor Pv_2v_1) \to \forall v_2 (Pv_1v_2 \lor Pv_2v_1)$	QAx
3.	$\forall v_2(Pv_1v_2 \lor Pv_2v_1)$	$1,2;\mathrm{MP}$
4.	$\forall v_2(Pv_1v_2 \lor Pv_2v_1) \to (Pv_1v_1 \lor Pv_1v_1)$	QAx
5.	$Pv_1v_1 \lor Pv_1v_1$	3,4; MP
6.	Pv_1v_1	5; SL
7.	$\forall v_1 P v_1 v_1$	6; Gen

Exercise 2.7. Define $\operatorname{tv}_{\mathfrak{A}}^{s}(\Gamma)$ to be **T** if $\operatorname{tv}_{\mathfrak{A}}^{s}(\varphi) = \mathbf{T}$ for all $\varphi \in \Gamma$ and to be **F** otherwise.

$$\begin{split} \Gamma \models \varphi & \Leftrightarrow \text{ for all } \mathfrak{A} \text{ and all } s, \text{ if } \operatorname{tv}_{\mathfrak{A}}^{s}(\Gamma) = \mathbf{T}, \text{ then } \operatorname{tv}_{\mathfrak{A}}^{s}(\varphi) = \mathbf{T} \\ & \Leftrightarrow \text{ for all } \mathfrak{A} \text{ and all } s, \text{ if } \operatorname{tv}_{\mathfrak{A}}^{s}(\Gamma) = \mathbf{T}, \text{ then } \operatorname{tv}_{\mathfrak{A}}^{s}(\neg \varphi) = \mathbf{F} \\ & \Leftrightarrow \text{ for all } \mathfrak{A} \text{ and all } s, \operatorname{tv}_{\mathfrak{A}}^{s}(\Gamma \cup \{\neg \varphi\}) = \mathbf{F} \\ & \Leftrightarrow \Gamma \cup \{\neg \varphi\} \text{ is not satisfiable.} \end{split}$$

Extra Problem 1. Here is the statement of the problem. Let \mathfrak{A} be a model and let s be a variable assignment. Let x be a variable and let t be a term. Let s' be like s except that $s'(x) = \operatorname{den}_{\mathfrak{A}}^{s}(t)$. Prove by induction on length that, for all terms t^{*} ,

$$\operatorname{den}_{\mathfrak{A}}^{s'}(t^*) = \operatorname{den}_{\mathfrak{A}}^s(t^*(x;t)).$$

Proof. Case 1. t^* is a constant or a variable different from x. Then $t^*(x;t)$ is the same as t^* . Since x does not occur in t^* , $\operatorname{den}_{\mathfrak{A}}^{s'}(t^*) = \operatorname{den}_{\mathfrak{A}}^{s}(t^*) = \operatorname{den}_{\mathfrak{A}}^{s}(t^*(x;t))$.

 $\tilde{C}ase \ 2. \ t^* \text{ is } x. \text{ Then } t^*(x;t) \text{ is } t. \text{ Hence } den_{\mathfrak{A}}^{s'}(t^*) = den_{\mathfrak{A}}^{s'}(x) = s'(x) = den_{\mathfrak{A}}^{s}(t) = den_{\mathfrak{A}}^{s}(t^*(x;t)).$

Case 3. t^* is $ft_1^* \dots t_n^*$ where f is an *n*-place function symbol and t_1^*, \dots, t_n^* are terms. Since t_1^*, \dots, t_n^* are all shorter than t^* ,

$$\operatorname{den}_{\mathfrak{A}}^{s'}(t_i^*) = \operatorname{den}_{\mathfrak{A}}^s(t_i^*(x;t))$$

for $1 \leq i \leq n$. Hence

$$den_{\mathfrak{A}}^{s'}(t^*) = f_{\mathfrak{A}}(den_{\mathfrak{A}}^{s'}(t_1^*), \dots, den_{\mathfrak{A}}^{s'}(t_n^*))$$

= $f_{\mathfrak{A}}(den_{\mathfrak{A}}^s(t_1^*(x;t)), \dots, den_{\mathfrak{A}}^s(t_n^*(x;t)))$
= $den_{\mathfrak{A}}^s(t^*(x;t)).$