Solution to Practice Problems for 1st Midterm

Exercise 3.1:

1. $\forall v_{2} \neg P v_{2} \rightarrow \neg P v_{1} \quad \mathrm{QAx}$
2. $\forall v_{2} \neg P v_{2} \rightarrow \forall v_{1} \neg P v_{1} \quad 1 ; \mathrm{QR}$
3. $\neg \forall v_{1} \neg P v_{1} \rightarrow \neg \forall v_{2} \neg P v_{2} \quad 2$; SL $\left[\exists v_{1} P v_{1} \rightarrow \exists v_{2} P v_{2}\right]$

Exercise 3.2:

1. $\forall v_{1} P v_{1}$
Premise
2. $\forall v_{1} P v_{1} \rightarrow P v_{1}$ QAx
3. $\forall v_{1} \neg P v_{1} \rightarrow \neg P v_{1} \quad \mathrm{QAx}$
4. $\exists v_{1} P v_{1}$
$1,2,3 ; \mathrm{SL}$

Exercise 3.3: We show that $\vdash(P c \rightarrow \forall x(x=c \rightarrow P x))$ and that \vdash $(\forall x)((x=c \rightarrow P x) \rightarrow P c)$. This is enough, since $(P c \leftrightarrow \forall x(x=c \rightarrow P x))$ follows by SL from these two sentences.

By the Deduction Theorem, it is enough to show that $\{P c\} \vdash \forall x(x=$ $c \rightarrow P x)$ and that $\{\forall x(x=c \rightarrow P x)\} \vdash P c$.

| 1. $\quad P c$ | Premise |
| :--- | :--- | :--- |
| 2. $\quad(x=c \rightarrow(\neg P x \rightarrow \neg P c))$ | $\operatorname{IdAx}(\mathrm{b})$ |
| 3. $\quad(x=c \rightarrow P x)$ | 1,$2 ; \mathrm{SL}$ |
| 4. $\forall x(x=c \rightarrow P x)$ | 3 ; Gen |

1. $\forall x(x=c \rightarrow P x) \quad$ Premise
2. $(\forall x(x=c \rightarrow P x) \rightarrow(c=c \rightarrow P c)) \quad \mathrm{QAx}$
3. $(c=c \rightarrow P c) \quad 1,2 ; \mathrm{MP}$
4. $c=c \quad \operatorname{QAx}(\mathrm{a})$
5. Pc 3,4; MP

Exercise 3.4:

1. $\forall v_{1} \forall v_{2}\left(P v_{1} v_{2} \vee P v_{2} v_{1}\right) \quad$ Premise
2. $\forall v_{1} \forall v_{2}\left(P v_{1} v_{2} \vee P v_{2} v_{1}\right) \rightarrow \forall v_{2}\left(P v_{1} v_{2} \vee P v_{2} v_{1}\right) \quad \mathrm{QAx}$
3. $\forall v_{2}\left(P v_{1} v_{2} \vee P v_{2} v_{1}\right) \quad 1,2 ; \mathrm{MP}$
4. $\forall v_{2}\left(P v_{1} v_{2} \vee P v_{2} v_{1}\right) \rightarrow\left(P v_{1} v_{1} \vee P v_{1} v_{1}\right) \quad$ QAx
5. $P v_{1} v_{1} \vee P v_{1} v_{1} \quad 3,4 ; \mathrm{MP}$
6. $P v_{1} v_{1} \quad 5 ;$ SL
7. $\forall v_{1} P v_{1} v_{1} \quad 6$; Gen

Exercise 2.7. Define $\operatorname{tv}_{\mathfrak{A}}^{s}(\Gamma)$ to be \mathbf{T} if $\operatorname{tv}_{\mathfrak{A}}^{s}(\varphi)=\mathbf{T}$ for all $\varphi \in \Gamma$ and to be F otherwise.

$$
\begin{aligned}
\Gamma \models \varphi & \Leftrightarrow \text { for all } \mathfrak{A} \text { and all } s, \text { if } \operatorname{tv}_{\mathfrak{A}}^{s}(\Gamma)=\mathbf{T}, \text { then } \operatorname{tv}_{\mathfrak{A}}^{s}(\varphi)=\mathbf{T} \\
& \Leftrightarrow \text { for all } \mathfrak{A} \text { and all } s, \text { if } \operatorname{tv}_{\mathfrak{A}}^{s}(\Gamma)=\mathbf{T}, \text { then } \operatorname{tv}_{\mathfrak{A}}^{s}(\neg \varphi)=\mathbf{F} \\
& \Leftrightarrow \text { for all } \mathfrak{A} \text { and all } s, \operatorname{tv}_{\mathfrak{A}}^{s}(\Gamma \cup\{\neg \varphi\})=\mathbf{F} \\
& \Leftrightarrow \Gamma \cup\{\neg \varphi\} \text { is not satisfiable. }
\end{aligned}
$$

Extra Problem 1. Here is the statement of the problem. Let \mathfrak{A} be a model and let s be a variable assignment. Let x be a variable and let t be a term. Let s^{\prime} be like s except that $s^{\prime}(x)=\operatorname{den}_{\mathfrak{A}}^{s}(t)$. Prove by induction on length that, for all terms t^{*},

$$
\operatorname{den}_{\mathfrak{A}}^{s^{\prime}}\left(t^{*}\right)=\operatorname{den}_{\mathfrak{A}}^{s}\left(t^{*}(x ; t)\right)
$$

Proof. Case 1. t^{*} is a constant or a variable different from x. Then $t^{*}(x ; t)$ is the same as t^{*}. Since x does not occur in $t^{*}, \operatorname{den}_{\mathfrak{A}}^{s^{\prime}}\left(t^{*}\right)=\operatorname{den}_{\mathfrak{A}}^{s}\left(t^{*}\right)=$ $\operatorname{den}_{\mathfrak{A}}^{s}\left(t^{*}(x ; t)\right)$.

Case 2. t^{*} is x. Then $t^{*}(x ; t)$ is t. Hence $\operatorname{den}_{\mathfrak{A}}^{s^{\prime}}\left(t^{*}\right)=\operatorname{den}_{\mathfrak{A}}^{s^{\prime}}(x)=s^{\prime}(x)=$ $\operatorname{den}_{\mathfrak{A}}^{s}(t)=\operatorname{den}_{\mathfrak{\mathfrak { A }}}^{s}\left(t^{*}(x ; t)\right)$.

Case 3. t^{*} is $f t_{1}^{*} \ldots t_{n}^{*}$ where f is an n-place function symbol and $t_{1}^{*}, \ldots, t_{n}^{*}$ are terms. Since $t_{1}^{*}, \ldots, t_{n}^{*}$ are all shorter than t^{*},

$$
\operatorname{den}_{\mathfrak{A}}^{s^{\prime}}\left(t_{i}^{*}\right)=\operatorname{den}_{\mathfrak{A}}^{s}\left(t_{i}^{*}(x ; t)\right)
$$

for $1 \leq i \leq n$. Hence

$$
\begin{aligned}
\operatorname{den}_{\mathfrak{A}}^{s^{\prime}}\left(t^{*}\right) & =f_{\mathfrak{A}}\left(\operatorname{den}_{\mathfrak{A}}^{s^{\prime}}\left(t_{1}^{*}\right), \ldots, \operatorname{den}_{\mathfrak{A}}^{s^{\prime}}\left(t_{n}^{*}\right)\right) \\
& =f_{\mathfrak{A}}\left(\operatorname{den}_{\mathfrak{A}}^{s}\left(t_{1}^{*}(x ; t)\right), \ldots, \operatorname{den}_{\mathfrak{A}}^{s}\left(t_{n}^{*}(x ; t)\right)\right) \\
& =\operatorname{den}_{\mathfrak{A}}^{s}\left(t^{*}(x ; t)\right) .
\end{aligned}
$$

