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We report experimental infrared spectra of neutral metal clusters in the gas phase. Multiple photon
dissociation of the argon complexes of niobium clusters is used to obtain vibrational spectra in the
80–400 cm−1 region. The observed spectra for Nb9Arn sn=1–4d are different for different values
of n. This is explained by the presence of two isomers of Nb9 that have different affinities towards
Ar and the isomer specific infrared spectra are obtained. The structures of the isomers are
determined by comparing the observed spectra with the outcome of density-functional theory
calculations. ©2005 American Institute of Physics. fDOI: 10.1063/1.1872834g

The knowledge on the geometric and electronic structure
of a cluster forms the basis for the understanding of its physi-
cal and chemical properties. Geometric structure determina-
tion of metal clusters in the gas phase is difficult and for
systems where isomers are present, the structure determina-
tion is even more challenging. For metal clusters, the coex-
istence of different isomeric structures has been experimen-
tally revealed using mainly two methods:sid investigation of
the kinetics with reactant molecules, where bi- or multiple-
exponential reaction kinetics are signatures for the presence
of isomers with different reactivities,1–5 or sii d siond mobility
measurements, where isomers with different collision cross
sections can be separated and detectedvia their different ar-
rival time distributions.6–8 Further evidence for metal cluster
isomers is obtained from the measurements of magnetic
moments,9 from unimolecular photodissociation dynamics,10

and from photoelectron spectroscopy.11 Very recently, optical
spectroscopy on matrix deposited silver clusters allowed for
the identification of the presence of silver cluster isomers.12

In principle, vibrational spectroscopy can be used to ob-
tain structural information on metal clusters, but until re-
cently, this approach was limited to selected small clusters
that have mainly been investigatedvia matrix isolation
spectroscopy13 or to clusters where vibrational structure in
electronic excitation spectra has been found.14–18 For cat-
ionic metal clusters, we have recently demonstrated that far-
infrared svibrationald resonance enhanced multiple photon
dissociation sFIR-MPDd spectroscopy of their complexes
with rare gas atoms is a suitable method to obtain their vi-
brational spectra, and to thus get direct information on their
geometric structures.19 Here we report on FIR-MPD spectro-
scopic studies of neutral metal clusters. We are focusing in
particular on Nb9, to demonstrate that isomer specific vibra-
tional spectra can be obtained. The structures of the isomers
are determined by comparison of the observed FIR-MPD

spectra to calculated IR absorption spectra as obtained from
density-functional theory calculations.

The experimental set-up has been described elsewhere19

and only a brief description is given here. Argon complexes
of niobium clusters are produced in a pulsed laser ablation
cluster source that is partly cooled to<80 K. As carrier gas,
a mixture of 20%–40% Argon in Helium is used. The bind-
ing of the rare gas atoms to neutral metal clusters is much
weaker than the binding to cationic metal clusters and com-
plex formation is, therefore, by far more sensitive to source
parameters such as timings, partial pressures, and fluence of
the vaporization laser. The cluster complexes are detected in
a time-of-flight mass spectrometer after ionization with
either an ArF excimer lasers6.42 eV/photond or a
frequency-doubled dye laser. As the ionization potentials
sIPsd for niobium clusters are typically in the 4.6–5.5 eV
range20,21 and as the IPs of their Ar complexes will be
slightly lower, the 6.42 eV photon energy allows for one
photon ionization of all clusters and their Ar complexes. The
fluence of the ArF laser is kept sufficiently low to prevent
absorption of multiple UV photons that would lead to frag-
mentation of the weakly bound complexes. With this
method, niobium cluster complexes containing up to four Ar
atoms have been detected. Alternatively, the frequency
doubled output of a dye laser is used for the more selective
ionization near the thresholdssee belowd. The molecular
beam is overlapped with a counter-propagating IR laser
beam emitted by the Free Electron Laser for Infrared Experi-
mentssFELIXd.22 When the IR light is resonant with a tran-
sition in the cluster complex, the complex can absorb several
photons and subsequently evaporate off one or more rare gas
atoms. The resulting abundance changes of the rare gas com-
plexes are recorded as a function of the IR frequency. Details
on the normalization of the spectra to the laser intensity and
on the conversion of the depletion spectra into absorption
spectra are described elsewhere.19
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Figure 1 shows parts of the typical mass spectra in the
range of Nb9Arn sn=0–4d. In the spectrum in Fig. 1sad the
intensities of the rare gas complexes are usually a factor of
<50 lower than those of the bare metal clusters. Additional
peaks can be assigned to oxide and carbide contaminations.
Forn=3 and 4 the peaks of the complexes overlap with those
of the contaminants. However, this does not lead to interfer-
ences in the IR spectra of Nb9Arn since only the rare gas
complexes can be dissociated.

Far-infrared absorption spectra of free neutral niobium
clusters are measuredvia multiple photon dissociation of the
NbmArn complexes in the 80–400 cm−1 region. Using ArF
ionization for detection, spectra are recorded for clusters
containing five to more than 20 Nb atoms and different num-
bers of Ar atoms. These results will be reported elsewhere,
but important for the discussion here is that for almost all of
the clusters the observed FIR-MPD spectra are invariant with
the number of attached Ar atoms. Only small shifts of the
absorption peaksson the order of 1−3 cm−1d and slight
broadenings are observed for a given Nbm cluster with an
increasing number of attached Ar atoms.

A special case are the Nb9Arn sn=1–4d complexes.
Their FIR-MPD spectra are shown in Fig. 2. For Nb9Arn

sn=1–4d absorption features are only found in the
180–300 cm−1 region. In the FIR-MPD spectrum of Nb9Ar
four main bands are found at<195, 202, 252sP3d, and at
280 cm−1 sP4d. In addition, a minor peak can be identified
around 215 cm−1 sP2d and there is a shoulder on the low
frequency side of the peak P3. With increasing number of Ar
atoms in the complex, the double peak around 200 cm−1

merges into a single peaksP1d, the peak P2 as well as the
shoulder on P3 gain in intensity whereas the originally domi-
nating peaks decrease in intensity.

The strong dependence of the FIR-MPD spectra of
Nb9Arn on the number of Ar atoms can be explained by the
presence ofsat leastd two isomers of Nb9 that have different
affinities towards the Ar atoms. To be more precise, the rela-
tive affinity of these Nb9 isomers towards Ar must gradually
change with the numbern of Ar atoms. This then leads to a
change in the relative contribution of the Nb9 isomers to the
spectra of the Nb9Arn complexes as a function ofn, and can
explain the observations. The presence ofsat leastd two iso-
mers of Nb9 has been concluded earlier from the observed
biexponential reaction kinetics with hydrogen or nitrogen1–3

and the different IPs for the isomers have been experimen-
tally determined to be 4.92 and 5.20 eV.20 Optical absorption
spectra for Nb9 have been recorded using photodissociation
of their rare gas cluster complexes23,24 and the photoioniza-
tion threshold behavior of these complexes has been investi-
gated as well.25 Also in these studies, differences in the pro-
pensities to bind Ar atoms have been found for the isomers
of Nb9.

Alternatively, one might explain the observed changes in
the FIR-MPD spectra of Nb9Arn as a function ofn by assum-
ing that there is only one Nb9 isomer but that the oscillator
strengths of the different vibrational modes are differently
affected by complexing the metal cluster with an increasing
number of Ar atoms. This explanation seems highly unlikely,
however, as we have not observed any significant influence
of the rare gas atoms on the FIR-MPD spectra for other
clusters.

FIG. 1. Mass spectra in the mass range of Nb9Arn sn=0–4d recorded using
sad 6.42 eV photons andsbd 4.96 eV photons for the ionization. The condi-
tions under which spectrumsbd is recorded are optimized for Nb9Ar. At 4.96
eV s250 nmd the Ar complexes of only one isomer of Nb9 can be ionized. A
measurement of the ionization threshold is shown in the inset.

FIG. 2. sad Far-IR multiple photon dissociationsFIR-MPDd spectra of
Nb9Arn sn=1–4d. The neutral clusters are ionized with 6.42 eV photons.
The major features in the spectra are indicated with P1-P4. Reconstructed
spectra of mixtures of the two isomers in the given ratiossintensities of
isomer1 to isomer2d are shown overlayed with the experimental spectra.
sbd FIR-MPD spectrum of Nb9Ar as obtained by ionization using 250 nm
radiation.
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The difference in the IPs of the two Nb9 isomers enables
the selective ionization of the isomer with the lowest IP us-
ing near threshold ionization. The onset of ionization for
Nb9Ar is shown in the inset of Fig. 1sbd. An ionization
threshold of 4.845±0.002 eVsunder field-free conditionsd is
found, in agreement with previous findings.25 Figure 1sbd
shows a mass spectrum that has been obtained using near
threshold ionization with 250 nm radiation. Under the as-
sumption that the Ar induced shift of the IPs is approxi-
mately the same for both isomerss<0.07 eVd, then the Ar
complex of the second isomer should have an IP of
<5.13 eV, well above the photon energy at 250 nm.

The FIR-MPD spectrum of Nb9Ar measured with near
threshold ionization is shown in Fig. 2sbd. Only the Ar com-
plex of one Nb9 isomer can be ionized and therefore this
spectrum can be assigned to the isomer with the lowest IP
sisomer1d. This FIR-MPD spectrum is quite similar to the
FIR-MPD spectrum of Nb9Ar measured with ArF ionization.
Therefore, we conclude that isomer1 has a higher propensity
for binding a single Ar atom than isomer2. The observed
changes in the FIR-MPD spectra indicate that with increas-
ing number of Ar atoms in the complex the abundance of
isomer1 decreases relative to the abundance of isomer2.

The spectra of the individual isomers can be extracted
from the spectra of the isomeric mixture by iterative subtrac-
tive deconvolution. As a starting point, it is assumed that the
spectrum of Nb9Ar is dominated by isomer1, whereas iso-
mer2 dominates the spectrum of Nb9Ar4. The deconvolution
has been applied after smoothing the data with a three point
fast Fourier transform filter. No information from the FIR-
MPD spectrum as obtained after selective ionization has
been used in this approach. The thus obtained isomer selec-
tive FIR-MPD spectra are shown in Fig. 3sad. Combinations
of these spectra in the appropriate intensity ratio are shown
overlayed with the observed spectra in Fig. 2sad. The inten-
sity ratio changes from 1:0.3 to 1:1.9 whenn increases from
one to four, but these numbers only indicate the relative
abundance ratio of the two isomers as a function ofn since
the absolute IR absorption intensities and the ionization effi-
ciencies are not known. The FIR-MPD spectrum of isomer1
as extracted from the spectra of the isomeric mixture is very
similar to the spectrum that is obtained using selective ion-
ization, shown once more in Fig. 3sbd.

Density-functional theorysDFTd calculations have been
performed to find the energetically most preferred structures
for Nb9, and their vibrational spectra have been calculated.
We have used the DMOL

3 code26 and the generalized gradi-
ent approximationsGGAd27 for the exchange correlation
functional. More details of the computational procedure will
be given elsewhere.28 As a check, for Nb2 this approach
yields a calculated vibrational frequency of 445 cm−1, close
to the experimental value of 425 cm−1.31 We tested a large
number of different geometric structures for Nb9, including
some that have been suggested previously in the
literature.29,30 Moreover, we tested a number of geometric
distortions of these structures, and calculated the energy and
the IR absorption spectra for different spin states. The vibra-
tional frequencies presented here are not scaled.

In Fig. 3scd the results of the calculations for three dif-

ferent structures of Nb9 are shown. The lowest energy struc-
ture A can be described as a distorted triply capped trigonal
prism.32 StructureB is only 0.15 eV higher in energy and is
a nonplanar hexagon with a dimer above and an atom below
the hexagon. The next stable structureC, a distorted triply
capped octahedron, is noticeably higher in energys0.82 eVd.
All these structures correspond to a doublet electronic state
and structures with higher multiplicity are found to be sig-
nificantly higher in energy. The IR spectrum of structureB
nicely agrees with the experimental spectrum of isomer1;
the band positions as well as the IR intensities are repro-
duced rather well. There is considerably less agreement be-
tween the observed spectrum of isomer2 and the calculated
IR spectra of either structureA or structureC. Nevertheless,
the comparison of the spectra suggests that isomer2 may
have structureA; it is the energetically lowest structure, and
there is some agreement between the spectra. The two calcu-
lated bands at 189 cm−1 and at 211 cm−1 can be related to
features in the experimental spectrum. Below 200 cm−1 the
experimental spectrum is noisy and not well-resolved, pre-
venting a firm conclusion on the presence or absence of the
band calculated at 168 cm−1 in the experimental spectrum.
The calculations further predict IR bands at 241, 253, 278,
and 279 cm−1. This is in agreement with the band positions
in the experimental spectrum, but the intensities do not
match. One has to keep in mind, however, that the experi-
mental spectra are obtained by multiple photon absorption

FIG. 3. Isomer selective FIR-MPD spectra. Panelsad shows the isomer
selective FIR-MPD spectra as extracted out of the spectra of Nb9Arn sshown
in Fig. 2d for each of the two Nb9 isomers1 and 2. Panelsbd shows the
FIR-MPD spectrum of isomer1 as obtained by selective ionization of this
isomer with 250 nm radiation. Panelscd shows the calculated IR absorption
spectra for three low energy isomers of Nb9 labeledA ,B, andC. The cal-
culated spectra are folded with a Gaussian line shape function with a width
sFWHMd of 5 cm−1.
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followed by dissociation, and that intensities in FIR-MPD
spectra can differ considerably from those in linear FIR ab-
sorption spectra. Further evidence for the assignments pro-
posed here is derived from the calculation of thesadiabaticd
ionization energies. We find values of 5.13 eV for structureA
and 4.98 eV for structureB that are in good agreement with
the experimental values. The assignment of isomer1, the
isomer with the lowest IP, to structureB seems quite certain.
The assignment for isomer2 is less certain, and we cannot
exclude that this isomer has yet another structure, that has
not been found in the calculations thus far.

Finally, the question remains to be answered why these
two Nb9 isomers show different Ar binding properties. The
calculations show that structureB has a dipole moment of
0.70 D, considerably higher than the 0.12 D dipole moment
of structureA. This can explain the observed preferred bind-
ing of the firststwod Ar atomssd to isomer1. However, the
large dipole moment of structureB is mainly caused by the
presence of the single Nb atom below the hexagon unit that
carries a significant positive partial charge. It is likely, there-
fore, that after the firststwod Ar atomsssd are attached to this
side of the Nb9 isomer, the next Ar atoms either have to
attach to a less favorable side of the complex or they attach
to the same side of the complex where they then experience
a strongly shielded dipole. In either case, this can well ex-
plain the observedsrelatived decrease in affinity for Ar atoms
with increasing number of Ar atoms for isomer1.

In conclusion, we have shown that vibrational spectra of
neutral metal clusters can be measured via multiple photon
dissociation spectroscopy of their rare gas complexes using
tunable radiation in the far-infrared. In special cases even
isomer specific spectra can be obtained. Together with theo-
retical studies, these spectra enable the structure of metal
cluster isomers to be unraveled.
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