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LEVEL SET METHODS FOR SIMULATION
OF THIN FILM GROWTH

Russel Caflisch and Christian Ratsch
University of California at Los Angeles, Los Angeles, CA, USA

The level set method is a general approach to numerical computation for
the motion of interfaces. Epitaxial growth of a thin film can be described by
the evolution of island boundaries and step edges, so that the level set method
is applicable to simulation of thin film growth. In layer-by-layer growth, for
example, this includes motion of the island boundaries, merger or breakup
of islands, and creation of new islands. A system of size 100 × 100 nm may
involve hundreds or even thousands of islands. Because it does not require
smoothing and or discretization of individual island boundaries, the level set
method can accurately and efficiently simulate the dynamics of a system of this
size. Moreover, because it does not resolve individual hopping events on the
terraces or island boundaries, the level set method can take longer time steps
than those of an atomistic method such as kinetic Monte Carlo (KMC). Thus
the level set approach can simulate some systems that are computationally
intractable for KMC.

1. The Level Set Method

The level set method is a numerical technique for computing interface
motion in continuum models, first introduced by [11]. It provides a simple,
accurate way of computing complex interface motion, including merger and
pinchoff. This method enables calculations of interface dynamics that are bey-
ond the capabilities of traditional analytical and numerical methods. For
general references on level set methods, see the books [12, 21].

The essential idea of the method is to represent the interface as a level set
of a smooth function, φ(x) – for example the set of points where φ = 0. For
numerical purposes, the interface velocity is smoothly extended to all points
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x of the domain, as v(x). Then, the interface motion is captured simply by
convecting the values of the smooth function φ with the smooth velocity field
v . Numerically, this is accomplished by solving the convection equation

∂φ

∂t
+ v∇φ = 0 (1)

on a fixed, regular spatial grid.
The main advantage of this approach is that interface merger or pinch

off is captured without special programming logic. The merger of two dis-
joint level sets into one occurs naturally as this equation is solved, through
smooth changes in the function φ(x, t). For example, two disjoint interface
loops would be represented by a φ with two smooth humps, and their merg-
ing into a single loop is represented by the two humps of φ smoothly coming
together to form a single hump. Pinch off is the reverse process. In particular,
the method does not involve smoothing out of the interface.

The normal component of the velocity vn = n · v contains all the physical
information of the simulated system, where n is the outward normal of the
moving boundary and v · ∇ϕ = vn|∇ϕ|.

Another advantage of the method is that the local interface geometry –
normal direction, n, and curvature, κ – can be easily computed in terms of
partial derivatives of φ. Specifically,

n =
−∇φ

|∇φ| (2)

κ = ∇n (3)

provide the normal direction and curvature at points on the interface.

2. Epitaxial Growth

Epitaxy is the growth of a thin film on a substrate in which the crystal
properties of the film are inherited from those of the substrate. Since an epitax-
ial film can (at least in principle) grow as a single crystal without grain bound-
aries or other defects, this method produces crystals of the highest quality. In
spite of its ideal properties, epitaxial growth is still challenging to mathemati-
cally model and numerically simulate because of the wide range of length and
time scales that it encompasses, from the atomistic scale of Ångstroms and
picoseconds to the continuum scale of microns and seconds.

The geometry of an epitaxial surface consists of step edges and island
boundaries, across which the height of the surface increases by one crystal
layer, and adatoms which are weakly bound to the surface. Epitaxial growth
involves deposition, diffusion and attachment of adatoms on the surface.
Deposition is from an external source, such as a molecular beam. The principal
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dimensionless parameter (for growth at low temperature) is the ratio D/(a4 F),
in which a is the lattice constant and D and F are the adatom diffusion coeffi-
cient and deposition flux. It is conventional to refer to this parameter as D/F ,
with the understanding that the lattice constant serves as the unit of length.
Typical values for D/F are in the range of 104–108.

The models that are typically used to describe epitaxial growth include
the following: Molecular dynamics (MD) consists of Newton’s equations for
the motion of atoms on an energy landscape. A typical Kinetic Monte Carlo
(KMC) method simulates the dynamics of the epitaxial surface through the
hopping of adatoms along the surface. The hopping rate comes from an
Arrhenius rate of the form e−E/kT in which E is the energy barrier for going
from the initial to the final position of the hopping atom. Island dynamics and
level set methods, the subject of this article, describe the surface through con-
tinuum scaling in the lateral directions but atomistic discreteness in the growth
direction. Continuum equations approximate the surface using a smooth height
function h = h(x, y, t), obtained by coarse graining in all directions. Rate equa-
tions describe the surface through a set of bulk variables without spatial
dependence.

Within the level set approach, the union of all boundaries of islands of
height k + 1, can be represented by the level set ϕ = k, for each k. For exam-
ple, the boundaries of islands in the submonolayer regime then correspond
to the set of curves ϕ = 0. A schematic representation of this idea is given in
Fig. 1, where two islands on a substrate are shown. Growth of these islands is

(a)

(b)

(c)

(d)

ϕ � 0

ϕ  � 0

ϕ � 0

ϕ  � 0
ϕ  � 1

Figure 1. A schematic representation of the level-set formalism. Shown are island morpholo-
gies (left side), and the level-set function ϕ (right side) that represents this morphology.
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described by a smooth evolution of the function ϕ (cf. Figs. 1 (a) and (b)). The
boundary curve �(t) generally has several disjoint pieces that may evolve so
as to merge (Fig. 1(c)) or split.

Validation of the level set method will be detailed in this article by
comparison to results from an atomistic KMC model. The KMC model
employed is a simple cubic pair-bond solid-on-solid (SOS) model [24]. In this
model, atoms are randomly deposited at a deposition rate F . Any surface atom
is allowed to move to its nearest neighbor site at a rate that is determined by
r = r0 exp{−(ES + nEN)/kBT }, where r0 is a prefactor which is chosen to be
1013 s−1, kB is the Boltzmann constant, and T is the surface temperature. ES and
EN represent the surface and nearest neighbor bond energies, and n is the num-
ber of nearest neighbors. In addition, the KMC simulations include fast edge
diffusion, where singly bonded step edge atoms diffuse along the step edge of
an island with a rate Dedge, to suppress roughness along the island boundaries.

3. Island Dynamics

Burton, Cabrera and Frank [5] developed the first detailed theoretical
description for epitaxial growth. In this “BCF” model, the adatom density
solves a diffusion equation with an equilibrium boundary condition (ρ = ρeq),
and step edges (or island boundaries) move at a velocity determined from
the diffusive flux to the boundary. Modifications of this theory were made,
for example in [9], to include line tension, edge diffusion and nonequilibrium
effects. These are “island dynamics” models, since they describe an epitaxial
surface by the location and evolution of the island boundaries and step edges.
They employ a mixture of coarse graining and atomistic discreteness, since
island boundaries are represented as smooth curves that signify an atomistic
change in crystal height.

Adatom diffusion on the epitaxial surface is described by a diffusion
equation of the form

∂tρ − D∇2ρ = F − 2dNnuc

dt
(4)

in which the last term represents loss of adatoms due to nucleation and des-
orption from the epitaxial surface has been neglected. Attachment of adatoms
to the step edges and the resulting motion of the step edges are described by
boundary conditions at an island boundary (or step-edge) � for the diffusion
equation and a formula for the step-edge velocity v .

For the boundary conditions and velocity, several different models are used.
The simplest of these is

ρ = ρ∗ (5)

v = D
[
∂ρ

∂n

]



Level set methods for simulation of thin film growth 5

in which the brackets indicate the difference between the value on the upp-
er side of the boundary and the lower side. Two choices for ρ∗ are ρ∗ = 0,
which corresponds to irreversible aggregation in which all adatoms that hit the
boundary stick to it irreversibly, and ρ∗ = ρeq for reversible aggregation. For
the latter case, ρeq is the adatom density for which there is local equilibrium
between the step and the terrace [5].

Line tension and edge diffusion can be included in the boundary conditions
and interface velocity as in

∂ρ

∂n±
= DT (ρ± − ρ∗) − µκ,

v = DT n · [∇ρ] + βρ∗ss +
(

µ

DE

)
κss,

(6)

in which κ is curvature, s is the variable along the boundary, and DE is the
coefficient for diffusion along and detachment from the boundary.

Snapshots of the results from a typical level-set simulation are shown in
Fig. 2. Shown is the level-set function (a) and the corresponding adatom con-
centration (b) obtained from solving the diffusion Eq. (4). The island bound-
aries that correspond to the integer levels of panel (a) are shown in (c). Dashed
(solid) lines represent the boundaries of islands of height 1. Comparison of
panels (a) and (b) illustrates that ρ is indeed zero at the island boundaries
(where ϕ takes an integer value).

Numerical details on implementation of the level set method for thin film
growth are provided in [7]. The figures in this article are taken from [17]
and [15].

4. Nucleation and Submonolayer Growth

For the case of irreversible aggregation, a dimer (consisting of two atoms)
is the smallest stable island, and the nucleation rate is

dNnuc

dt
= Dσ1〈ρ2〉, (7)

where 〈·〉 denotes the spatial average of ρ(x, t)2 and

σ1 =
4π

ln[(1/α)〈ρ〉D/F]
(8)

is the adatom capture number as derived in [4] The parameter α reflects the
island shape, and α � 1 for compact islands. Expression (7) for the nucleation
rate implies that the time of a nucleation event is chosen deterministically.
Whenever NnucL2 passes the next integer value (L is the system size), a new
island is nucleated. Numerically, this is realized by raising the level-set func-
tion to the next level at a number of grid points chosen to represent a dimer.
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Figure 2. Snapshots of a typical level-set simulation. Shown are a 3D view of the level-set
function (a) and the corresponding adatom concentration (b). The island boundaries as deter-
mined from the integer levels in (a) are shown in (c), where dashed (solid) lines correspond to
islands of height 1 (2).
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The choice of the location of the new island is determined by probabilis-
tic choice with spatial density proportional to the nucleation rate ρ2. This
probabilistic choice constitutes an atomistic fluctuation that must be retained
in the level set model for faithful simulation of the epitaxial morphology.
For growth with compact islands, computational tests have shown additional
atomistic fluctuations can be omitted [18].

Additions to the basic level set method, such as finite lattice constant effects
and edge diffusion, are easily included [17]. The level set method with these
corrections is in excellent agreement with the results of KMC simulations. For
example, Fig. 3 shows the scaled island size distribution (ISD)

ns =
�

s2
av

g
(

s

sav

)
, (9)

where ns is the density of islands of size s, sav is the average island size, and
g(x) is a scaling function. The top panel of Fig. 3 is for irreversible attach-
ment; the other two panels include reversibility that will be discussed below.
All three panels show excellent agreement between the results from level set
simulations, KMC and experiment.

5. Multilayer Growth

In ideal layer-by-layer growth, a layer is completed before nucleation of a
new layer starts. In this case, growth on subsequent layers would essentially be
identical to growth on previous layers. In reality, however, nucleation on higher
layers starts before the previous layer has been completed and the surface starts
to roughen. This roughening transition depends on the growth conditions (i.e.,
temperature and deposition flux) and the material system (i.e., the value of
the microscopic parameters). At the same time, the average lateral feature size
increases in higher layers, which we will refer to as coarsening of the surface.

These features of multilayer growth and the effectiveness of the level set
method in reproducing them is illustrated in Fig. 4 that shows the island num-
ber density N as a function of time for two different values of D/F from both
a level set simulation and from KMC. The results show near perfect agree-
ment. The KMC results were obtained with a value for the edge diffusion that
is 1/100 of the terrace diffusion constants. The island density decreases as the
film height increases which implies that the film coarsens.

The surface roughness w is defined as

w2 = 〈(hi − 〈h〉)2〉, (10)

where the index i labels the lattice site. Figure 5 shows the increase of surface
roughness for various different values of the edge diffusion, which implies that
edge diffusion contributes to roughening, as also observed in KMC studies.
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Figure 3. The island size distribution, as given by KMC (squares) and LS (circles) methods, in
comparison with STM experiments

Q2

(triangles) on Fe/Fe(001) [23]. The reversibility increases
from top to bottom.
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Figure 4. Island densities N on each layer for D/F =106 (lower panel) and D/F =107 (upper
panel) obtained with the level-set method and KMC simulations. For each data set there are 10
curves in the plot, corresponding to the 10 layers.

It suggests that faster edge diffusion leads to more compact island shapes,
and as a result the residence time of an atom on top of compact islands is
extended. This promotes nucleation at earlier times on top of higher layers, and
thus enhanced roughening. Effects of edge diffusion were included in these
simulations through a term of the form κ − 〈κ〉 rather than κss as in (6).

6. Reversibility

The simulation results presented above have been for the case of irre-
versible aggregation. If aggregation is reversible the KMC method must
simulate a large number of events that do not affect the time-average of the
system: Atoms detach from existing islands, diffuse on the terrace for a short
period of time and reattach to the same island most of the time. These pro-
cesses can slow down KMC simulations significantly. On the other hand, in a
level set simulation these events can directly be replaced by their time aver-
age and therefore the simulation only needs to include detachment events that
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Figure 5. Time evolution of the surface roughness w for different values of edge diffusion
Dedge.

do not lead to a subsequent reattachment, making the level set method much
faster than KMC.

Reversibility does not necessarily depend only on purely local conditions
(e.g., local bond strength) but often on more global quantities such as strain or
chemical environment. To include these kind of effects in a rather hard task in
a KMC simulation but can be quite naturally included in a mean field picture.

Reversibility can be included in the level set method using the boundary
conditions (5) with ρ∗ = ρeq in which ρeq depends on the local environment
of the island, in particular the edge atom density [6]. For islands consisting of
only of a few atoms, however, the stochastic nature of detachment becomes
relevant and is included through random detachment and breakup for small
islands, as detailed in [14].

Figure 3 shows that the level set method with reversibility reproduces nicely
the trends in the scaled ISD found in the KMC simulations and experiment.
In particular, the scaled ISD depends only on the degree of reversibility, and it
narrows and sharpens in agreement with the earlier prediction of [19].

In [15], the level set method with reversibility was used to determine the
long time asymptotics of Ostwald ripening. A similar computation was
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Figure 6. Time dependence (in seconds) of the average island radius R̄ (in units of the lattice
constant) for two different coverages � on a log–log plot. The straight lines have slope 1/3,
which was the theoretical prediction.

performed in [8]. Figure 6 shows that the average island size R̄ grows as
t1/3, which was an earlier theoretical prediction. Because reversibility greatly
increases the number of hopping events and thus lowers the time step for
an atomistic computation, KMC simulations have been unable to reach this
asymptotic regime. The longer time steps in the level set simulation give it a
significant advantage over KMC for this problem.

7. Hybrid Methods and Additional Applications

As described above, the level set method does not include island boundary
roughness or fractal island shapes, which can be significant in some applica-
tions. One way of including boundary roughness is by including additional
state variables φ for the density of edge atoms and k for the density of kinks
along an island boundary or step edge. A detailed step edge model was derived
in [6] and used in determination of ρeq for the level set method with reversibil-
ity. While adequate for simulating reversibility, this approach will not extend
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to fractal island shapes. A promising alternative is a hybrid method that com-
bines island dynamics with KMC; e.g., the adatom density is evolved through
diffusion of a continuum density function, but attachment at island boundaries
is performed by Monte Carlo [20]. In a different approach [10], where dif-
fusion is described and the adatom density is evolved by explicit solution of
the master equation, the atoms are resolved explicitly only once they attach
to an island boundary. While these methods do not use a level set method, it
is sufficiently similar to the method discussed here to warrant mention in this
discussion.

Level set methods have been used for a number thin film growth problems
that are related to the applications described above. In [22] a level set method
was used to describe spiral growth in epitaxy. A general level set approach
to material processing problems, including etching, deposition and lithogra-
phy, was developed in [1], [2] and [3]. A similar method was used in [13] for
deposition in trenches and vias.

8. Outlook

The simulations described above have established the validity of the level
set method for simulation of epitaxial growth. Moreover, the level set method
makes possible simulations that would be intractable for atomistic methods
such as KMC. This method can now be used with confidence in many
applications that include epitaxy along with additional phenomena and physics.
Examples that seem promising for future developments include strain, faceting
and surface chemistry: Elastic strain is generated in heteroepitaxial growth due
to lattice mismatch between the substrate and the film. It modifies the mate-
rial properties and surface morphology, leading to many interesting growth
phenomena such as quantum dot formation. Strained growth could be sim-
ulated by combining an elasticity solver with the level set method, and this
would have significant advantages over KMC simulations for strained growth.
Faceting occurs in many epitaxial systems, e.g., corrugated surfaces and quan-
tum dots, and can be an important factor in the energy balance that determines
the kinetic pathways for growth and structure. The coexistence of different
facets can be represented in a level set formulation using two level set func-
tions, one for crystal height and the second to mark the boundaries between
adjacent facets [16]. Determination of the velocity for a facet boundary, as
well for the nucleation of new facets, should be performed using energetic
arguments. Similarly, surface chemistry such as the effects of different
surface reconstructions could in principle be represented using two level set
functions.
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