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Level set approach to reversible epitaxial growth
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We generalize the level set approach to model epitaxial growth to include thermal detachment of atoms from
island edges. This means that islands do not always grow and island dissociation can occur. We make no
assumptions about a critical nucleus. Excellent quantitative agreement is obtained with kinetic Monte Carlo
simulations for island densities and island size distributions in the submonolayer regime.
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[. INTRODUCTION topological changes. In this paper, the relevant objects are

two-dimensional islands and topological changes occur due
At the present time, there is no practical approach to epto nucleation, dissociation, and coalescence. The key idea is

itaxial growth modeling that bridges the gap between microto represent a curve or interfatein R" by the levelk of a

scopic and macroscopic length scales. Rate equations off@linction ¢(x,t)

some hopég1], but their reliance on uncontrolled mean-field

approximations remains a serious obstacle. Kinetic Monte I={x: ¢(x,t)=k},

Carlo (KMC) simulations are very populd®], but scale up

to the micron range is very doubtful, even with future super-

computers. Here,I'| is the set of closed curves that constitute the perim-
One approach to the multiple-scale problem uses aeters of the islands with heighk{ 1)a (a is the lattice

atomic description in the verticagrowth) direction and a  parametekr

continuum description in the lateral directions. Specifically, Figure 1 illustrates the level set description of a typical

the random walk of individual atoms on a flat terrace is re-epitaxial growth scenario. The left panel is a side view of

placed by the solution of a diffusion equation for the mono-two islands on a terrad@) that grow to a precoalesence state

mer density on each terrace. This is not a new i@abut () and subsequently merge). Later, a new island nucleates

its recent rebirth in the context of thievel set(LVST) o top(d). The right panel shows the corresponding level set

method[4-6] is particularly promising in light of the rela- nctions¢. Note that it is note that represents the surface

tively low computational cost needed to treat arbitrarily Com'morphology but only the level setg&0 and¢=1)

plicated surface morphologies. So far, good success has been.l.he moti'on of ' is partly deterministic and pa;tly sto-

achieved forirreversible epitaxial growth where LVST cal- chastic. There is a deterministic part because a mean-field
culations quantitatively reproduce the results of KMC Calcu-th ; fficient t del the ti P f fth
lations for the distribution of two-dimensional islands in the 1€0Y 1S sulficient to model theé ime average of many of the

submonolayer regimg7]. physical processes that contribute to growth. These effects

The purpose of this paper is to extend the LVST method
to the case ofeversibleepitaxial growth where thermal de- (a)

xeR".

@

tachment of atoms from island edges is allowed. This step is

necessary if one hopes to produce a model that is relevantto __I3___ T __ 4 — ol—2 £\
growth at elevated temperatures. Moreover, a reversible ANSSNNNNNN N\ S e =
LVST growth model has significant computational advan-

tages over a reversible KMC model. This is so because KMC (b)

keeps track of every detaching atom, including those that

eventually return to the island from whence they came. Such s I s I | V. N
events leave the system unchanged ovei@]l and slow NMNANNARNNNNNNNY - N ~
down the simulation significantly. By contrast, the reversible

LVST scheme we develop below replaces these events by (c)

their time average and so includes only those detachments

that do not lead to subsequent reattachments. Moreover, be- ] A I
cause of the mean-field approach, a large number of detach-  NNNX\\\N\\\\\N\ ¢=0~ -

ment events can be treated within a single simulation time
step.

(d)
IIl. METHOD — i:(l)—_/___f_\:_
A. Level sets NNUSSRSSRNNRNY 7 -

The level set method9] models the time evolution of

FIG. 1. Schematic illustration on mapping island configurations

arbitrarily shaped objects in dimensions that can undergo during growth(left pane) onto a LVST functione.
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are built into a velocity functiorv,(x,t) that evolves the
function ¢(x,t) in time according to the partial differential
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zone. The positions of these borders are easily calcu(#ted
locus of points wher& p=0) and so ispes.. We find (Ap-

equation pendix B that

_ In[( Ris+ a)/Ris]

(X, 1)+ (X, 1)V p(x,t)|=0. ¢ In(Re/Ri)

2 (7
As the notation suggests,, is the component of the growth
velocity in the direction of the local surface normal

=V ¢/|V ¢|. The stochastic motion df is associated with island and capture zone. _
. . ) . We now define an effective escape rate per unit length of
nucleation events and small-island dynamics. There is ng

. ) . iy island perimeter as
unique algorithm to incorporate these effects imkfx,t).
The particular choice we make is explained in detail below.

where R;s and R, are the radii of the circularly averaged

®

whereD 4 is an effective detachment rate axds the linear
density of detaching particleingly coordinated edge at-
oms. We use\ =2 for “small” islands and the expression
[12]

Ryer= D gefPesd

B. Deterministic evolution

It is convenient to write the velocity,, in Eq. (2) in the
form

Unzvatt_vdet’

)

16(16 _ 1 213
= 9

" 3115Y Dy

where v®" accounts for attachment processes that grow is-

lands andv %' accounts for detachment processes that shrink,, “large” islands. The distinction between “large” and

islands. The first of these is proportional to the diffusive flux«g,211” islands will be made clear belowD 4 is the edge
edg

iffusion constanf13]. From Ry, We get the desired expres-

terraces. Therefore, B is the surface diffusion constant and sion for the detachment velocity that enters ER),

p(x,t) is the adatom density, mass conservation gives

vie= a2 Rger™ adeetpesc}\- (10

v¥=a’D ( - (4)

an

Significantly (see below, there is negligible extra computa-

dp
n t fislan ' H H H H
op ot tional overhead needed to incorporate detachment in this
way.

We compute the required density from the mean-field, It remains only to find a home for the atoms that escape

driven, diffusion equation from the islands. In the spirit of the mean-field approxima-
tion, we return them to the adatom pool by simply augment-

terrace

. d
p(x,1)=DV?p(x,t)+F—2

d:uc' (5)  ing the external flux. That is, the variabifein Eq. (5) is
F=Fy+Fay, (17
The loss term in Eq(5),
whereF, is the deposition flux and
dNpd1) J
—F—F—=D x,t)2d?x, 6 1
dt 71 ,Px0) © Fro= g f RgerdT (12)
r

accounts for the dimers that nucleate as a result of binar
collision between monomers. The total simulation aref is
and o, is the so-called “capture number” for an adatom
[10]. We solve Eq(5) subject to the boundary condition that
p=0 at every point orl". This differs from the boundary
condition usually used for reversible aggregatidd| be- A nucleation event occurs when the variablg, in Eq.
cause we have elected to incorporate all detachment effect6) becomes larger than the next integer. This implies that
into the velocityv %' (see Appendix A ¢(x,t) increases by a discrete amount at a discrete point. In
To find an explicit expression far®', we note first that the interest of numerical stability, we smooth out this in-
most particles that detach from an island are driven back tarease over several points on the numerical grid used to solve
that island by the diffusion field11]. Our interest here is Eq.(5). The exact position where the dimer nucleates is cho-
those particles that detach without subsequent reattachmeisgn randomly with the integrand of E@) as a weight factor
i.e., those that escape from the “capture zone” of the island[7].
This is so because, by definition, the adatoms in the capture Randomness is also important for detachment from
zone of a given island are guaranteed to attach to that islarfgmall” islands that consist of only a few atoms. Our ap-
eventually. A relevant quantity is thys.s. the probability proach is to choose an island ar&g, and treat all islands
that a detached particle reaches the border of the captusmaller than this size statistically. Thus, in a given time in-

% the escape rate of atoms from all island edges. In this
integral,I" runs over all level sets op(x,t) [see Eq(1)].

C. Stochastic evolution
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1.5+ 7 FIG. 3. Escape rate of atoms from all island edBgsg [see Eq.
= (12)] as a function of coverag® for different values ofD y./D.
® 1.0 Simulation parameters as in Fig. 2, excép}==6.
(=
—
05 Figure 3 illustrates the role of detachment during growth.
' It showsF ., from Eq.(11) as a function oft for different
o values ofD 4fD. The fact thafF ., has its highest values at
00 =005 o7 o015 o2 oz the earliest stages of growttfor the higher values of

D4et/ D) shows that most of the effective detachment takes
place when the islands are quite small. Indeed, as islands

FIG. 2. Influence ofA, on the adatom density (a) and the  grow bigger, fewer particles escape from the island bound-
island densityN (b) as a function of coverag® for Dy./D aries since the number of escaping particles relative to the
=0.001. Data have been averaged over ten runs. perimeter of the growing islands becomes smaller and
smaller.

©

terval, we use Eq(8) to calculate the total number of ada-
toms that detach from all islands smaller thAg,. This
corresponds to a total area lo8g.. If Ass>A;, the area As a critical test, we compared our LVST results directly
occupied by one atom, we detach an atom from one of th&ith KMC simulations[2,14]. In our KMC simulations ada-
islands smaller tham,. The specific island that loses an toms are allowed to hop to a nearest-neighbor site at a rate
atom is chosen randomly with.s. as a weight factor. We Tn=D exp(-nEy/kgT), wheren is the number of nearest
then decremen®\,.c by A, and repeat the process until neighbors kg the Boltzma_mn constant, antd the_ tempera-
Agec<A,. This value is stored and added to the loss thafure- Adatoms are deposited at a r&tg In all simulations

occurs in the next time interval. If a detachment processpresemed in this paper the ratid/F, is set to 16. The

leads to an island smaller than a dimer, we dissociate th nergy barrier EN. 1S c_hosen SU(?h thatD ger= D exp
dimer and decremenfi,,.. accordingly —En/kgT). In addition, singly coordinated edge atoms are
loss .

We emphasize thaf., is not the area of a critical allowed to diffuse along the step edge at a rig,. We

nucl i n island that is absolutely stabl in hoseDgqg=Dger, but the results were not sensitive to this
uceus, 1.e., an Isfal at 15 absolutely: stable aga Sgarameter as long as the islands were comcbur LVST
breakup. InsteadA., is merely the size of the smallest

- ; model assumes
“Iarget’ island that we use as a parameter to switch between Figures 4, 5, and 6 respectively show the adatom density,
statistical and continuous detachment. In the context of oUgjand density, and island size distribution obtained by both
approach, the critical nucleus is defined by the conditionnethods as a function of detachment rate. These curves agree
va=p % [see Eq(3)]. with previous reversible KMC simulationfgl1,15,14 that
discuss, e.g., the physical origin of the observed saturation of
Ill. RESULTS the island densities and the sharpening of the island size
distributions. Evidently, there is semiquantitative agreement
between LVST and KMC. The size distributions results are
All the LVST simulations reported here use the valueparticularly notable because they reflect information about
D/Fo=10°. Degqin Eq. (9) was chosen as f@and calcula-  spatial correlations that are averaged over topgand N.
tions where carried out on a 28@00 lattice represented on  The only disagreement we find between LVST and KMC
a numerical grid of 568 568 points. To determind.,, we s for the saturation value of the island density for the small-
compared runs with different choices for this parameter anést value of the detachment rate. We understand this based on
looked for stabilization of the physical results. Thus, Fig. 2recent researcfil7] with irreversible growth where a corre-
compares island and adatom densities as a function of cogponding disagreememnanisheswhen thep=0 boundary
erage® obtained forA, =4, 6, and 8 at a detachment rate condition for Eq.(5) is applied not at the true perimeter of
of Dye/D=0.001. Based on this data and related statisticabach islandas we d¢ but instead at a closed boundary that
tests, we find that our results are independemAgfif A,y  exceeds the perimeter everywhere by one lattice constant.
=6. Therefore, we us8.,~=6 in all subsequent simulations. The disagreement disappears altogether when the island den-

B. Comparison to KMC

A. Parameter choices and systematics
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FIG. 4. Adatom densities as obtained by the level set method
and KMC (b). In the LVST calculation all parameters are as in Fig.

2, exceptA,=6.

sity is small. This is consistent with our observations because
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we get good agreement with KMC when the detachmentrate (g g, |siand size distributions wherg, is the density of is-
is large (and the island density is small

Figure 7 ShOW_S some systematic features of reversiblgge. Closed circles, level set result; open squares, KMC. Detach-
growth as a function of the effective detachment rate. Thenent rates are ifg), D e/ D = 0.0001;(b), D 4o/ D =0.0005; and in
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FIG. 5. Island densitieN as obtained by the level set meth@

——— Dget/D = 0.001
— - — Dget/D = 0.01

-~~~ Dget/D= 0.0001

and KMC (b). Parameters as in Fig. 4.

lands of sizes, (s) is the average island size, afidis the cover-

(c), Dget/D=0.001. Data have been sampled @t 0.25. Other
parameters as in Fig. 4.

LVST data (collected at 0.25 ML coverageshow that the
average adatom density increases linearly Bigh, while the
average island density decreases exponentially igh;.
Unfortunately, we have been unable to derive these interest-
ing results analytically using rate equations.

The data in Fig. 6 was easy to obtain because, beginning
with an irreversible growth simulation, thextra computa-
tional cost to include detachment is very small for LVST
compared to KMC. This is so because LVST precisely sup-
presses the time-consuming detachment/attachment fluctua-
tions that occupy a KMC simulation. Moreover, the LVST
has essentially no restriction on the number of detachment
events simulated during a specific time step. Quantitatively,
Fig. 8 shows that the LVST method requires only negligibly
more run time to include detachment whereas the KMC
simulation cost increases sharply as the detachment rate in-
creases. The LVST results depend very weakly on the rate of
detachment because the increased cost is associated wholly
with reductions in the step advance rate. Specifically, the
adatom density rises with increasing detachment rate so the
gradients evaluated in Eq4) become larger. But the step
advance rate is limited by the condition that the boundary of
the level set function can advance only one grid point in each
simulation step. This implies that the scaling should be even
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FIG. 7. Equilibrium adatom density (a) and equilibrium den- APPENDIX A©° BOUNDARY CONDITIONS
sity of islandsN (b). Data have been sampled at 0.25 coverage. '
Other parameters as in Fig. 4. The usual boundary condition for reversible growWit]

setsp=p.q at every island perimeter. In this Appendix, we

better for simulations of, say, annealing processes, wher@&at€peq o the detachment velocity** used in this paper.
there is no deposition flux and the adatom density is veryThe idea is to consider two adatom densitipsand p as
low. schematically shown in Fig. 9) (p) is the system where
the adatom density drops 1@, (p=0) at the island bound-
ary. We then write down diffusion for both adatom densities
and derive from those the respective reversible growth ve-
locities.

Letp p (the solid line in Fig. 9 be the exact solution of

IV. CONCLUSION

In summary, we have developed a method to model epi-
taxial growth including atomic detachment from island edges
within the context of the level set method. By all reasonable

measures, the results are in excellent agreement with KMC 0=DV?(x)+Fo, xeQ, (A1)
simulations. Moreover, the LVST simulations scale signifi-
cantly in CPU-time demand than KMC simulations when the p(x)= Peqy  Xe€IB(1), (A2)

effective detachment rate is large. This is so because our

mean-field method eliminates the many atomic detachmenfnereq is the domaingB(t) the island boundaries, and,
events(each processed separately in KM@at do not lead is the (finite) equilibrium value of;(x) at the island bound-

to successful escape from an island. .
P aries due to detachment of atoms.

If C(t) is the capture zone andC(t) its boundary

15— SUPE R (dashed line in Fig. 9 then with the boundary condition
O—1Level Set (9_
10 | O—OKMC ] a—ﬁzo, xe dC(t) (A3)

t/to

we can uniquely solve the diffusion equatiohl).

In this case the reversible growth velocity is given by Eq.
(4) (labeledv, in Fig. 9).

Now we want to replace by a adatom density (dashed

0.001 0o line in Fig. 9 such that
Ddet/D
_ 2
FIG. 8. Scaling of the level set and KMC method as a function 0=DVp(X)+Fo+Frey, xe, (A4)
of detachment rate. Runtimésire normalized to the runtime of the
irreversible case,. Parameters as in Fig. 4. p(X)=0, xedB(t), (Ab)
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wereF ., is as explained in Eql1) the diffusive flux away APPENDIX B:  DERIVATION OF P
from the island boundary due to detachment.
It follows from Eqgs.(Al) and (A4) that Any atom that detaches from an island but does not reach
the capture zone boundary is driven by the diffusion field
V2p(x)= F0+FreVV2;(X) (A6) back to the island. In such a caggyis zero. But if the
Fo detached adatom does reach the border of the capture zone,

PesciS 1. Therefore, to determine the probability distribution

and therefore P(x) for all possible paths of an detaching adatom, we solve

Fot Frey — the diffusion equation
p(x)= F—O[P(X)—Peq]- (A7)
— 2 _
If we want the two systems andp to be equivalent, then we VeP(x)=0, (B1)
must require
— ith the bound diti
J’ p(x)d2x=f () dx. (A8) with the boundary condition
c(t) c(t)
Combining Eqs(A7) and (A8) we obtain 0, xeS;
P(x)= , (B2)
FotFrev 1, xe Scz

— o [ =
Fo fC(t)[p(X) Peald™ fc(t)p(x)d X, (A9)

where S and S, are the border of the island and of the
capture zone respectively. These boundary conditions repre-
— o ) sent the either successfully escafpeobability 1 to reach
Frev C(t)p(X)d x=(Fo+Fre) C(t)Peqd x. (A0 gy or the reattachment to the islag@l atS.).
Equations(B1) and (B2) can in principle be solved for
If A(C) is the area of the capture zone, the relation betweeany island and capture zone geometry. But in our calcula-

which is equivalent to

Frev @ndpeq is tions we assume for simplicity a spherical average for both,
the islands and the capture zones. For this case the general
Fo solution to Eqs(B1) and(B2) is
1 p(X)
A_( o dx—1
C) Peq In(|x|/Rig)
. o : P(X)= —=—5 (B3)
Assuming thaRy, is independent ofil” we can rewrite Eq. IN(Rc,/Ris)
(12) as
= =£R L (A12) whereR;; and R, are the radii of the island and of the cap-
rev () det ture zone. From this we obtain the escape probability of a

detached atom by taking| =R+ a (a is the lattice param-
Then, Eq.(10) reduces to etep because when an adatom detaches, it is roughly at dis-
tancea from the island boundary. Therefore,

Udegazglzrev:azg E)
L L N e 1 |
A(C) Jeq) peq _ In[(Ris+a)/R] 84)

(A13) Pesc™ T In(Re,/Ry)
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