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Level-set methods for the simulation of epitaxial phenomena
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We introduce a model for epitaxial phenomena based on the motion of island boundaries, which is described
by the level-set method. Our model treats the growing film as a continuum in the lateral direction, but retains
atomistic discreteness in the growth direction. An example of such an “island dynamics” model using the
level-set method is presented and compared with the corresponding rate equation description. Extensions of our
methodology to more general settings are then discussed.
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Modeling epitaxial growth presents an enormous chal-of atomistic kinetic processes, which can in principle be
lenge to theoretical physicists and materials scientists. Thilentified and their rates determined from first principles cal-
range of length and time scales represented by problems afilations[10]. However, simulations are usually based on
practical intereste.g., the growth of device laygrspans the length and time scales of single atoms and adatom hop-
many orders of magnitudgl], i.e., atomistic processes can ping rates, so modeling systems of practical interest is not
significantly affect quantities such as surface morphologyalways feasible. In addition, due to the stochastic nature of
even at the largest length and time scdl2k A complete  simulations, the advantages of analytic approaches men-
model for epitaxial growth would seamlessly combine thetioned above are not readily obtained.
submonolayer and multilayer regimes on lateral scales of Yet, despite the practical limitations of analytic and simu-
several microns or more, be appropriate for a variety of hotational methods, they have been used with great effect to
moepitaxial and heteroepitaxial systems, and be capable g@irovide a comprehensive conceptual and computational
describing different growth techniques. framework for describing homoepitaxial growghl], espe-

None of the models for epitaxial growth currently in use cially by molecular-beam epitaxy. Problems arise, however,
can accomplish this objective. The most common approacheghen attempts are made to extend these techniques to het-
fall into one of two categories: analytic-based methods, i.e.eroepitaxial systems, where the effects of lattice mismatch
homogeneous rate equations and continuum equations efust be incorporated, or to other growth methods, such as
motion, and kinetic Monte CarlKMC) simulations. Homo-  vapor-phase epitax§¥PE), which requires coupling the ato-
geneous rate equations are straightforward to formiiBte  mistic kinetics on the substrate to the hydrodynamic delivery
but do not readily yield information on surface morphology. of new material. Some aspects of these issues have been
Moreover, the number of parameters required grows quickhaddressed for particular systems, but no general methodol-
once rate equations are extended to the coalescence ogy has emerged to provide a unifying framework in the
multilayer growth regime$4]. Even in the precoalescence spirit of the analytic or simulational work described above.
regime, the physical interpretation and computation of these In this Rapid Communication, we introduce a model and
parameters in terms of atomistic processes are often unclealosely related numerical technique that addresses these is-
at best, unattainable at worst. sues. In our model, growth is described by the creation and

Continuum equations of motion that take the form of par-subsequent motion of island boundaries; hence, we refer to
tial differential equation$5] for the surface height profile do this model as “island dynamics.” The model is discrete in
yield information on morphology at large length scales. Asthe growth direction, but continuous in the lateral directions
they are typically formulated5,6], however, continuum and therefore, in principle, can describe growth on arbitrarily
equations are appropriate only in a regime where the surfadarge lateral length scales. Moreover, since the lateral direc-
is already assumed to be macroscopically rough. Continuurtions are treated continuously, continuum equations repre-
methods are therefore unsuitable for describing atomic scalsenting any field variable can be coupled to the growth by
roughness. The primary advantage of these and rate equatisolving the appropriate boundary-value problem for the field
methods is the vast methodology available for, e.g., identifyand using local values of this field to determine the local
ing asymptotic regimesscaling [7] and performing stability velocity of the island boundaries. For example, the strain
analyseg8]. fields that occur in the presence of lattice mismatch or the

KMC simulations[9] offer an alternative to analytic ap- hydrodynamic fields in a VPE reactor can be accommodated
proaches. They allow easy implementation of a wide rangéy this method.

Although island dynamics is a natural way of describing

many aspects of epitaxial growth, its implementation re-

*Permanent address: The Blackett Laboratory, Imperial Collegequires tracking a large number of individual interfaces that
London SW7 2BZ, United Kingdom. coalesce or are created by nucleation. Recent advances in
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(@) evolution of boundaries with the level-set method is a direct
1 1 o=0 N\ N\ consequence of a particular choice for the boundary velocity
V.
To illustrate the application of the level-set method to
(b) epitaxial growth, we consider a basic island dynamics model.
p=0—F D N\ This model assumes that the adatom densityp(t) is spa-
tially uniform and that the incident fluk is constant in space
© and time. If we also assume that adatoms attach irreversibly
| o to the islands, then the velocity of the island boundary has
= magnitude
(d) — p=1F - - - - /_\K_—___ v=Dpa, 2
[ =0
Y - whereD is the adatom diffusion constant aads the lattice

FIG. 1. Schemati lut ¢ i ional island constant. The adatom density increases due to the flux and
- 4. ochematic evolution of one-dimensional 1Sland Mor-yare55e5 due to both nucleation of new islands and attach-

phologies(left) and the corresponding level set functignright): ment of adatoms to island boundaries. The equation for the
(a) two spatially separated island&y) the same islands at a later evolution of the adatom density is thus given by

time, but before coalescencg) the islands after coalescence; and
(d) the nucleation of a new island on top of the coalesced islands.
dp dN v
. . . —=F—n0———f ds, 3

applied mathematics, in particular, the development of the dt dt  a212
level-set method for simulating the motion of free bound-
aries[12,13], now make numerical implementation of such awhereng is the number of adatoms in a new islahdis the
model practical. We first will give a brief introduction to the density of islandsl- is the system size, and the integral is
level-set method and then present results of a basic islanaver all the island boundaries. The form of the last term,
dynamics model to demonstrate its viability. which accounts for the decrease of adatom density due to

The central idea behind the level-set methtd] is that  attachment to island boundaries, is easily understood by ob-
any boundary curv&, such as a step or the boundary of anserving that the integral over all island boundaries with a
island, can be represented as the get0, called thelevel  spatially constang is just the total area of adatoms swept up
set of a smooth functiorp [Fig. 1(a)]. For a given boundary by these boundaries in timat. The factor ofa? then con-

velocity v, the equation fokp is then verts this area into the number of adatoms lost and the factor
of L? converts this, in turn, into the corresponding density.
de Equations(2) and(3) are closed by specifying the nucle-
9t +v-Ve=0, 1) ation rate. For the case of irreversible attachmegt; 2 and
the nucleation rate is
in which v has been extended in an arbitrary way from the dN
. ~ — 2
boundary T'(t). Since Vo=n|Ve|, then v-Vo=0|Ve|, PR (4)

wherev=n-v is the normal component of andn points

along the direction oWV ¢. Growth is naturally described by New islands are nucleated at the tinigsvhenNL? crosses

the smooth evolution ofp as illustrated schematically in the integer valua. At these times a “peak” is inserted into

Figs. 1@ and ib). The boundary curvé'(t) generally has ¢ [cf. Fig. (d)]. This peak is one unit high and spans several

several disjoint pieces that may evolve so as to mgFgg  points on the numerical grid to ensure the smoothness of

1(c)] or split[13,14. Since there is no spatial dependence in the adatom density
We have extended this method to multilayer growthand, hence, in the nucleation rate, we choose the location

where the(zero thicknessboundariesl’,(t) of the islands of new islands to be random. This is equivalent to adding a

are defined as the set of spatial poimt$or which ¢(x,t) source termZ,8(t—t,) 8(x—x,) to the right-hand side of

=k for k=0,1,2 ... [Fig. 1(d)]. Overhangs and undercuts, Eqg.(1). While this nucleation scheme is appropriate here, the

generally considered irrelevant in modeling epitaxial phetemporal and spatial dependence of nucleation can be chosen

nomena, are prevented by using one single-valued fungtion to include any desired physics, such as the spatial variation

for all layers. The evolution of the level-set functianis  of the adatom density.

obtained by numerically solving E@l) with high-order ac- The above model describes the growth of islands at a rate
curacy(typically third orde¥ using essentially nonoscillatory proportional to their perimeter, which is appropriate for the
(ENO) methoddg[15]. period immediately preceeding the aggregation redih.

An important feature of the level-set method is that While no fixed island growth rates are correct for all regimes
remains smooth throughout coalescence. This is crucial fdrl17,18), our choice is suitable for demonstrating the feasibil-
applications to epitaxial growth because hundreds or eveity of applying the level-set method to a particular island
thousands of island boundaries may merge in the course ofdynamics model. Figure 2 shows islands at four different
typical simulation. While other methods for tracking bound- coverages obtained by integrating Ed4), (3), and (4).
aries(e.g.,[16]) require additional input for accommodating Since the model is both isotropic and spatially uniform, the
the topological changes that occur during coalescence, thslands are circular, but this is not an intrinsic limitation of
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FIG. 2. Island boundaries in the fir&olid), second(dashed,  linear size 1024. These values were chosen to resolve dimers
and third (dashed-dottedlayers for the model of epitaxial growth in @ numerically stable way. This system size is large enough
described in the text. The coverages in monolay®tk) are 0.1  that finite size effects are neglible. To facilitate comparison
(upper lef}, 0.5 (upper righy, 1.0 (lower left), and 1.3(lower right. with the real space rate equations, seeding is chosen to ex-
Data were obtained fdd/F=10°, L/a= 180, and a numerical grid clude coalescence. The excellent agreement in Fig. 3 con-
of linear size 256. firms that the island dynamics simulation, in which island

boundaries are moved by the level-set function, produces
our method. The velocity for the island boundaries can requantitatively correct results for this simple model. In par-
flect any underlying crystal symmetfy9]. ticular, it confirms the accuracy of the numerical evolution of

This simple island dynamics model is best understood inhe level-set function.
the context of rate equations that take into account the evo- We now turn to the interpretation of the data. The island
lution of a finite number of islands in a finite system of sizesize distributions exhibit two distinct characteristics: a rather
L, but with continuous island sizes. Consider E8).in the  sharp cutoff which moves to the left &/F increasegnot
slightly altered form shown), and a long tail for smaller islands. This can be un-

derstood as follows. The island dynamics model evolves a
dp dN v discrete number of islands of finite size. A large humber of
a:F_nOE_ WZI 2y, ©) islands are nucleated near the onset of growth which then

grow to approximately the same size. This results in a peak

where we make explicit the sum over the perimeter of ever)pear the largest island size fqllowed by a sharp cutoff. Sub-
island in the system whose radiug js With evolution equa- sequently, the adatom density reaches a steady state and

tions for eachr; given by 2

10

dri
a =U, (6)
this set of equations, together with E@8) and (4), is then

formally identical to the island dynamics model prior to coa-
lescence, provided that atk=0 initially and that thekth Z 10
nucleation event adds a new island to the system with initial
radiusr,=a+ny/7. Because the system size enters explic-

itly into these coupled equations, we refer to them as “real
space” rate equation0].

To provide a quantitative comparison between the island
dynamics model and real space rate equations, we examine 10"
the scaled island size distributiof&l] produced by the two D/F
models. Figure 3 shows the results of the island dynamics
simulation and integration of the real space rate equations. FIG. 4. Island density obtained from island dynamics simula-
All data has been obtained with/a=718; the island dy- tions as a function oD/F at a coverage=0.05 ml. The dashed
namics simulations were performed on a numerical grid ofine is a guide to the eye and the solid line has slefig2.
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then, according to Eqg@), new islands are nucleated at a a local strain field can be used to determine the growth ve-

constant rate. This leads to the long tail for small islands. Adocity of island boundaries during heteroepitaxial growth. It

D/F increases, the relative number of islands nucleated &t also possible to construct an island dynamics model for

early times increases at the expense of the smaller islandgPE, in which a hydrodynamics simulation for an entire re-

leading to a shift of the peak position towasts,,=1. Asa actor is used to provide local values of density and chemical

result, the island density decreases and we obtain scalingpmposition at the surface of a wafer. Such a calculation was

behavior consistent withl~ (D/F) ~ Y2 (Fig. 4). This agrees done in a similar, but simpler, framework in R¢.4]. In

with the standard rate equation analysis for this m¢aéa] conclusion, we believe that the availability of robust level-set

and KMC simulations for the pre-aggregation regip&]. methods represents an opportunity to attack problems in ep-
The approach we have described here has applicability fataxial growth within a new framework.

beyond the basic model we have used. The most obvious

extension of our model is to solve a diffusion equation for

the adatom density and use the density gradient at island We gratefully acknowledge support of this work by the

edges to determine the growth velocity of island boundariesNSF and DARPA through cooperative agreement No. DMS-

This is currently being pursued and results will be published®615854 as part of the Virtual Integrated Prototyping Initia-

elsewhere. Just as in the case of adatom diffusion, values tife.
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