math building

Russel E. Caflisch
List of Publications

Research Publications

PDEs and Sparsity

  1. V. Ozolins, Rongjie Lai, R.E. Caflisch and S.J. Osher. “Compressed plane waves - compactly supported multiresolution basis for the Laplace operator,” Proc. NAS 111 (2014) 1691-1696.
  2. V. Ozolins, Rongjie Lai, R.E. Caflisch and S.J. Osher. “Compressed Modes for Variational Problems in Mathematics and Physics,” Proc. NAS 110 (2013) 18368-18373.
  3. H. Schaeffer, S.J. Osher, R.E. Caflisch and C. Hauck. “Sparse Dynamics for Partial Differential Equations,” Proc. NAS 110 (2013) 6634-6639.
Plasma Physics
  1. M.S. Rosin, L.F. Ricketson, A.M. Dimits, R.E. Caflisch, B.I. Cohen. “Multilevel Monte Carlo simulation of Coulomb Collisions,” J. Comp. Phys. 274 (2014) 140–157.
  2. L.F. Ricketson, M.S. Rosin, R.E. Caflisch, and A.M. Dimits. “An entropy based thermalization scheme for hybrid simulations of Coulomb collisions,” J. Computational Physics, 273 (2014) 77–99.
  3. A. M. Dimits, B. I. Cohen, R. E. Caflisch, M.S. Rosin and L.F. Ricketson. “Higher-order Time Integration of Coulomb Collisions in a Plasma Using Langevin Equations,” J. Computational Physics 242 (2013) 561–580.
  4. R.E. Caflisch and M.S. Rosin. “Beyond the Child-Langmuir limit,” Phys. Rev. E 85, 056408 (2012).
  5. G. Dimarco, R.E. Caflisch, and L. Pareschi. “Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas,” Communications in Applied and Industrial Mathematics, 1 (2010) 72 - 91.
  6. B.I. Cohen, A.M. Dimits, A. Friedman, and R.E. Caflisch. “Time-Step Considerations in Particle Simulation Algorithms for Coulomb Collisions in Plasmas,” IEEE Transactions on Plasma Science, 38 (2010) 2394 - 2406.
  7. A.M. Dimits, C. Wang, R.E. Caflisch, B.I. Cohen, and Y. Huang. “Understanding the accuracy of Nanbu's numerical Coulomb collision operator,” Journal of Computational Physics, 228 (2009) 4881-4892.
  8. R.E. Caflisch, C. Wang, G. Dimarco, B. Cohen, and A. Dimits. “A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma,” MMS, 7 (2008) 865-887.
  9. C. Wang, T. Lin, R.E. Caflisch, B. Cohen, and A. Dimits. “Particle simulation of Coulomb collisions: Comparing the methods of Takizuka & Abe and Nanbu,” J. Comp. Phys. 227 (2008) 4308-4329.
Epitaxial Growth and Structure
  1. P. N. Patrone, R. E. Caflisch and D. Margetis. “Characterizing equilibrium in epitaxial growth,” European Phys. Lett., 97 (2012) 48012.
  2. Yi Sun, R.E. Cafisch and Bjorn Engquist . “A Multiscale Method for Epitaxial Growth,” Multiscale Model. Simul. 9 (2011) pp. 335-354.
  3. J.M. Reich, X.B. Niu, Y.J. Lee, R.E. Caflisch, and C. Ratsch. “Lateral alloy segregation in thin heteroepitaxial films,” Phys. Rev. B 79, 073405 (2009).
  4. R.E. Caflisch. “Growth and Pattern Formation for Thin Films,” Progress in Industrial Mathematics at ECMI 2006. eds. L.L. Bonilla, M. Moscoso, G. Platero and J.M. Vega. Springer, Berlin (2008), 66-72.
  5. R.E. Caflisch. “Growth, Structure and Pattern Formation for Thin Films,” Proc. Barrett Conference., U. Tenn., Journal of Scientific Computing 37 (2008) 3-17.
  6. X. Niu, Y.J. Lee, R.E. Caflisch, and C. Ratsch. “Optimal capping layer thickness for stacked quantum dots,” Physical Review Letters, 101, 086103 (2008).
  7. R.E. Caflisch and D. Margetis. “Anisotropic step stiffness from a kinetic model of epitaxial growth,” Multiscale Modeling & Sim. 7 (2008) 242-273.
  8. R.E. Caflisch and Y. Bae. “Strain in Layered Nanocrystals,” European J. Appl. Math., 18 (2007) 571-582.
  9. R.E. Caflisch. “Multiscale Modeling for Epitaxial Growth,” Proc. Intl. Congress Math., Vol. III, 2006, eds. M. Sanz-Sole, J. Soria, J.L. Varona and J. Verdera, Madrid, pp. 1419-1432.
  10. X. Niu, R. Vardavas, R.E. Caflisch, and C. Ratsch. “Level set simulation of directed self-assembly during epitaxial growth,” Physical Review B, Brief Report 74 (2006) Art. No. 193403.
  11. S. Lee, R.E. Caflisch, and Y.-J. Lee. “Exact artificial boundary conditions for continuum and discrete elasticity,” SIAM J. Applied Math. 66 (2006) 1749-1775.
  12. R.E. Caflisch, Y.-J. Lee, S. Shu, Y. Xiao, and J. Xu. “An application of multigrid methods for a discrete elastic model for epitaxial systems,” J. Comp. Phys., 219 (2006) 697-714.
  13. C.R. Connell, R.E. Caflisch, E. Luo, and G. Simms. “The Elastic Field of a Surface Step: The Marchenko-Parshin Formula in the Linear Case,” J. Comp. Appl. Math. 196 (2006) 368-386.
  14. C. Ratsch, J. Garcia, and R.E. Caflisch. “The influence of edge diffusion on the growth mode on vicinal surfaces,” Appl. Phys. Lett. 87 (2005) Art.No. 141901.
  15. R. Vardavas, C. Ratsch, and R.E. Caflisch. “Submonolayer growth in the presence of defect sites,” Surface Science 569 (2004) 185-192.
  16. C. Ratsch, C. Anderson, R.E. Caflisch, L. Feigenbaum, D. Shaevitz, M. Sheffler, and C. Tiee. “Multiple domain dynamics simulated with coupled level sets,” APPLIED MATHEMATICS LETTERS 16 (2003) 1165-1170.
  17. F. Gibou, C. Ratsch, and R.E. Caflisch. “Capture Numbers in Rate Equations and Scaling Laws for Epitaxial Growth,” PRB 67 (2003) Art. No. 155403.
  18. F. Gibou, R. Fedkiw, R.E. Caflisch, and S.J. Osher. “A level set approach for the numerical simulation of dendritic growth,” J. Scientific Comp. 19 (2003) 183-199.
  19. R.E. Caflisch and B. Li. “Analysis of island dynamics in epitaxial growth,” Multiscale Model.Sim.1 (2003) 150-171.
  20. A.C. Schindler, M.F. Gyure, G.D. Simms, D.D. Vvedensky, R.E. Caflisch, C. Connell, and E. Luo. “Theory of Strain Relaxation in Heteroepitaxial Systems,” Phys. Rev. B 67 (2003): art. no. 075316.
  21. R.E. Caflisch and D. Meyer. “A Reduced Order Model for Epitaxial Growth,” Recent advances in scientific computing and partial differential equations : international conference on the occasion of Stanley Osher's 60th birthday. Eds. S.Y. Cheng, C.-W. Shu, T. Tang. Contemporary Mathematics 330 (2002), 9-23.
  22. C. Ratsch, M.F. Gyure, R.E. Caflisch, F. Gibou, M. Petersen, M. Kang, J. Garcia, and D.D. Vvedensky. “Level-set method for island dynamics in epitaxial growth,” Phys. Rev. B, 65 (2002) art. no. 195403, U697-U709.
  23. M. Petersen, C. Ratsch, R.E. Caflisch, and A. Zangwill. “Level set approach to reversible epitaxial growth,” Phys. Rev. E, 64 (2001) art. no. 061602, U231-U236.
  24. C. Ratsch, M. Kang and R.E. Caflisch. “Atomic size effects in continuum modeling,” Phys. Rev. E 64. Art. #020601, (2001) U16-U18.
  25. F. Gibou, C. Ratsch, M.F. Gyure, S. Chen, and R.E. Caflisch. “Rate Equations and Capture Numbers with Implicit Island Correlations,” Phys. Rev. B., Rapid Communication, 63 Art. #115401, (2001) U528-U530.
  26. S. Chen, B. Merriman, M. Kang, R.E. Caflisch, C. Ratsch, L.-T. Cheng, M.F. Gyure, R. Fedkiw, C. Anderson, and S. Osher. “A Level Set Method for Thin Film Epitaxial Growth,” J. Comp. Phys. 167 (2001) 475-500.
  27. R.L. Kosut, R.E. Caflisch, M. Gyure, D.G. Meyer, and A. Engelmann. “Feedback control of morphology during III-V semiconductor growth by molecular beam epitaxy,” Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, 1999. IEEE, Piscataway, NJ. p.4204-9 vol. 4.
  28. R.E. Caflisch, A. Engelmann, D. Meyer, and J. Hauser. “Trajectory morphing applied to epitaxial thin film growth,” 1999 American Controls Conference.
  29. R.E. Caflisch, M. Gyure, B. Merriman, S.J. Osher, C. Ratsch, D. Vvedensky and J. Zinck. “Island dynamics and the level set method for epitaxial growth,” Applied Math Letters 12 (1999) 13-22.
  30. R.E. Caflisch, W. E, M. Gyure, B. Merriman, and C. Ratsch. “Kinetic model for a step edge in epitaxial growth,” Phys. Rev. E 59 (1999) 6879-6887.
  31. R.E. Caflisch, M. Gyure, C. Ratsch, B. Merriman, S. Osher, J. Zinck, and D. Vvedensky. “Level set methods for simulation of epitaxial phenomena,” Phys. Rev. E 58 (1998) R6927-30.
Financial Mathematics
  1. Yang Wang and R.E. Caflisch. “Martingales and Upper Bounds for American-Style Options,” Communications in Mathematical Sciences, (2014) to appear.
  2. Y. Wang and R.E. Caflisch. “Pricing and hedging American-style options: a simple simulation-based approach,” J. Computational Finance, 13 (2010) 85-125.
  3. R.E. Caflisch and S. Chaudhary. “Monte Carlo Simulation for American Options,” A Celebration of Mathematical Modeling : The Joseph B. Keller Anniversary Volume, D. Givoli, M. J. Grote and G. C. Papanicolaou, eds. (2004).
  4. R.E. Caflisch, W. Morokoff, and A. Owen. “Valuation of Mortgage Backed Securities Using Brownian bridges to reduce effective dimension,” J. Computational Finance, 1 (1997) 27-46.
  5. R.E. Caflisch and W. Morokoff. “Quasi-Monte Carlo Simulation of Random Walks in Finance,” Monte Carlo and Quasi-Monte Carlo Methods 1996, Springer Lect. Notes Stat., eds. H. Niederreiter, P. Hellekalek, G. Larcher and P. Zinterhof, (1996) 340-352.
  6. R.E. Caflisch and W. Morokoff. “Valuation of Mortgage Backed Securities Using the Quasi-Monte Carlo Method,” Proc. Comp. Finance Conf., Stanford, 1996.
  7. R.E. Caflisch and W. Morokoff. “Quasi-Monte Carlo Computation of a Finance Problem,” in “Proceedings: Workshop on Quasi-Monte Carlo Methods and Their Applications,” ed. K.T. Fang and F.J. Hickernell, 1996, 15-30, and UCLA CAM Report 96-16.
  8. R.E. Caflisch, P.S. Hagan, D.E. Woodward, and J.B. Keller. “Optimal Pricing, Use and Exploration of Uncertain Natural Resources,” Applied Mathematical Finance 1 (1994) 87-108.
Monte Carlo Methods
  1. F. Barekat and R.E. Caflisch. “Simulation with Fluctuating and Singular Rates,” Communications in Computational Physics 16 (2014) 287-306.
  2. C.M. Wang, J.D. Hyman, A.G. Percus, and R.E. Caflisch. “Parallel Tempering for the Traveling Salesman Problem,” International Journal of Modern Physics C, 20 (2009) 539-556.
  3. R.E. Caflisch. “Monte Carlo and Quasi-Monte Carlo Methods,” Acta Numerica (1998) 1-49.
  4. B. Moskowitz and R.E. Caflisch. “Smoothness and Dimension Reduction in Quasi-Monte Carlo Methods,” Math. Comp. Modeling 23 (1996) 37-54.
  5. W.J. Morokoff and R.E. Caflisch. “Quasi-Monte Carlo Integration,” J. Comp. Phys. 122 (1995) 218-230.
  6. W.J. Morokoff and R.E. Caflisch. “Quasi-Random Sequences and Their Discrepancies,” SIAM J. Sci. Stat. Comp. 15 (1994) 1251-1279.
  7. W.J. Morokoff and R.E. Caflisch. “A Quasi-Monte Carlo Approach to Particle Simulation of the Heat Equation,” SIAM J. Num. Anal. 30 (1993) 1558-1573.
Fluid Dynamics, including Singularities, Vortex Dynamics, Inviscid Limits, Multiphase flow
  1. K. Malakuti, R.E. Caflisch, M. Siegel and A. Virodov . “Detection of complex singularities for a function of several variables,” IMA Journal of Applied Mathematics 78 (2013) 714-728.
  2. M. Siegel and R.E. Caflisch. “Calculation of complex singular solutions to the 3D incompressible Euler equations,” Physica D 238 (2009) 2368-2379.
  3. R.E. Caflisch and M. Siegel. “A Semi-Analytic Approach to Euler Singularities,” Methods and Applications of Analysis, 11 (2004) 423-430.
  4. M. Siegel, R.E. Caflisch, and S. Howison. “Global existence, singular solutions and ill-posedness for the Muskat problem,” CPAM 57 (2004), 1374 - 1411.
  5. R.E. Caflisch. “Birkhoff-Rott equation,” Supplement III. Encyclopaedia of Mathematics. p. 71-72 Managing Editor: M. Hazewinkel Kluwer Academic Publishers, 2002.
  6. M. C. Lombardo, R.E. Caflisch, and M. Sammartino. “Asymptotic analysis of the linearized Navier- Stokes equation on an exterior circular domain: explicit solution and the zero viscosity limit,” Comm. PDE 26 (2001) 335-354.
  7. R.E. Caflisch and M. Sammartino. “Existence and singularities for the Prandtl boundary layer equations,” ZAMM 80 (2000) 733-744.
  8. S.-S. Kao and R.E. Caflisch. “Steady buoyant droplets with circulation,” Physics of Fluids, 10 (1998) 1891-1902.
  9. M. Sammartino and R.E. Caflisch. “Zero viscosity limit for analytic solutions of Navier-Stokes equation on a half-space II. Construction of the Navier-Stokes solution,” Comm. Math.Phys. 192 (1998) 463-491.
  10. M. Sammartino and R.E. Caflisch. “Zero viscosity limit for analytic solutions of Navier-Stokes equation on a half-space I. Existence for Euler and Prandtl equations,” Comm. Math.Phys. 192 (1998) 433-461.
  11. R.E. Caflisch and M. Sammartino. “Navier-Stokes equations on an exterior circular domain: construction of the solution and zero vis- cosity limit,” COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 324 (1997) 861-866.
  12. R.E. Caflisch, I. Klapper, and G. Steele. “Remarks on Singularities, Dimension and Energy Dissipation for Ideal Hydrodynamics and MHD,” Comm. Math. Phys. 184 (1997) 443-455.
  13. R.E. Caflisch and M. Sammartino. “Zero viscosity limit for analytic solutions of Navier-Stokes equations,” Rendiconti del Circolo Matematico di Palermo, Ser. II, Suppl. 45 (1996) 595-605.
  14. D. Senouf, R.E. Caflisch, and N. Ercolani. “Pole dynamics and oscillations for complex Burgers equation in the small dispersion limit,” Nonlinearity 9 (1996) 1671-1702.
  15. R.E. Caflisch, N. Ercolani, and G. Steele. “Geometry of Singularities for the Steady Boussinesq Equations,” Selecta Math. N.S. 2 (1996) 369-414.
  16. R.E. Caflisch, T.Y. Hou, and J. Lowengrub. “Almost Optimal Convergence of the Point Vortex Method for Vortex Sheets using Numerical Filtering,” Math. Comp. 68 (1999) 1465-1496.
  17. R.E. Caflisch, X.-F. Li, and M. Shelley. “The Collapse of an Axi-Symmetric, Swirling Vortex Sheet,” Nonlinearity, 6 (1993) 843-867.
  18. R.E. Caflisch. “Singularity Formation for Complex Solutions of the 3D Incompressible Euler Equations,” Physica D, 67 (1993) 1-18.
  19. R.E. Caflisch and X.-F. Li. “Lagrangian Theory for 3D Vortex Sheets with Axial or Helical Symmetry,” Transport Th. Stat. Phys. 21 (1992) 559-578.
  20. R.E. Caflisch, G. Baker, and M. Siegel. “Singularity Formation during Rayleigh-Taylor Instability,” J. Fluid Mech. 252 (1993) 51-78.
  21. R.E. Caflisch, N. Ercolani, T. Hou, and Y. Landis. “Multi-Valued Solutions and Branch Point Singularities for Nonlinear Hyperbolic or Elliptic Systems,” Comm. Pure Appl. Math. 46 (1993) 453-499.
  22. M. Affouf and R.E. Caflisch. “A Numerical Study of Riemann problem Solutions and Stability for a Viscous Conservation Law of Mixed Type,” SIAM J. Applied Math. 51 (1991) 605-634.
  23. R.E. Caflisch and S. Semmes. “A Nonlinear Approximation for Vortex Sheet Evolution and Singularity Formation,” Physica D 41 (1990) 197-207.
  24. R.E. Caflisch, O. Orellana, and M. Siegel. “A Localized Approximation for Vortical Flows,” SIAM J. Applied Math. 50 (1990) 1517-1532.
  25. R.E. Caflisch and J.S. Lowengrub. “Convergence of the Vortex Method for Vortex Sheets,” SIAM J. Num. Anal. 26 (1989) 1060-1080.
  26. R.E. Caflisch and F. Lund. “The Sound of a Singularity,” Physics of Fluids A, 1 (1989) 909-910.
  27. R.E. Caflisch and O.F. Orellana. “Singularity Formation and Ill-Posedness for the Evolution of Vortex Sheets,” SIAM J. Math. Anal. 20 (1989) 293-307.
  28. R.E. Caflisch, C. Lim, J.H.C. Luke, and A.S. Sangani. “Periodic Solutions for Three Sedimenting Spheres,” Phys. Fl. 31 (1988) 3175-3179.
  29. R.E. Caflisch and O. Orellana. “Long Time Existence for Slightly Perturbed Vortex Sheets,” Comm. Pure Appl. Math., (1986) 807-838.
  30. R.E. Caflisch and J.H.C. Luke. “Variance in the Sedimentation Speed of a Suspension,” Phys. Fluids, 28 (1985) 759-760.
  31. R.E. Caflisch, M. Miksis, G.C. Papanicolaou, and L. Ting. “Wave Propagation in Bubbly Liquids at Finite Volume Fraction,” J. Fluid Mechanics, 160 (1985) 1-14.
  32. R.E. Caflisch, M. Miksis, G.C. Papanicolaou, and L. Ting. “Effective Equations for Wave Propagation in Bubbly Liquids,” J. Fluid Mechanics, 153 (1985) 259-273.
  33. R.E. Caflisch. “Global Existence for a Nonlinear Theory of Bubbly Liquids,” Comm. Pure Appl. Math., 38 (1985) 157-166.
  34. R.E. Caflisch and G.C. Papanicolaou. “Dynamic Theory of Suspensions with Brownian Effects,” SIAM J. Appl. Math. 43 (1983), 885-906.
Boltzmann Equation for Rarefied Gas Dynamics
  1. R.E. Caflisch, M.C. Lombardo and M. Sammartino. “Asymptotic analysis of a slightly rarefied gas with nonlocal boundary conditions,” J. Stat. Phys., 143 (2011) 725–739.
  2. M.C. Lombardo, R.E. Caflisch, and M. Sammartino. “Non-Local Scattering Kernel and the Hydrodynamic Limit,” J. Statistical Physics 130 (2008) 69-82.
  3. L. Pareschi and R.E. Caflisch. “An Implicit Monte Carlo Method for Rarefied Gas Dynamics I. The Space Homogeneous Case,” J. Comp. Phys. 154 (1999) 90-116.
  4. R.E. Caflisch, S. Jin, and G. Russo. “Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation,” SIAM J. Numerical Analysis, 34 (1997) 246-281.
  5. R.E. Caflisch and T.-P. Liu. “Stability of Shock Waves for the Broadwell Equations,” Comm. Math. Phys. 114 (1988) 103-130.
  6. R.E. Caflisch. “Asymptotic Expansions of Solutions for the Boltzmann Equation,” J. Transport Th. Stat. Phys., 16 (1987) 701-725.
  7. C. Bardos, R.E. Caflisch, and B. Nicolaenko. “The Milne and Kramers Problems for the Boltzmann Equation of a Hard Sphere Gas,” Comm. Pure Appl. Math., 39 (1986) 323-352.
  8. R.E. Caflisch. “The Half-Space Problem for the Boltzmann Equation at Zero Temperature,” Comm. Pure Appl. Math., 38 (1985) 529-547.
  9. R.E. Caflisch. “Fluid Dynamics and the Boltzmann Equation,” in Studies Stat. Mech., Vol. 10, Nonequilibrium Phenomena I: The Boltzmann Equation, E.W. Montroll and J.L. Lebowitz, eds., North-Holland, 1983, pp. 193-223.
  10. R.E. Caflisch and B. Nicolaenko. “Shock Profile Solutions of the Boltzmann Equation,” Comm. Math. Phys., 86 (1982), pp. 161-194.
  11. R.E. Caflisch. “The Fluid Dynamic Limit of the Nonlinear Boltzmann Equation,” Comm. Pure Appl. Math., 33 (1980), pp. 651-666.
  12. R.E. Caflisch. “The Boltzmann Equation with a Soft Potential, Part II: Nonlinear, Spatially-Periodic,” Comm. Math. Phys., 74 (1980), pp. 97-109.
  13. R.E. Caflisch. “The Boltzmann Equation with a Soft Potential, Part I: Linear, Spatially Homogeneous,” Comm. Math. Phys., 74 (1980), pp. 71-95.
  14. R.E. Caflisch. “Navier-Stokes and Boltzmann Shock Profiles for a Model of Gas Dynamics,” Comm. Pure Appl. Math., 32 (1979), pp. 589-616.
  15. R.E. Caflisch and G.C. Papanicolaou. “The Fluid Dynamic Limit of a Nonlinear Model Boltzmann Equation,” Comm. Pure Appl. Math., 32 (1979), pp. 521-554.
Miscellaneous
  1. P. Thiyanaratnam, R.E. Caflisch, P.S. Motta, and J.W. Judy. “Modeling, Simulation and Design for a Customizable Electrodeposition Process,” SIAM J. Appl. Math. 69 (2009) 1043-1064.
  2. R.E. Caflisch, M.F. Gyure, H. Robinson, and E. Yablonovitch. “Modeling, Design and Optimization of a Solid State Qubit,” SIAM J. Appl. Math. 65 (2005) 1285-1304.
  3. R.E. Caflisch. “A Simplified Version of the Abstract Cauchy-Kowalewski Theorem with Weak Singularities,” Bull. AMS, 23 (1990) 495-500.
  4. R.E. Caflisch and C.D. Levermore. “Equilibrium for Radiation in a Homogeneous Plasma,” Phys. Fluids, 29 (1986) 748-752.
  5. R.E. Caflisch and J. Maddocks. “Nonlinear Dynamical Theory of the Elastica,” Proc. Roy. Soc. Edinburgh, 99A (1984) 1-23.
  6. R.E. Caflisch and K.C. Nunan. “Evaluation of a Function at Infinity from Its Power Series,” Phys. Rev. Letters, 46 (1981), pp. 1255-1256.
  7. R.E. Caflisch and J.B. Keller. “Quench Front Propagation,” Nucl. Eng. and Design, 65 (1981), pp. 97-102.
  8. R.E. Caflisch. “An Inverse Problem for Toeplitz Matrices and the Synthesis of Discrete Transmission Lines,” J. Linear Algebra and Its Applications, 38 (1980), pp. 207-225.
  9. R.E. Caflisch, C. Peskin, and G. Strumolo. “Distortion of the Arterial Pulse,” Math. Bio. Sci., 51 (1980), pp. 229-260.


1. Lectures on the Mathematical Theory of Multi-Phase Flow (with J. Rubinstein). CIMS (1986).
2. Proceedings of Workshop on Mathematical Aspects of Vortex Dynamics. (editor) SIAM (1988).
3. Proceedings of NATO Workshop on Singularities in Fluid, Plasmas and Optics. (editor) Kluwer (1992).
4. “Foreword” for reprinting of Hydrodynamics by H. Lamb, Cambridge U. Press, 1992.