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Abstract

Large systems of particles interacting pairwise in d-dimensions give rise to extraordinarily rich pat-
terns. These patterns generally occur in two types. On one hand, the particles may concentrate on
a co-dimension one manifold such as a sphere (in 3D) or a ring (in 2D). Localized, space-filling, co-
dimension zero patterns can occur as well. In this paper, we utilize a dynamical systems approach to
predict such behaviors in a given system of particles. More specifically, we develop a non-local linear
stability analysis for particles uniformly distributed on a d − 1 sphere. Remarkably, the linear theory
accurately characterizes the patterns in the ground states from the instabilities in the pairwise potential.
This aspect of the theory then allows us to address the issue of inverse statistical mechanics in self-
assembly: given a ground state exhibiting certain instabilities, we construct a potential that corresponds
to such a pattern.

1 Introduction

The mathematics of interacting particles pervades many disciplines, from physics and biology to control
theory and engineering. Classical examples from physics and chemistry range from the distribution of
electrons in the Thomson problem, to VSEPR theory, self-assembly processes, and protein folding. In biology,
similar mathematical models help explain the complex phenomena observed in locust swarms and bacterial
colonies. In engineering, particle models have been successfully used in many areas of cooperative control,
including applications to robotic swarming. In each of these models, the collective behavior is confined near
the center of mass of the particles. This can be imposed artificially, as in the Thomson problem, or can
result due to the properties of the interaction potential itself. Moreover, different confining potentials may
give rise to densities that concentrate on a co-dimension one manifold, or form localized, fully co-dimension
zero structures. In particular, the effect of differences in the confining potentials remains evident in passing
to the continuum limit. In this paper, we develop a method to predict features of the resulting patterns from
properties of the potential, and vice-versa.

An understanding of co-dimension one ground states is germane to many applications. For instance, in a
discrete setting such states arise in both point vortex theory [26, 25, 16, 2] as well as the Thomson problem
[28, 1, 40, 8, 9]. In the context of point vortex theory, vortices restricted to a sphere can organize into both
platonic solid and ring configurations [26, 25, 16]. Similar spherical configurations also arise in the classical
Thomson’s problem, which asks for the lowest potential energy configuration of N repelling electrons fixed
to said surface. For small numbers of electrons, the minimizers exhibit platonic solid configurations. As the
number of electrons increases, a wide variety of spherical lattices may form, including non-platonic solids
as well as lattices with higher order defects. Complex, co-dimension zero patterns also arise in biology, and
have inspired researchers to develop mathematical models that can help explain, both evolutionarily and
biologically, why and how these self-assembled patterns form [6, 29, 27, 17, 24, 12, 15, 22]. Such models have
proven fruitful in modeling locust swarms [3, 21, 36], where the techniques capture the unique swarm shapes
of locusts. These models also help explain rings, annuli, and other complex, spotted patterns in bacterial
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colonies that form under stress in the lab [38, 10, 18, 4]. Many of these same models have been exploited in
the area of cooperative control [41] and boundary tracking algorithms for autonomous, flocking robots [7].

We formulate ground state patterns as extrema of an N -particle pairwise interaction energy

E(x1, . . . ,xN ) =
∑
i,j 6=i

P (|xi − xj |) :=
∑
i,j 6=i

V (
1
2
|xi − xj |2), (1)

where P (
√

2s) := V (s) denotes a repulsive-attractive potential, i.e. decreasing for all s < s0 and increasing
for all s > s0. To compute local minimizers, we associate a gradient flow to the interaction energy (1)

dxi
dt

= −∇xiE =
1
N

∑
j=1...N
j 6=i

g

(
1
2
|xi − xj |2

)
(xi − xj) , i = 1 . . . N, (2)

where g(s) = −Vs(s) gives the force. We shall call a sequence of N−particle minimizers

{xi}Ni=1 = arg min
y1,...,yN

E(y1, . . . ,yN )

confined if they remain uniformly bounded in space as a function of the number of particles. In such cases,
in the large N limit, the minimizers permit a consistent continuum description in terms of a density of
particles restricted to a bounded region of space. As the number of particles increases, the resulting ground
state converges to this continuum description in the sense of probability measures. Moreover, variations in
potentials give rise to different minimizers, so differences in the potentials remain evident as N →∞. This
stands in contrast to non-confined minimizers, which do not remain bounded. Without confinement, we
cannot rely on a density description, nor can we necessarily distinguish differences in potentials as N →∞.
We shall call a potential confining if all minimizers are confined, and non-confining otherwise.

A given class of potentials may yield both types of behavior. For example, inverse power law potentials

g(s) = V ′(s) = s−p − s−q (3)

can have both confined and non-confined minimizers, depending on the parameters p and q. Choosing
(p, q) = (7, 4), i.e a Lennard-Jones interaction kernel, yields a sequence of global minimizers which converge
to the zero density state. On the other hand, as we show in § 6 the choice (p, q) = ( 1

3 ,
1
6 ) yields a sequence

of minimizers that converge to the uniform measure on a 2-sphere of fixed radius R = 2−1/2( 11
10 )3. The

repulsive-attractive Morse potential
V (s) = e−

√
2s − F e−L

√
2s

also exhibits this dichotomy as (F,L) vary [21, 11]. In particular, we can not distinguish between these two
classes of potentials from a large N limit of their ground states when the minimizers are not confined.

In contrast, the configurations in figure 1 result from a two parameter family of confining potentials. We
numerically integrate (2) to steady-state with the regularized step function from [19]

g(s) =
tanh(a(1−

√
2s)) + b√

2s
, 0 < a, − tanh(a) < b < 1, (4)

as the interaction kernel. Simply by controlling the amount of local repulsion at the origin (b) and the slope
of the transition between repulsion and attraction (a), many types of patterns emerge, and these differences
persist as N → ∞. For instance, a uniform distribution of particles on a sphere often minimizes (1).
Properties such as the radius of the sphere change as the parameters (a, b) vary, and predicting the radius
from a continuum approximation proves increasingly accurate as the number of particles grows. Therefore,
unlike the non-confining Morse and inverse power potentials, we can hope to discern differences in parameter
values, and in particular, explain the transition from spherical solutions to distributions characterized by
higher symmetry and full three dimensionality using a continuum approach.

To better understand this phenomenon, we develop a continuum formulation of (2) to study the stability
of a uniform sphere Sd−1. We formally derive this continuum formulation of (2) in §2, so that we may
describe a pairwise interaction of particles lying on a co-dimension one surface. Using this formulation, we
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Figure 1: Top: Minimizers of the energy (1) with force law (4).

derive our main result in §3, that the eigenvalue problem associated to the 2-sphere of radius R reduces to
the decoupled series of 2× 2 scalar problems given by equation (30). Each eigenvalue problem determines a
solution to the linearized equations in terms of spherical harmonics. We use this characterization to predict
how instabilities perturb the density away from uniform in §§3.2. We complete the eigenvalue problem for
arbitrary dimensions d ≥ 2 in §4. Remarkably, the eigenvalue problem remains 2×2 and scalar independently
of the dimension of space. Moreover, our analysis depends only on values of the potential and its derivatives
on [0, 2R2]. Thus, once we know the length scale of the radius our analysis applies regardless of the far-field
behavior of the potential. In §5 we derive asymptotic expressions for the eigenvalues in theorem 5.1. As a
first corollary we establish the linear well-posedness of uniformly distributed sphere solutions, which serves
as the analogue in our context of the classic Kelvin-Helmholtz instability for vortex sheets [20, 23, 34]. In a
second corollary, we consider potentials V with the form

− Vs(s) := g(s) =
∞∑
i=1

cis
pi , (5)

where pi < pi+1 and c1 > 0 to ensure an interaction kernel with repulsion in the short-range. We show that
only finitely many unstable modes exist precisely when

(i)
∫ 1

−1

g(R2(1− s))ds+ 4g(2R2) < 0 and (ii) p1 ∈ (−d− 1
2

, 0) ∪
∞⋃
n=0

(2n+ 1, 2n+ 2). (6)

In this case, we can predict complex patterns in the resulting ground state from the unstable spherical
harmonics. These conditions also allow us to predict the co-dimension of the ground state. We highlight
these aspects of the theory in §6 with several examples. This method also offers us a way to directly construct
a potential with a specified instability which is related to the classical inverse statistical mechanics problem
[9, 31, 30, 37, 13, 39]. We follow with a brief summary.
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2 Pairwise Interactions on a Surface

We begin by formally deriving the relevant equations to describe a continuum of pairwise-interacting particles
on a surface. For this, we consider the active scalar equations in three dimensions

ρt(x, t) +∇ · (ρ(x, t)u(x, t)) = 0, x ∈ R3, t ≥ 0

u(x, t) =
∫

R3
g(

1
2
|x− y|2) (x− y) ρ(y, t) dy, (7)

where ρ describes the density of particles, the kernel g describes the interaction of particles, and u describes
the velocity of a particular particle due to the interaction. After constraining the density of particles to lie
on a dynamically evolving surface X(ξ, η, t), where (ξ, η) lie in a Lagrangian coordinate domain D ⊂ R2, the
density defines a distribution of the form

ρ(x, t) :=
∫
D

δ(x−X(ξ, η, t))f(ξ, η, t) dξdη. (8)

In other words, 〈ρ, φ〉 =
∫∞

0

∫
D
φ(X(ξ, η, t))f(ξ, η, t) dξdηdt holds for all test functions φ ∈ C∞0 (R3×{t ≥ 0}).

With a density in this form, we say (8) defines a solution to (7) in the sense of distributions. We therefore
specify equations for X and f so that∫ ∞

0

∫
D

(φt + u · ∇φ)(X(ξ, η, t), t)f(ξ, η, t) dξdηdt = 0 (9)

u =
∫
D

g(
1
2
|x−X(ξ, η, t)|2) (x−X(ξ, η, t)) f(ξ, η, t) dξdη (10)

for all φ ∈ C∞0 .
Addressing first the motion of the surface, as X(ξ, η, t) represents the position of the particle with label

(ξ, η), each point on the surface evolves according to the velocity field u at that point, so that

∂X
∂t

(ξ, η, t) = u(X(ξ, η, t), t) = (11)∫
D

g(
1
2
|X(ξ, η, t)−X(ξ′, η′, t)|2) (X(ξ, η, t)−X(ξ′, η′, t)) f(ξ′, η′, t) dξ′dη′.

Combining (9) and (11) with the fact that ∂
∂t {φ(X, t)} = (φt + ∂X

∂t · ∇φ)(X, t), we discover f must satisfy∫∞
0

∫
D

∂
∂t {φ(X, t)} f(ξ, η, t) dξdηdt = 0. Integrating by parts in time, this gives

∫∞
0

∫
D
φ(X, t)f(ξ, η, t)t dξdηdt =

0 for all φ, whence f(ξ, η, t) ≡ f(ξ, η, 0). Therefore, given an initial density

ρ(x, 0) = ρ0(x) =
∫
D

δ(x−X0(ξ, η))f0(ξ, η) dξdη,

by evolving the surface according to

Xt =
∫
D

g(
1
2
|X−X′|2) (X−X′) f0(ξ′, η′) dξ′dη′ (12)

X = X(ξ, η, t) X′ = X(ξ′, η′, t) X(ξ, η, 0) = X0(ξ, η)

we obtain a distribution solution to (7).

Remark 2.1. Equations (12) easily generalize to any dimension. We use the general d-dimensional form
in §4.

Although it is superfluous for determining the evolution of the surface, it will prove useful at times to
re-write (8) in a more conventional form,

ρ(x, t) :=
∫
D

δ(x−X)ρS(ξ, η, t)|Xξ ×Xη|(t) dξdη.
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The auxiliary quantity ρS(ξ, η, t) then has the natural interpretation as the density of particles along the
surface. The requirement that ∂f

∂t = 0 implies the density evolves according to ∂ρS
∂t = −ρS |Xξ×Xη|t

|Xξ×Xη| , which
when coupled to (12) becomes the extension to three dimensions of the corresponding equations from [34]
for curves in two dimensions. In this manner, the evolution of the surface alone determines the density of
particles along it; the surface X(ξ, η) is fundamental and the density is derived. For this reason, we focus
our analysis on X, and use this to determine properties of ρS .

3 Eigenvalue Problem in Three Dimensions

We now determine when a sphere of uniform density defines a linearly stable solution to (12). In §§3.1, we
linearize (12) about a uniform sphere, and then reduce the problem to a decoupled series of scalar eigenvalue
problems involving a single spherical harmonic. We proceed with the calculations in a manner that makes
the appearance of spherical harmonics self-evident, as the ideas behind the calculation itself prove useful for
other problems. The existence of uniform sphere solutions follows as an easy application, for instance, so
we postpone it until after we derive the eigenvalue problem. In §§ 3.2, we use knowledge of the eigenvalue
problem to linearize the density ρS about the uniform distribution on the sphere. This later proves useful
for interpreting our stability conditions in § 5, and also in § 6 for comparing our analysis against numerics.

3.1 Linearization of the Surface

We begin by considering the evolution equations for a surface (12) for the particular instance of f0 which
yields a sphere of radius R and uniform density as steady-state,

Xt =
∫ π

−π

∫ π

0

g

(
1
2
|X−X′|2

)
(X−X′) sin η′ dη′dξ′. (13)

Here, we parameterize a sphere of radius R as X(ξ, η) = Θ1(ξ)Θ2(η)Re1 for −π ≤ ξ ≤ π and 0 ≤ η ≤ π. The
3×3 matrix Θ1 represents rotation in the y-z plane, Θ2 rotates in the x-y plane, and of course e1 = (1, 0, 0)t.

Write a perturbation δX of the steady-state in the form

δX = Θ1(ξ)Θ2(η)(Re1 + ε(ξ, η)eλt), (14)

with the goal of choosing the ansatz for ε ∈ R3 in such a way that the linear equations for ε reduce to a
scalar eigenvalue problem for λ and scalar coefficients that will determine ε. First, we substitute δX into
(13) and obtain

λΘ1(ξ)Θ2(η)ε(ξ, η) =
∫ π

−π

∫ π

0

g

(
1
2
|δX− δX′|2

)
(δX− δX′) sin η′ dη′dξ′. (15)

Decomposing δX−δX′ := X1+X2, where X1 = [Θ1(ξ)Θ2(η)−Θ1(ξ′)Θ2(η′)]Re1 and X2 = Θ1(ξ)Θ2(η)ε(ξ, η)−
Θ1(ξ′)Θ2(η′)ε(ξ′, η′), we expand to first order in X2 and use the fact that the sphere is a steady-state to
obtain

λΘ1(ξ)Θ2(η)ε(ξ, η) =∫ π

−π

∫ π

0

{
g(

1
2
|X1|2)X2 + gs(

1
2
|X1|2)(X1 ·X2)X1

}
sin η′ dη′dξ′. (16)

Denoting by M the matrix M := Θ−1
2 (η)Θ1(ξ′ − ξ)Θ2(η′) and by I the 3 × 3 identity matrix, simple

calculations yield

Θ−1
2 (η)Θ−1

1 (ξ)X1 = (I −M)Re1, Θ−1
2 (η)Θ−1

1 (ξ)X2 = ε(ξ, η)−Mε(ξ′, η′)

X1 ·X2 = (I −M)Re1 · ε(ξ, η) + (I −M t)Re1 · ε(ξ′, η′), |X1| = |(I −M)Re1|.
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By premultiplying (16) with Θ−1
2 Θ−1

1 and separating terms involving ε(ξ, η) from terms involving ε(ξ′, η′),
we obtain the linearized problem

λε(ξ, η) =
∫ π

−π

∫ π

0

{
g(

1
2
|v|2)I + gs(

1
2
|v|2)v ⊗ v

}
ε(ξ, η) sin η′ dη′dξ′+∫ π

−π

∫ π

0

{
gs(

1
2
|v|2)v ⊗ v − g(

1
2
|v|2)M

}
ε(ξ′, η′) sin η′ dη′dξ′, (17)

where we define v := (I −M)Re1 and v := (I −M t)Re1.
The difficulty now lies in choosing ε(ξ, η) in such a way that the continuous eigenvalue problem (17)

reduces to a simple scalar eigenvalue problem. To find the way forward, we recall the analogous situation in
two dimensions, as detailed in [19]. In that setting, the continuous eigenvalue problem reads

λε(s) =
∫ π

−π

{
g(

1
2
|v|2)I + gs(

1
2
|v|2)v ⊗ v

}
ε(s) ds′+∫ π

−π

{
gs(

1
2
|v|2)v ⊗ v − g(

1
2
|v|2)Θ(s′ − s)

}
ε(s′) ds′

where v = (I − Θ(s′ − s))Re1, v = (I − Θ(s − s′))Re1 and Θ(s) denotes a 2 × 2 rotation matrix. We can
write this as

λε(s) =
∫ π

−π
M1(s− s′)ε(s) ds′ +

∫ π

−π
M2(s− s′)ε(s′) ds′, (18)

for some 2×2 matrices Mi. Letting M jk
i denote the (j, k) entry of the matrix Mi, we find that both matrices

possess even, periodic entries in s− s′ whenever j = k, and odd, periodic entries whenever j 6= k. Changing
variables (i.e. reparameterizing the circle) in the first integral, we have∫ π

−π
M jk
i (s− s′) ds′ =

∫ π

−π
M jk
i (θ) dθ ∝ δjk.

Thus, the first term on the RHS of (18) simplifies to a constant diagonal matrix times ε(s). We then
substitute the known ansatz for ε from [19] into the second integral, ε(s′) = (c1 cos(ms′), c2 sin(ms′))t for
some constants c1 and c2, change variables and simplify. Along the first column of M2, we find∫ π

−π
M11

2 (s− s′)c1 cos(ms′) ds′ =
∫ π

−π
M11

2 (θ)c1 cos(mθ +ms) dθ ∝ cos(ms) (19)

∫ π

−π
M21

2 (s− s′)c1 cos(ms′) ds′ =
∫ π

−π
M21

2 (θ)c2 cos(mθ +ms) dθ ∝ sin(ms) (20)

due to the even-odd structure of M2. Arguing similarly along the second column, the second term on the
RHS of (18) simplifies as∫ π

−π
M2(s− s′)ε(s′) ds′ = D(c1, c2,m)(cos(ms), sin(ms))t,

where D denotes a constant, diagonal matrix depending upon c1, c2 and the Fourier coefficients of the entries
of M2. Moreover, D(c1, c2,m) is linear in the coefficients (c1, c2) that determine ε. As the first integral also
results in something of this form, the continuous problem reduces to a scalar eigenvalue problem in (c1, c2).
From (20), then, we deduce the essential property of the ansatz:

∫ π
−πM

ij
2 (s− s′)εj(s′) ds′ ∝ εi(s).

Returning now to the three-dimensional case, regardless of the choice of the ansatz ε(ξ, η), we first must
show the first integral in (17) yields a constant, diagonal matrix. To do this, note the integrand depends
only upon the vector v. Looking at the definition of v, for fixed (ξ, η) and for −π ≤ ξ′ ≤ π, 0 ≤ η′ ≤ π, we
see that v simply represents a parameterization of ∂B(Re1, R), i.e. the sphere of radius R centered at the
point (R, 0, 0)t. Moreover, |vξ′ × vη′ | = sin η′, so that by definition∫ π

−π

∫ π

0

{
g(

1
2
|v|2)I + gs(

1
2
|v|2)v ⊗ v

}
ε(ξ, η) sin η′ dη′dξ′ =
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(∫
∂B(Re1,R)

G(x)dS(x)

)
ε(ξ, η),

where the 3 × 3 matrix valued function G(x) = g( 1
2 |x|

2)I + gs( 1
2 |x|

2)x ⊗ x for x ∈ R3. As in the two-
dimensional case, we re-parameterize ∂B(Re1, R) and compute the first integral above to obtain a diagonal
matrix times ε(ξ, η). Therefore, analagous to the two-dimensional case, we should choose the ansatz for
ε(ξ, η) in such a way so that∫ π

−π

∫ π

0

M ij
2 (ξ, ξ′, η, η′)εj(ξ′, η′) sin η′ dη′dξ′ ∝ εi(ξ, η).

Let us now turn to this task. To simplify the notation, let x := X(ξ, η) and w := X(ξ′, η′) with
X(ξ, η) denoting our parameterization of the sphere. Consider the quantity x ·w := X(ξ, η) ·X(ξ′, η′). As
v = (I −M)Re1 and v = (I −M t)Re1, straightforward calculations yield

v = R

(
1− x ·w,−(x ·w)η,−

(x ·w)ξ
sin(η)

)t
|v|2 = 2R2(1− x ·w) (21)

v = R

(
1− x ·w,−(x ·w)η′ ,−

(x ·w)ξ′
sin(η′)

)t
. (22)

We now make the key observation that M11
2 depends only upon the quantity x ·w, in that M11

2 (ξ, ξ′, η, η′) =
g1(x ·w) for g1(s) = R2gs(R2(1 − s))(1 − s)2 − g(R2(1 − s))s. For such functions, we shall make repeated
use the following (c.f. [32]):

Theorem 3.1. (Funk-Hecke Theorem in 3D) Let f(s) ∈ L1([−1, 1]). Then for any spherical harmonic Sl(x)
of degree l and x ∈ S2,

λSl(x) =
∫
S2
f(x ·w)Sl(w) dSw. (23)

The eigenvalue λ depends only on the function f and the degree l of the harmonic, where we will now write
λ = λl(f) to make explicit the dependencies of the eigenvalues on the functions involved. More specifically,

λl(f) = 2π
∫ 1

−1

f(s)Pl(s) ds, (24)

where Pl(s) denotes the Legendre polynomial of degree l, normalized to Pl(1) = 1. In three dimensions,
equation (23) plays the role that equation (20) serves in two dimensions.

Together with our observation regarding M11
2 , this theorem suggests we choose ansatz with ε1(ξ, η) =

c1S
l(x(ξ, η)) for some coefficient c1 ∈ R. Indeed, then∫ π

−π

∫ π

0

M11
2 (ξ, ξ′, η, η′)ε1(ξ′, η′) sin η′ dη′dξ′ = c1

∫
S2
g1(x ·w)Sl(w) dSw

so that by a straightforward application of the Funk-Hecke (F-H) theorem,∫ π

−π

∫ π

0

M11
2 (ξ, ξ′, η, η′)ε1(ξ′, η′) sin η′ dη′dξ′ = λl(g1)c1Sl(x) ∝ ε1

as desired. With ε1 now in hand, we can use the requirement that∫ π

−π

∫ π

0

M i1
2 (ξ, ξ′, η, η′)ε1(ξ′, η′) sin η′ dη′dξ′ ∝ εi(ξ, η) (25)

to determine the remainder of the ansatz. For this, we observe that the relations (21) and (22) imply

M21
2 =

(
g(

1
2
|v|2)(1− x ·w)

)
η

M31
2 =

1
sin(η)

(
g(

1
2
|v|2)(1− x ·w)

)
ξ

.
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Using this with the known choice of ε1, we find the relation (25) for i = 2 becomes

ε2(ξ, η) ∝
∫
S2

(
g(

1
2
|v|2)(1− x ·w)

)
η

c1S
l(w) dSw = c1

(∫
S2
g2(x ·w)Sl dSw

)
η

,

where g2(s) = g(R2(1 − s))(1 − s), by passing the derivative through the integral in the primed variables.
Again using the F-H theorem, we recover ε2(ξ, η) ∝ c1λl(g2)Slη. Arguing similarly from (25) with i = 3
yields ε3(ξ, η) ∝ c1λl(g2)

sin(η) S
l
ξ. All together, we recover

ε(ξ, η) =
(
c1S

l(x), c2(Sl(x))η, c3
(Sl(x))ξ
sin(η)

)t
(26)

for real coefficients ci.
Proceeding as in the two-dimensional case, it remains to show that this choice of ε(ξ, η) yields∫ π

−π

∫ π

0

M2(·)ε(ξ′, η′) sin η′ dη′dξ′ = D(c1, c2, c3, l)

(
Sl, Slη,

Slξ
sin(η)

)t
,

where D(c1, c2, c3, l) is a constant, diagonal matrix that is linear in the coefficients. The derivation of the
ansatz has demonstrated this claim for the first column of M2. Continuing with the remainder first row of
M2, in light of (21) and (22) we see

M12
2 =

(
g(

1
2
|v|2)(1− x ·w)

)
η′
M13

2 =
1

sin(η′)

(
g(

1
2
|v|2)(1− x ·w)

)
ξ′
.

In setting c2 = c3, we compute
∫ π
−π
∫ π

0
(M12

2 ε2 +M13
2 ε3) sin η′ dη′dξ′ =

c2

∫ π

−π

∫ π

0

(g2(x ·w))η′Sl(w)η′ sin η′ dη′dξ′ + c2

∫ π

−π

∫ π

0

(g2(x ·w))ξ′Slξ′
sin(η′)2

sin η′ dη′dξ′.

Integrating by parts in η′ in the first term and in ξ′ in the second term, we have∫ π

−π

∫ π

0

(M12
2 ε2 +M13

2 ε3) sin η′ dη′dξ′ = −c2
∫ π

−π

∫ π

0

(∆S2Sl)g2(x ·w) sin η′ dη′dξ′.

Using that ∆S2Sl = −l(l + 1)Sl and the F-H theorem, we obtain
∫ π
−π
∫ π

0
(M12

2 ε2 + M13
2 ε3) sin η′ dη′dξ′ =

c2l(l + 1)λl(g2)Sl(x) ∝ ε1 as desired. Proceeding similarly with the remainder of the second row of M2, the
facts

M22
2 = −(g(

1
2
|v|2))η′(x ·w)η − g(

1
2
|v|2)(x ·w)ηη′ ,

M23
2 =

−(g( 1
2 |v|

2))ξ′(x ·w)η − g( 1
2 |v|

2)(x ·w)ηξ′
sin(η′)

and a similar integration by parts combine to give∫ π

−π

∫ π

0

(M22
2 ε2 +M23

2 ε3) sin η′ dη′dξ′ = c2

∫ π

−π

∫ π

0

g(
1
2
|v|2)(x ·w)η(∆S2Sl)dS2

= −c2l(l + 1)
∫ π

−π

∫ π

0

g(
1
2
|v|2)(x ·w)ηSl(w) sin η′ dη′dξ′.

Letting g3(s) =
∫ R2(1−s)

0
g(z) dz, so that g3(x ·w)η = −R2g( 1

2 |v|
2)(x ·w)η, we pass the derivative through

the integral and use the F-H theorem as before to arrive at∫ π

−π

∫ π

0

(M22
2 ε2 +M23

2 ε3) sin η′ dη′dξ′ =
c2l(l + 1)λl(g3)

R2
Slη ∝ ε2.
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Finally, the same argument on the remainder of the last row of M2 gives∫ π

−π

∫ π

0

(M32
2 ε2 +M33

2 ε3) sin η′ dη′dξ′ =
c2l(l + 1)λl(g3)

R2 sin(η)
Slξ ∝ ε3.

Combining all of the above, we find∫ π

−π

∫ π

0

M2(ξ, ξ′, η, η′)ε(ξ′, η′) sin η′ dη′dξ′ =

(
D11Sl, D22Slη, D

33
Slξ

sin(η)

)t
,

D11 = c1λl(g1) + c2l(l + 1)λl(g2)D22 = D33 = c1λl(g2) + c2
l(l + 1)
R2

λl(g3),

so that D is linear in the coefficients as desired. Consequently, with this ansatz the linearized equations (17)
become

λε(ξ, η) =

(∫
∂B(Re1,R)

G(x)dS(x)

)
ε(ξ, η) +D(c1, c2, l)ε(ξ, η). (27)

By symmetry, we see (∫
∂B(Re1,R)

G(x)dS(x)

)
= diag(α, β, β),

so that the second and third equations in (27) are identical. Consequently, solving the continuous linearized
equations reduces to the 2× 2 scalar eigenvalue problem determined by (27): λc1 = αc1 +D11(c1, c2, l) and
λc2 = βc2 +D22(c1, c2, l), just as in the two-dimensional case.

We can make one final simplification to the eigenvalue problem that comes from the steady-state equation
for the sphere,

0 =
∫
S2
g(
R2

2
|x−w|2)(x−w) dSw. (28)

In particular, the sphere radius R satisfies (see Remark 3.2 below)

0 =
∫
S2
g(R2(1− x ·w))(1− x ·w) dSy ⇔ 0 =

∫ 1

−1

g2(s)ds (29)

by the F-H theorem with l = 0. A simple calculation then gives β = 0.
To summarize the previous calculations, the decoupled sequence of eigenvalue problems

λ

(
c1
c2

)
=
(
α+ λl(g1) l(l + 1)λl(g2)
λl(g2) l(l+1)

R2 λl(g3)

)(
c1
c2

)
:= Ωl

(
c1
c2

)
(30)

determine the linear stability of the uniform sphere. To compute the entries of Ωl, we recall that for a function
h ∈ L1([−1, 1]) and l ∈ N we define λl(h) = 2π

∫ 1

−1
h(s)Pl(s)ds, with Pl(s) denoting the Legendre polynomial

of degree l normalized to Pl(1) = 1. The radius R of the sphere satisfies 0 =
∫ 1

−1
g(R2(1− s))(1− s)ds and

the coefficient α = 8πg(2R2) + 2π
∫ 1

−1
g(R2(1− s))ds. Finally, we recall the definitions

g1(s) = R2gs(R2(1− s))(1− s)2− g(R2(1− s))s, g2(s) = g(R2(1− s))(1− s), (g3)s(s) = −R2g(R2(1− s)).
(31)

Remark 3.2. For sufficiently smooth attractive-repulsive interaction kernels g, a uniform density, steady-
state sphere solution to equation (13) exists if and only if −∞ ≤

∫∞
0
sg(s) ds < 0. Indeed, projecting the

equation of steady-state (28) onto the component normal to the sphere yields

0 =
∫
S2
g(R2(1− x ·w))(1− x ·w) dSy ⇔ 0 =

∫ 1

−1

g2(s)ds (32)
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by the F-H theorem with l = 0. Since g > 0 near zero, for R sufficiently small the integral on the RHS of
(32) is positive. Similarly, since g < 0 away from the origin, for R large enough the integral on the RHS
decreases as R → ∞. Thus when

∫∞
0
sg(s) ds < 0 the RHS of (32) is negative for all sufficiently large

radii. Therefore there exists an R which identically satisfies (32). That the projection onto the tangential
components satisfies (28) follows in a manner similar to the derivation of the tangential components of the
ansatz. This applies regardless of the stability of the sphere, and regardless of whether the potential exhibits
confinement.

Remark 3.3. In concordence with a local notion like linear stability, all equations only involve values of the
potential V and its derivatives for values of s ∈ [0, 2R2]. In particular, once we know the radius R of the
sphere, we can assign arbitrary far-field behavior to the potential without affecting the validity or applicability
of our analysis.

3.2 Linearization of the Density

By solving the eigenvalue problem (30), our work in the previous section allows us to construct approximate
solutions to the surface equations (12) with f0(ξ, η) = sin(η), which correspond to small perturbations of
the spherical solution. As we mentioned in §2, knowledge of the surface allows us to reconstruct the density
of particles via ρS(ξ, η, t)|Xξ ×Xη|(t) = f0(ξ, η). Therefore, a perturbation away from a sphere naturally
induces a perturbation of the density away from uniform as well. Indeed, if we write our perturbation of the
sphere as u(x, t) = Θ1(ξ)Θ2(η)(Re1 + ε(x)eλt) for x(ξ, η) ∈ S2 and ε(x) as in equation (26), we can linearize
ρS = sin(η)

|uξ×uη| to find the leading order corrections to the density.
To this end, define B(ξ, η) := Θ1(ξ)Θ2(η). We can then compute |uξ × uη| by using Lagrange’s identity:

|uξ × uη|2 = (uξ · uξ)(uη · uη)− (uξ · uη)2.

Computing this directly, we find

|uξ|2 = |BξRe1|2 + 2RBξe1 · (Bξε(x) + Bε(x)ξ) eλt +O(ε2)

|uη|2 = |BηRe1|2 + 2RBηe1 · (Bηε(x) + Bε(x)η) eλt +O(ε2)

uξ · uη = R2(BtηBξ)11 +O(ε). (33)

Straightforward calculations yield the required derivatives of B:

BtξBξ =

 sin2(η) sin(η) cos(η) 0
sin(η) cos(η) cos2(η) 0

0 0 1

 BtBξ =

 0 0 − sin(η)
0 0 − cos(η)

sin(η) cos(η) 0



BtηBη =

1 0 0
0 1 0
0 0 0

 BtBη =

0 −1 0
1 0 0
0 0 0

 BtηBξ =

0 0 − cos(η)
0 0 sin(η)
0 0 0

 . (34)

Using the relations (33) and (34) and the definition of the ansatz (26), we obtain

|uξ|2 = sin2(η)

{
R2 + 2Rc1eλtSl + 2Rc2eλt(cot(η)Slη +

Slξξ

sin2(η)
)

}
+O(ε2)

|uη|2 = R2 + 2Reλt
{
c1S

l + c2S
l
ηη

}
+O(ε2), (uξ · uη)2 = O(ε2).

Therefore, |uξ × uη|2 = sin2(η)
{
R4 + 4c1eλtR3Sl + 2c2eλtR3(∆S2Sl)

}
+O(ε2), so that to leading order the

perturbed density ρS obeys

ρS =
1
R2

{
1− eλt

R
(2c1 − c2l(l + 1))Sl(x)

}
+O(ε2). (35)
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Additionally, we can determine the principal correction to the radius of the surface,

|u(x, t)| =
√
R2 + 2c1eλtRSl(x) +O(ε2) = R(1 +

c1e
λt

R
Sl(x)) +O(ε2). (36)

We may therefore view the modes determined by the eigenvalue problems (30) as spheres of variable radius
R+ c1e

λtSl(x), with the non-uniform particle density determined from (35).

4 Eigenvalue Problem in Arbitrary Dimensions

In this section, we extend our analysis of the linearization of the surface equation and the reduction to a
scalar eigenvalue problem to an arbitrary (d − 1)-sphere. Although the notation is more cumbersome, the
argument proceeds exactly as in the three-dimensional case. Additionally, due to the tangential isotropy of
the sphere, the matrix associated to the eigenvalue problem remains 2× 2, regardless of dimension.

In the d–dimensional setting, the analogue of (13) becomes

Xt(η1, . . . , ηd−1, t) =
∫
Sd−1

g(
1
2
|X−X′|2)(X−X′) dSd−1 (37)

X = X(η1, . . . , ηd−1, t) ∈ RdX′ = X(η′1, . . . , η
′
d−1, t) ∈ Rd,

so that a uniformly distributed steady-state sphere of radius R satisfies

0 =
∫
Sd−1

g(
R2

2
|x−w|2)(x−w) dSw ∀x ∈ Sd−1.

We write the sphere of radius R in dimension d as Rx for x ∈ Sd−1, and write a perturbation in the form
δx = Rx + B(x)ε(x)eλt. The matrix B plays the role of Θ1(ξ)Θ2(η) from the three dimensional calculation,
i.e. a product of rotation matrices. We define the rows bj of B(x) as follows: we take b1 = x; next,

define b̂j(x) = ∂ηj (x), where ηj denote any of the coordinates on Sd−1; lastly, normalize bj(x) = b̂j(x)

|b̂j(x)|
.

Then BtB(x) = I for all x ∈ Sd−1. As for the ansatz, put ε1(x) = c1S
l(x) as before, and εj+1(x) =

c2∂ηj (S
l(x))/|b̂j(x)| for 1 ≤ j ≤ d− 1.

If we now expand to first order in ε and use the fact that the sphere is a steady-state, we obtain the
continuous eigenvalue problem

λε(x) =
∫
Sd−1

{
g(

1
2
|v|2)I + gs(

1
2
|v|2)v ⊗ v

}
ε(x) dSw+∫

Sd−1

{
gs(

1
2
|v|2)v ⊗ v − g(

1
2
|v|2)Bt(x)B(w)

}
ε(w) dSw, (38)

where v = R(e1 − Bt(x)w) and v = R(e1 − Bt(w)x). This generalizes (17) to any dimension. As in three
dimensions, the reduction to a scalar eigenvalue problem follows from two claims. If we let M1 denote the
matrix in the first term of (38), we first claim that M1 is diagonal of the form M1 = diag(α, 0, · · · , 0) and
independent of x. Second, we claim that∫

Sd−1
M2(x,w)ε(w) dSw = (D11Sl, D22

Slη1

|b̂1|
, . . . , D22

Slηd−1

|b̂d−1|
),

where M2 denotes the matrix in the second term of (38), and Dii = Dii(c1, c2, l) are linear in the coefficients.
Combining this with the first claim again reduces (38) to the scalar eigenvalue problem

λ

(
c1
c2

)
=
(
αc1 +D11(c1, c2, l)

D22(c1, c2, l)

)
.

To establish the claims, we once again have as our main tool ([32]):
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Theorem 4.1. (Funk-Hecke Theorem in d-dimensions) Let f(s)(1 − s2)
d−3
2 ∈ L1([−1, 1]). Then for any

spherical harmonic of degree l and x ∈ Sd−1,

λSl(x) =
∫
Sd−1

f(x ·w)Sl(w) dSw.

Again, the eigenvalue λ = λl(f) depends only on the function f and the degree l of the harmonic, in that

λl(f) = vol(Sd−2)
∫ 1

−1

f(s)Pl,d(s)(1− s2)
d−3
2 ds,

where vol(Sd−2) denotes the surface area of the d−2 sphere. Also, Pl,d(s) denotes the Gegenbauer polynomial
P

(d/2−1)
l (s) from [35], normalized so that Pl(1) = 1. For d = 3, these coincide the Legendre polynomials,

whereas for d = 2 we have Pl(cos(η)) = cos(lη). Under this change of variable, for d = 2, we recover precisely
the eigenvalue problem from [19]. We shall also need the following elementary lemma. For the proof, we
denote by w(η1, . . . , ηd−1) a parameterization of Sd−1 such that w = (cos η1, sin η1w̃) and w̃(η2, . . . , ηd−1)
parametrizes Sd−2. We also use Einstein notation for terms involving partial derivatives.

Lemma 1. Let f(η1, . . . , ηd−1) ∈ C2 with (η1, . . . , ηd−1) denoting coordinates on Sd−1 as above. Then
∂ηj

(
fηj

dSw
|wηj |2

)
= ∆Sd−1(f)dSw.

Proof. We induct on the dimension d. When d = 2 this reads

∂ηfηdη = ∆S1(f)dη

so there is nothing to prove. Let us now write dSw = sind−2(η1)dSd−2, where dSd−2 depends only on
η2, . . . , ηd−1. As |wη1 | = 1 and |wηj | = sin η1|w̃ηj | for j > 1 we compute

∂ηj

(
fηj

dSw
|wηj |2

)
= ∂η1

(
fη1 sind−2 η1

)
dSd−2 +

sind−2 η1

sin2 η1

∂ηj

(
fηj

dSd−2

|w̃ηj |2

)
,

= ∂η1
(
fη1 sind−2 η1

)
dSd−2 +

sind−2 ∆Sd−2(f)dSd−2

sin2 η1

by the inductive hypothesis. However, dSd−2 = dSw sin2−d η1 so that we obtain

∂ηj

(
fηj

dSw
|wηj |2

)
=
(

sin2−d η1∂η1
(
fη1 sind−2 η1

)
+

1
sin2 η1

∆Sd−2(f)
)

dSw.

We recognize the expression in parentheses as ∆Sd−1(f).

Claim 1. In (38), M1 = diag(α, 0, · · · , 0) for some α ∈ R.

By the orthogonality of B we recognize the vector v as a parameterization of ∂B(Re1, R) in Rd. Thus,
the first term in (38) amounts to multiplying ε(x) by constant matrix

M1 =
∫
∂B(Re1,R)

g(
1
2
|x|2)I + gs(

1
2
|x|2)(x⊗ x) dSx.

Parametrize ∂B(Re1, R) by x = R(e1 − w), where w = (cos(η1), sin(η1)w̃) and w̃ ∈ Rd−1 parametrizes
Sd−2. Then for j, k 6= 1 we have

M jk
1 =

∫ π

0

∫
Sd−2

g(R2(1− cos(η1)))δjk sin(η1)d−2 dη1dSd−2+

R2

∫ π

0

∫
Sd−2

gs(R2(1− cos(η1)))(w̃ · ej)(w̃ · ek) sin(η1)d dη1dSd−2

= vol(Sd−2)δjk
∫ 1

−1

g(R2(1− s))(1− s2)
d−3
2 ds

+
(∫
Sd−2

xjxk dSd−2

)∫ 1

−1

R2gs(R2(1− s))(1− s2)
d−1
2 ds.
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By symmetry,
∫
Sd−2 xjxk dSd−2 = vol(Sd−2)

d−1 δjk, so that M jk
1 =

δjkvol(Sd−2)
∫ 1

−1

(
g(R2(1− s)) +

R2

d− 1
gs(R2(1− s))(1− s2)

)
(1− s2)

d−3
2 ds

whenever j, k 6= 1. Integrating the last term by parts, we arrive at

M jk
1 = δjkβ := δjkvol(Sd−2)

(∫ 1

−1

g(R2(1− s))(1− s)(1− s2)
d−3
2 ds

)
(39)

for j, k > 1. Thus, the lower (d− 1)× (d− 1) block of M1 takes the form diag(β, . . . , β), with β as in (39).
However, for Rx to satisfy the equation of steady-state, we require 0 =

∫
Sd−1 g(R2(1−x ·w))(1−x ·w)dSw.

Utilizing the F-H theorem with l = 0, this gives

0 =
∫ 1

−1

g(R2(1− s))(1− s)(1− s2)
d−3
2 ds, (40)

so that in fact β = 0.
We now consider the remaining entries of M1. If we now let j = 1, k > 1 we have M1k

1 = Mk1
1

= −R2

∫ π

0

∫
Sd−2

gs(R2(1− cos(η1)))(1− cos(η1))(w̃ · ek) sin(η1)d−1 dη1dSd−2

= −R2

(∫
Sd−2

xk dSd−2

)∫ 1

−1

gs(R2(1− s))(1− s)(1− s2)
d−2
2 ds = 0.

Thus, M1 = diag(α, 0, . . . , 0) as claimed, where

α = vol(Sd−2)
∫ 1

−1

(
g(R2(1− s)) +R2gs(R2(1− s))(1− s)2

)
(1− s2)

d−3
2 ds. (41)

♠

Claim 2. In (38), ∫
Sd−1

M2(x,w)ε(w) dSw = (D11Sl, D22
Slη1

|b̂1|
, . . . , D22

Slηd−1

|b̂d−1|
),

where Dii = Dii(c1, c2, l) are linear in (c1, c2).

Let x = x(η1, . . . , ηd−1) and w = w(η′1, . . . , η
′
d−1). We can then write the entries of v and v as

v1

R
= (1− x ·w),

vj

R
= −

∂ηj (x ·w)

|b̂j |(x)
,

v1

R
= (1− x ·w),

vj

R
= −

∂η′j (x ·w)

|b̂j |(w)
,

and the entries of M(x,w) := Bt(x)B(w) as

M11 = x ·w, M1j =
∂η′j (x ·w)

|b̂j(w)|
, Mj1 =

∂ηj (x ·w)

|b̂j(x)|
, Mjk =

∂ηj∂η′k(x ·w)

|b̂j(x)||b̂j(w)|
.

We now demonstrate the claim row-by-row, and in doing so, we use Einstein summation notation. Based
on the preceding definitions,∫

Sd−1
M1j

2 εj dSw = c1

∫
Sd−1

g1(x ·w)Sl(w) dSw+

c2

∫
Sd−1

∂η′j (g2(x ·w)) ∂η
′
j (Sl(w))

dSw
|b̂j(w)|2

, (42)
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where g1(s) = R2gs(R2(1− s))(1− s)2 − g(R2(1− s))s and g2(s) = g(R2(1− s))(1− s). For the first term
in (42), we use a straightforward application of the F-H theorem to obtain

c1

∫
Sd−1

g1(x ·w)Sl(w) dSw = c1λl(g1)Sl(x).

We then integrate the second term in (42) by parts to obtain∫
Sd−1

M1j
2 εj dSw = c1λl(g1)Sl(x)− c2

∫
Sd−1

g2(x ·w)∂η′j

(
∂η
′
j (Sl(w))

dSw
|b̂j(w)|2

)
. (43)

Using the lemma with f = Sl(w), (43) simplifies to∫
Sd−1

M1j
2 εj dSw = c1λl(g1)Sl(x)− c2

∫
Sd−1

g2(x ·w)∆Sd−1(Sl(w)) dSw

= (c1λl(g1) + c2l(l + d− 2)λl(g2))Sl(x), (44)

as Sl is an eigenfunction with eigenvalue −l(l + d− 2) and the F-H theorem. This establishes the claim for
the first row with D11(c1, c2, l) = c1λl(g1) + c2l(l + d− 2)λl(g2).

Finally, we proceed to the remaining d− 1 rows. We have∫
Sd−1

M jk
2 εk dSw =

c1

|b̂j(x)|

∫
Sd−1

∂ηj (g2(x ·w))Sl(w) dSw+

c2

|b̂j(x)|

∫
Sd−1

[
−g(R2(1− x ·w))η′k(x ·w)ηj−

g(R2(1− x ·w))(x ·w)ηjη′k

] ∂η′kSl(w)

|b̂k(w)|2
dSw. (45)

In the first term of the RHS of (45), as the integral is in the η′ variables, we may pass the derivative through
the integral to obtain

c1

|b̂j(x)|

∫
Sd−1

∂ηj (g2(x ·w))Sl(w) dSw =
c1λl(g2)∂ηjS

l(x)

|b̂j(x)|
.

Integrating the second term of (45) by parts cancels the third term, leaving∫
Sd−1

M jk
2 εk dSw =

c1λl(g2)∂ηjS
l(x)

|b̂j(x)|
+

c2

|b̂j(x)|

∫
Sd−1

g(R2(1− x ·w))(x ·w)ηj∂η′k

(
∂η
′
kSl(w)

|b̂k(w)|2
dSw

)

=
c1λl(g2)∂ηjS

l(x)

|b̂j(x)|
− c2l(l + d− 2)

|b̂j(x)|

∫
Sd−1

g(R2(1− x ·w))(x ·w)ηjS
l(w) dSw

using lemma 1 and the fact that Sl is an eigenfunction. If we once again let g3(s) =
∫ R2(1−s)

0
g(z)dz , we

may pass the derivative through the integral as before to obtain∫
Sd−1

M jk
2 εk dSw =

(
c1λl(g2) +

c2l(l + d− 2)
R2

λl(g3)
)
∂ηjS

l(x)

|b̂j(x)|
.

This establishes the claim in the remaining rows with D22(c1, c2, l) = c1λl(g2) + c2l(l+d−2)
R2 λl(g3).

♠
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In summary, the continuous, d-dimensional eigenvalue problem (38) reduces to the 2×2 scalar eigenvalue
problem

λ

(
c1
c2

)
=
(
α+ λl(g1) l(l + d− 2)λl(g2)
λl(g2) l(l + d− 2)λl(g3)

R2

)(
c1
c2

)
:= Ωl

(
c1
c2

)
(46)

where the gi remain as in the three dimensional case.

5 Linear Stability and Linear Well-Posedness

By reducing the linearized equations to a series of scalar problems, we can now readily identify the eigenvalues
ω1,2
l of the matrix Ωl. This then allows us to characterize the linear stability of sphere solutions: we need
ω1,2
l < 0 for all l ≥ 2, together with ω1

0 < 0, ω2
0 = 0, ω1

1 < 0 and ω2
1 = 0 (rotation invariance manifests as a

zero eigenvalue when l = 0, translation invariance manifests as a zero eigenvalue for l = 1). Therefore, the
sphere is linearly stable if tr(Ωl) < 0 and det(Ωl) > 0 for all l ≥ 2. Due to the form of Ωl, we see det(Ωl) > 0
can happen only if α+λl(g1) and λl(g3) have the same sign. The condition tr(Ωl) then forces the negativity
of both, so that we deduce the stability of mode l occurs when

(i) α+ λl(g1) < 0 (ii) λl(g3) < 0 (47)

(iii) (α+ λl(g1))λl(g3) > R2[λl(g2)]2. (48)

This characterization of stability proves most useful in our analysis, and provides some additional insights.
Indeed, from the relation for the perturbed density (35) and the perturbed radius (36), we see that a
perturbation for which c1 = 0 corresponds to a perturbation of density along the sphere, and not of the
sphere itself. Condition (ii) therefore has a natural interpretation in terms of stability of the sphere with
respect to perturbations of the density away from uniform. More specifically, as (g3)s(s) = −R2g(R2(1−s)),
the function V (s) := −g3(1− s/R2) gives the potential that governs the pairwise interaction. We can then
consider the potential energy E(ρS) of the system as a function of the density,

E(ρS) =
∫
S2×S2

V (
1
2
|x−w|2)ρS(x)ρS(w) dSxdSw, (49)

and ask when ρS ≡ 1 corresponds to a minimum of (49). Using the F-H theorem as in §3.1 we find that
this happens precisely when (ii) holds for all l ≥ 1. Conversely, perturbations for which c2 = 0 have no
component tangential to the sphere. This happens when l = 0 for instance. In this case (48) reduces to
α+λ0(g1) < 0, which gives stability of the sphere with respect to pure dilations. Condition (i), then, enforces
stability of the sphere with respect to purely normal modes.

Having characterized stability for finite l, we now wish to investigate the behavior of the spectrum as
l → ∞. The most classical question concerns the linear well-posedness of sphere solutions, i.e. when
the eigenvalues remain bounded as l → ∞. In practice, however, we primarily concern ourselves with a
stronger notion: we wish to characterize when the sphere is eventually stable, that is, when ω1,2

l < 0 for
all l sufficiently large. With eventually stable potentials we find that the finite number of unstable modes
completely characterizes the ground state. We now address both issues using theorem 5.1, which furnishes
asymptotic formulae for ω1,2

l for sufficiently regular potentials.
To include the types of potentials that frequently occur in applications, we will assume V ∈ C2((0,∞)),

but allow growth in V as s → 0. Specifically, we assume V, Vs = o(s
1−d
2 ) as s → 0. Additionally, to

guarantee that λl(gi) are well-defined and to satisfy the hypothesis in the F-H theorem, we must require
gi(s)(1− s2)

d−3
2 ∈ L1([−1, 1]). Recalling from (31) that

g1(s) = R2gs(R2(1− s))(1− s)2− sg(R2(1− s)), g2(s) = g(R2(1− s))(1− s), (g3)s(s) = −R2g(R2(1− s)),

we should at least require gs(R2(1− s))(1− s)2(1− s2)
d−3
2 , g(R2(1− s))(1− s2)

d−3
2 ∈ L1. We shall actually

assume slightly more, namely that

gs(R2(1− s))(1− s)(1− s2)
d−3
2 ∈ L1, g(R2(1− s))(1− s2)

d−3
2 ∈ L1. (50)

Under these hypotheses, we have the following:
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Theorem 5.1. Let V ∈ C2((0,∞)) and V, Vs = o(s
1−d
2 ) as s ↓ 0. Assume also (50). Then we have

(i) tr(Ωl) ∼ α and det(Ωl) ∼ R2l(l + d− 2)αλl(g3) = o(1) as l→∞.

(ii) The sphere solution of radius R given by (32) is linearly well-posed, i.e. ∃C such that ω1,2
l < C for all

l ≥ 0.

(iii) Suppose g(s) has a generalized power series expansion

g(s) =
∞∑
i=1

cis
pi , p1 < p2 < · · · with c1 > 0, (51)

that converges sufficiently rapidly. If the following conditions hold

(1) α < 0 and (2) p1 ∈ (−d− 1
2

, 0) ∪
∞⋃
n=0

(2n+ 1, 2n+ 2), (52)

then the sphere is eventually stable i.e. (ii) holds for C = 0.

Remark 5.2. The condition α < 0 enforces stability with respect to high-mode normal perturbations. Indeed,
when α > 0 then all sufficiently high modes have a positive eigenvalue uniformly bounded away from zero, and
the corresponding eigenfunction tends to a purely normal perturbation. Additionally, while the generalized
power series (51) covers many potentials that occur in practice, such as the Morse potential, Gaussian
potentials and power-law potentials, the conclusion of part (iii) holds for other classes of potentials without
such an expansion. For instance, if the interaction kernel grows sufficiently rapidly near the origin while
remaining smooth otherwise, part (iii) still holds. We conjecture (iii) still holds even if an expansion (51)
only holds locally near zero, such as with the interaction (4).

Proof. To show (i), we need to estimate rate of decay of λl(gi). We recall that

λl(gi) = C(d)
∫ 1

−1

gi(s)Pl,d(s)(1− s2)
d−3
2 ds,

where the constant C(d) depends only on the dimension of space, d, and that the polynomial Pl,d(s) satisfies
the Gegenbauer equation

(1− s2)P ′′l,d − (d− 1)sP ′l,d + l(l + d− 2)Pl,d = 0 (53)

together with the normalization Pl,d(1) = 1. From these definitions, we have that f(s)(1 − s2)
d−3
2 ∈

L1([−1, 1]) guarantees λl(f) = o(1) (c.f. [14]).
Consider first λl(g1). The assumptions in (50) then suffice to have g1(s)(1 − s2)

d−3
2 ∈ L1, so that

λl(g1) = o(1). Proceeding now to λl(g2), we have,

l(l + d− 2)λl(g2) =
∫ 1

−1

g2(s)(1− s2)
d−3
2 l(l + d− 2)Pl(s) ds =

−
∫ 1

−1

g2(s)(1− s2)
d−1
2 P ′′l,d ds+ (d− 1)

∫ 1

−1

sP ′l,d(s)(1− s2)
d−3
2 g2(s) ds

as Pl,d satisfies the Gegenbauer equation (53). We integrate by parts in the first term, where the boundary
terms vanish due to the growth assumption on g = −Vs. The identity (s2 − 1)P ′l,d = l [sPl,d(s)− Pl−1,d(s)]
(equation (4.7.27) in [35]) then yields

l(l + d− 2)λl(g2) =
∫ 1

−1

(g2)s(s)(1− s2)
d−1
2 P ′l,d(s) ds

= l

∫ 1

−1

(g2)s(s)(1− s2)
d−3
2 [Pl−1,d(s)− sPl,d(s)] ds.
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As (g2)s(s) = −R2gs(R2(1−s))(1−s)−g(R2(1−s)), once again (50) suffices to have (l+d−2)λl(g2) = o(1),
so that λl(g2) = o(l−1). Similarly, for λl(g3) we compute

l(l + d− 2)λl(g3) =
∫ 1

−1

g3(s)(1− s2)
d−3
2 l(l + d− 2)Pl,d(s) ds

= −
∫ 1

−1

g3(s)(1− s2)
d−1
2 P ′′l,d ds+ (d− 1)

∫ 1

−1

sP ′l,d(s)(1− s2)
d−3
2 g3(s) ds.

We integrate by parts twice, where the boundary terms vanish as before, and use that (g3)s(s) = −R2g(R2(1−
s)) to discover

1
R2

l(l + d− 2)λl(g3) =
∫ 1

−1

d
ds

{
g(R2(1− s))(1− s2)

d−1
2

}
Pl,d(s) ds.

Expanding the right hand side,

1
R2

l(l + d− 2)λl(g3) = −
∫ 1

−1

{
R2gs(R2(1− s))(1− s2) +

(d− 1)sg(R2(1− s))
}

(1− s2)
d−3
2 Pl,d(s) ds.

Again (50) allows us to conclude that the first and second terms vanish as l→∞. Therefore, λl(g3) = o(l−2).
As λl(g1) = o(1), λl(g3) = o(l−2) and tr(Ωl) = α + λl(g1) + l(l + d − 2)λl(g3)R−2 from (46), we have

tr(Ωl)→ α. As for det(Ωl), we have det(Ωl)
R2l(l+d−2) = αλl(g3)+λl(g3)λl(g1)− [λl(g2)]2 . To discover the principal

term, we note first that λl(g3)λl(g1) clearly vanishes faster than αλl(g3). Returning to λl(g3), we integrate
by parts once and again use the identity (s2 − 1)P ′l,d = l [sPl,d(s)− Pl−1,d(s)] to find

(l + d− 2)λl(g3) =
∫ 1

−1

g(R2(1− s))(1− s2)
d−3
2 [sPl,d(s)− Pl−1,d(s)] ds.

As g2(s) = g(R2(1− s))(1− s), this reads

(l + d− 2)λl(g3) = −λl(g2)− λl−1(g2)+∫ 1

−1

g(R2(1− s))(1− s2)
d−3
2 [Pl,d(s)− sPl−1,d(s)] ds.

In particular, λl(g3) decays no faster than λl(g2)/(l + d− 2). Since λl(g2) = o(l−1), [λl(g2)]2 decays faster.
In other words,

det(Ωl)
R2l(l + d− 2)

= αλl(g3) + higher order terms. (54)

This concludes the proof of (i) and (ii). To show (iii), note that (g3)s(s) = −R2g(R2(1− s)). By lemma 5.3
shown below, we then obtain

λl(g3) ∼ C(p1, d, R)
sin(πp1)c1

1 + p1
Γ(2 + p1)l−(2p1+d+1) as l→∞

where C denotes a positive constant. Thus λl(g3) < 0 for sufficiently large l as long as p1 satisfies (52). In
conjunction with α < 0 and (54), it then immediately follows tr(Ωl) < 0 and det(Ωl) > 0 for all l sufficiently
large, so the sphere is eventually stable. This concludes the proof.

Finally, we provide the lemma which was key in deriving part (iii) of Theorem 5.1; it will also prove
useful in §6 for constructing potentials with specified instabilities.

Lemma 5.3. Let p+ d−1
2 > 0. Then we have

λl((1− s)p) = −2p+d−2 vol(Sd−1) sin(πp)Γ(p+ d−1
2 )Γ(p+ 1)Γ(d−1

2 )Γ(l − p)
πΓ(l + p+ d− 1)

,
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λl((1− s)p) ∼ −
2p+d−2

π
vol(Sd−1) sin(πp)Γ(p+

d− 1
2

)Γ(p+ 1)Γ(
d− 1

2
)l−2p−d+1

as l→∞.

Proof. Using the expression of Gegenbauer polynomials in terms of hypergeometric functions [35], we may
write

λl((1− s)p)
vol(Sd−1)

=
∫ 1

−1

(1− s)p+(d−3)/2(1 + s)(d−3)/2
2F1

(
−l, l + d− 2;

d− 1
2

;
1− s

2

)
ds

= 2p+d−2

∫ 1

0

tp+(d−3)/2(1− t)(d−3)/2
2F1

(
−l, l + d− 2;

d− 1
2

; t
)

dt

after the change of variables t = 1−s
2 . The generalized Euler transform for hypergeometric functions [33]

then gives λl((1−s)p)
vol(Sd−1)

=

2p+d−2B(p+
d− 1

2
,
d− 1

2
) 3F2

(
−l, l + d− 2, p+

d− 1
2

;
d− 1

2
, p+ d− 1; 1

)
.

Using Saalschütz’s theorem [5] to evaluate the hypergeometric term, we obtain

λl((1− s)p)
vol(Sd−1)

= 2p+d−2B(p+
d− 1

2
,
d− 1

2
)

Γ(l − p)Γ(p+ d− 1)
Γ(−p)Γ(l + p+ d− 1)

.

Using the identity Γ(1 − z)Γ(z) = π/ sin(πz) and expanding the beta function, we arrive at the stated
expression,

π
λl((1− s)p)
vol(Sd−1)

= −2p+d−2 sin(πp)Γ(p+
d− 1

2
)Γ(p+ 1)Γ(

d− 1
2

)
Γ(l − p)

Γ(l + p+ d− 1)
. (55)

For the asymptotics as l → ∞, we note that Stirling’s approximation gives Γ(l − p)/Γ(l + p + d − 1) ∼
l−2p−d+1.

6 Numerical Examples

In this section, we provide numerical examples to illustrate how the different types of instability manifest
as different qualitative behaviors of the ground states. We compute steady-state solutions to (2) for several
different interactions g using a fourth-order Adams-Bashforth scheme, with the number of particlesN = 1000.
We take random initial conditions in all cases, and simulate until the l∞ norm of (2) falls below .001/N .

We begin by considering a generalized Lennard-Jones interaction, g(s) = s−p − s−q for 0 < p, q < 1. To
ensure a physically realistic potential consisting of short-range repulsion and far-field attraction, we must
demand p > q. We then find, by (52) (ii), that λl(g3) < 0 for all but finitely many l with no further
restriction. The sign of α, then, completely determines the high-mode behavior. Direct computation shows
that (2R2)p−q = 2−q

2−p , so that the condition q < 2p−1
2p−2 determines when α < 0, and thus the eventual stability

of the sphere. To illustrate both cases, we first select (p, q) = ( 1
3 ,

1
6 ) so that α < 0. By repeatedly using

lemma 5.3, we additionally verify that for all l the stability conditions (48) hold. We therefore expect to
accurately describe the solution as a sphere of radius R = 2−1/2( 11

10 )3. Figure 2 (a) shows the resulting
particle simulation. We next select (p, q) = (1/2, 1/4), so that α > 0 and we no longer expect the solution
to concentrate on a co-dimension one manifold. As figure 2 (b) indicates, the solution instead fills a ball
surrounding the origin; the color of a particle indicates its distance to the origin.

A more interesting picture begins to emerge when the sphere destabilizes yet remains eventually stable.
As our examples will illustrate, the low mode instabilities fully describe the ground state. Due to the
intricate steady-states it produces, cf. figure (1), we illustrate this phenomenon with the interaction g(s) =
tanh(a(1−

√
2s))+b√

2s
introduced in [19]. The top of figure 3(a) depicts a computed steady-state of (2) with

(a, b) = (7,−.9). These parameters result in a mode l = 3 instability. We then compute the eigenvector
(c1, c2) of Ω3, and use the result to construct the resulting surface from equation (36) and its corresponding
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(a) (b)

Figure 2: Equilibrium state of (2) with N = 1000 particles and g given by the generalized Lennard-Jones
interaction g(s) = s−p − s−q. (a) (p, q) = (1/3, 1/6). Particles concentrate uniformly on a surface of the
sphere, with no particles in the interior. (b) (p, q) = (1/2, 1/4). Particles fill the interior of a ball. The
color-coding indicates the distance of a particle to their common center of mass.

density from equation (35), shown in the bottom of figure 3(a). This suggests that the linearized density
echoes the overall shape of the full nonlinear problem in the vicinity of the bifurcation point. We perform the
same computation for the parameter values (a, b) = (9, 0), which yields a mode l = 4 instability, as shown
in figure 3(b). Our theory and the experiments have excellent agreement.

The observation that particles align themselves with low-mode instabilities furnishes us with an avenue
to construct potentials with intricate ground-states. Indeed, if we design an eventually stable interaction
g(s) with a single unstable mode, the resulting steady-state should resemble a spherical harmonic of that
degree. To illustrate this procedure, we give an explicit construction of an interaction with a pure mode 5
instability.

First, we destabilize mode 5. We accomplish this by enforcing λ5(g3) > 0, which suffices due to the
characterization (48). Using the identity

sn =
∑

l=n,n−2,...

(2l + 1)n!

2
n−l
2 (.5(n− l))!(l + n+ 1)!!

Pl(s), (56)

we can take g3(s) = s5

5 +p4(s), where pm(s) denotes a polynomial of degree no more than m. Next, we choose
p3(s) to stabilize modes l ≤ 4. As λl(p4) = 0 whenever l > 4, this choice does not affect the instability of
mode 5. Indeed, taking p3 = −3s2− 4s3 we obtain R2g(R2(1− s)) = 3s2 + 4s3− s4, where from (32) we see
R = 1. This yields an interaction g(s) = 3(1− s)2 + 4(1− s)3− (1− s)4 with a pure mode 5 instability, while
all modes l ≥ 6 contain exactly one zero eigenvalue. Lastly, we stabilize the remaining modes by adding a
negative definite perturbation, g̃(s) = g(s) + εf(s) for f(s) = 1√

s
. Using lemma 5.3 we find that

Rλl(f3) = − 22+3/2

8l3 + 12l2 − 2l − 3
, Rλl(f2) =

λl(f3)
2

, Rαf =
25/2

3
, Rλl(f1) = −23/2 4l2 + 4l − 2

8l3 + 12l2 − 2l − 3
.

Therefore, for ε > 0 sufficiently small, g̃ has mode 5 unstable with all other modes stable. Figure 3(c) shows
the resulting ground-state and spherical harmonic.

7 Conclusion and Future Work

In this paper, we addressed the fundamental question of understanding how the structure of particle poten-
tials predict the types of patterns that can emerge. The potentials we focus on exhibit spherical geometry
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(a) (b) (c)

Figure 3: Top row: The result of the simulation of the gradient flow (2) with N = 1000 particles for three
different force laws. Bottom row: linearized solution corresponding to the instability mode as computed from
(30). (a) Top: force law (4) with (a, b) = (7,−.9). Bottom: Perturbation of a sphere using the spherical
harmonic of mode l = 3,m = 2. (b) Top: Same as (a) but with (a, b) = (9, 0). Bottom: Perturbation of
a sphere using the spherical harmonic of mode l = 4,m = 0. (c) Top: g(s) = 3(1 − s)2 + 4(1 − s)3 − (1 −
s)4 + εs−1/2 with ε = 2−3/2. Sphere perturbed by a linear combination of the modes l = 5,m = 5 and
l = 5,m = 0. The figures are color-coded according to the distance from the origin.

but solutions may form into both co-dimension one and co-dimension zero patterns. We analyzed this be-
havior by considering the linear stability of uniform sphere solutions to the equations governing a continuum
of pairwise interacting particles on a surface. We reduced the d-dimensional eigenvalue problem into a de-
coupled series of 2 × 2 scalar problem involving a single spherical harmonic. This reduction allowed us to
formulate stability and linear well-posedness conditions that have natural physical interpretations. These
conditions provide us with a means to predict the co-dimension and the types of symmetries that will emerge
in the resulting patterns. Using this predictive ability, we explicitly constructed a potential to yield a desired
particle distribution, thereby addressing a particular case of the inverse statistical mechanics problem for
self-assembly. In a subsequent paper, we extend this construction to arbitrary instabilities. Also, we note
that our theory currently allows us to predict only the degree of a spherical harmonic that appears in the
ground state. In dimensions d ≥ 3, it remains an open issue to determine which spherical harmonic of a
particular degree will arise. We plan to address this in future work.
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[35] G. Szegö. Orthogonal Polynomials. Amer. Math. Soc., Providence, RI, 4th edition, 1975.

[36] Chad M. Topaz and Andrea L. Bertozzi. Swarming patterns in a two-dimensional kinematic model for
biological groups. SIAM Journal on Applied Mathematics, 65(1):152–174, 2004.

[37] Salvatore Torquato. Inverse optimization techniques for targeted self-assembly. Soft Matter, 5:1157–
1173, 2009.

[38] Lev Tsimring, Herbert Levine, Igor Aranson, Eshel Ben-Jacob, Inon Cohen, Ofer Shochet, and
William N. Reynolds. Aggregation patterns in stressed bacteria. Phys. Rev. Lett., 75(9):1859–1862,
Aug 1995.

[39] David J. Wales. Energy landscapes of clusters bound by short-ranged potentials. Chem. Eur. J. of
Chem. Phys., 11(12):2491–2494.

22



[40] McKay Hayley Wales, David J. and Eric L. Altschuler. Defect motifs for spherical topologies. Phys.
Rev. B, 79(22):224115, Jun 2009.

[41] Wen Yang, A.L. Bertozzi, and Xiaofan Wang. Stability of a second order consensus algorithm with time
delay. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 2926 –2931, 2008.

23


	Introduction
	Pairwise Interactions on a Surface
	Eigenvalue Problem in Three Dimensions
	Linearization of the Surface
	Linearization of the Density

	Eigenvalue Problem in Arbitrary Dimensions
	Linear Stability and Linear Well-Posedness
	Numerical Examples
	Conclusion and Future Work
	Acknowledgements

