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Abstract

We consider an individual-based model where agents interact over a random network via first-
order dynamics that involve both attraction and repulsion. In the case of all-to-all coupling of
agents in Rd this system has a lowest energy state in which an equal number of agents occupy the
vertices of the d-dimensional simplex. The purpose of this paper is to sharpen and extend a line
of work initiated in [56], which studies the behavior of this model when the interaction between
the N agents occurs according to an Erdős-Rényi random graph G(N, p) instead of all-to-all
coupling. In particular, we study the effect of randomness on the stability of these simplicial
solutions, and provide rigorous results to demonstrate that stability of these solutions persists
for probabilities greater than Np = O(logN). In other words, only a relatively small number of
interactions are required to maintain stability of the state. The results rely on basic probability
arguments together with spectral properties of random graphs.

1 Introduction

Individual-based models (IBM) have proven exceedingly useful for reproducing a wide variety of collective
behaviors. Each individual in an IBM defines a “particle” that typically interacts with all other particles
according to a specified potential function. The potential V (s) and the interaction kernel g(s) := −V ′(s)
encode the precise dependence of the interaction on inter-particle distance r (where s := r2/2), or the distance
between individuals, and therefore widely vary between applications and across disciplines. The mathematics
of such particle systems pervades many disciplines: it appears in models that range from physics, chemistry
and biology to control theory and engineering. Classical examples from physics and chemistry include the
distribution of electrons in the Thomson problem [2, 13, 14, 31, 41, 51, 57] and VSEPR theory. More modern
applications in these areas include protein folding [40, 49], colloid stability [28, 53, 54] and the self-assembly
of nanoparticles into supramolecular structures [23, 22, 26, 60]. In biology, similar mathematical models help
explain the complex phenomena observed in flocking [16, 35, 55], viral capsids [24, 59], locust swarms [6, 18]
and colonies of bacteria [17, 52] or ants [5]. In engineering, non-local particle models have been successfully
used in many areas of cooperative control [29, 58], including applications to robotic swarming [8, 20, 21, 58].

In each of these disciplines, the most pervasive component of such models consists of the total contri-
bution from all pairwise isotropic interactions between individuals in the particle group. A special case of
such models consists of N interacting individuals obeying first-order dynamics under a repulsive-attractive
interaction. By repulsive-attractive, we mean that the interaction kernel g(s) has a single root g(R) = 0
and that g(s) is positive for s < R and negative otherwise. Under these choices the system of N ordinary
differential equations

dxi
dt

=

N∑
j 6=i

g

(
1

2
|xi − xj |2

)
(xi − xj) (1)
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governs the evolution of the particles in time.
This model assumes an all-to-all interaction structure between individuals. In other words, each indi-

vidual interacts with every other individual in the particle group. This assumption can prove unrealistic in
engineered systems with a large number of particles. In robotics, for instance, all-to-all communication can
prove prohibitively expensive for a large number of robots, and the all-to-all structure may break due to
random communication failures between individuals as well. We therefore aim to understand how the col-
lective behavior of the particle system (1) is affected by the presence of a random network structure between
individuals. For simplicity we represent the random network as an Erdős-Rényi random graph, denoted by
G(N, p), that remains fixed throughout time. Given a prescribed number N of vertices and a prescribed edge
probability p, this simple random graph model forms an edge between any of the

(
N
2

)
possible pairs of vertices

with equal probability p in a mutually independent manner. Let E = {eij}Ni,j=1 denote the adjacency matrix
of such an undirected random graph drawn from G(N, p): for j ≥ i the eij ∼ B(1, p) denote independent
Bernoulli random variables and eji = eij otherwise on the lower triangle. The basic particle model then
becomes

dxi
dt

=

N∑
j 6=i

eijg

(
1

2
|xi − xj |2

)
(xi − xj) (2)

in order to incorporate the random communication network between individuals.
The purely linear case g(s) ≡ 1 of the system (2) appears in studies of consensus and synchroniza-

tion algorithms on a random graph [25, 30, 42, 43]. Related models also frequently demand a theoretical
understanding how a (possibly dynamic) random network interaction structure affects well-understood, de-
terministic behaviors such as phase transitions [1], consensus and synchronization [44, 50], and the emergence
of collective behavior in locust swarms [27]. In matrix form the linear version of system (2) reads

dX

dt
= −[L⊗ Id]X, (3)

where X = (x1, . . . ,xN ) is the vector of all individuals xi ∈ Rd, L is the graph-Laplacian matrix and ⊗
denotes the Kronecker product. By definition, consensus for this system occurs if ||xi(t) − xj(t)|| → 0
as t → ∞, and since the graph is undirected consensus will occur if and only if the graph is connected
[7, 33, 34, 36, 37, 46, 47, 48, 45]. Note that the matrix L⊗ Id necessarily has a d-dimensional nullspace Nd
spanned by “constant” vectors of the form X = (v, . . . ,v) ∈ RNd where v ∈ Rd is fixed. The emergence of
consensus therefore occurs if and only if the stability condition

max
{v∈N⊥d :||v||=1}

−〈v, [L⊗ Id]v〉 < 0 (4)

holds. In this way spectral properties of systems of the form L ⊗ Id determines the long time behavior of
differential equations. Our analysis of the nonlinear variant (2) proceeds similarly. We shall analyze the
spectral properties of matrices of the form LG̃⊗M, where G̃ denotes a sub-graph of the interaction structure
and M ∈ Md×d denotes a symmetric, deterministic and positive semi-definite matrix. A stability condition
similar to (4) will then determine long term behavior of the random system (2).

Our motivation for studying random linear systems of this form has its origins in elementary dynamical
systems theory. Specifically, we may analyze the stability of an equilibrium solution to a system of ran-
dom, non-linear ordinary differential equations by linearizing the ODE system about the equilibrium. This
linearization process allows us to apply well-developed techniques from random matrix theory to study prop-
erties of random differential equations. A linear stability analysis of the equilibria of (2) requires performing
two tasks. The first task entails finding those configurations of individuals that lie in equilibrium, i.e.

N∑
j 6=i

eijg

(
1

2
|xi − xj |2

)
(xi − xj) = 0 ∈ Rd, ∀ 1 ≤ i ≤ N. (5)

The second task couples a linearization of (2) around the equilibrium together with an analysis of the
eigenvalues of the resulting matrix. Even in the deterministic case with all-to-all coupling, that is when
p = 1 and eij ≡ 1 for all (i, j), describing the equilibria of (2) can prove quite challenging. The introduction
of randomness into the underlying interaction structure only adds further complications. While the symmetry

2



of the interaction structure in the all-to-all case permits the description of equilibria by means of analytical
formulae in some cases, the presence of any randomness whatsoever immediately breaks this symmetry. An
analytical description of equilibria proves nearly impossible as a result. In other words, as soon as the edge
probability p < 1 the equilibria of the fully coupled system can destabilize immediately. This leads to the
formation of some other complicated, random equilibrium configuration (see figure 1, top row). As a result,
we cannot reduce the study of stability to a pure random matrix problem since we do not have an adequate
description of the equilibrium itself.

p = 1 p = .99 p = .5

Figure 1: Top row: A set of particles equally distributed along a ring defines an equilibrium under all-to-
all coupling. If p < 1 the ring no longer defines an equilibrium and, as p decreases, settle into a random
equilibrium instead (final state shown). Bottom row: A simplex defines an equilibrium under all choices
of graphs and also remains stable for relatively small edge probabilities p. Small initial perturbations (not
shown) of the simplex decay and particles reoccupy the original simplex as t→∞ (final state shown).

To avoid this difficulty, i.e. the random, non-linear problem of finding equilibria of (2), we focus our
efforts on a special class of equilibria to (2) that satisfy (5) under all possible realizations of the random
graph. We must therefore allow each eij to be zero or one arbitrarily. If we allow each eij to take on the
value zero or one arbitrarily, in order to not affect (5) then we must have

g

(
1

2
|xi − xj |2

)
(xi − xj) = 0

for any possible choice of distinct particle indices. As a consequence, for all (i, j) either xi = xj or |xi−xj | =√
2R where R denotes the root of the interaction kernel. Each of the particles therefore lie at the vertices of

a regular simplex in Rd whose edge length is determined by R. This restriction, i.e. that the particles lie in
equilibrium regardless of their interaction structure, necessarily reduces our study to the class of so-called
simplex configurations. These simplex configurations generalize the one-dimensional simplex equilibrium
or “compromise solution” studied in [56], so named due to its similarity with the classical consensus-type
algorithms in control theory. This is the particular choice of equilibrium where equal numbers n = N/2
of particles occupy both vertices of the one dimensional simplex, so that x1 = · · · = xn = 0 and xn+1 =
· · · = xN =

√
2R up to a reordering of the particle indices. Unlike the equilibria of (2) that require the

symmetry of all-to-all coupling, these simplex equilibria do not immediately destabilize with the introduction
of randomness. Instead, they can remain stable even for relatively small values of p (see figure 1, bottom
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row). Moreover, the stability analysis of these equilibria reduces to a study of the eigenvalues of the matrix
that results by linearizing (2) around the simplex configuration. In this manner, the stability analysis reduces
to a pure random matrix problem.

We refer to the one-dimensional system as a compromise model because the individuals in the each group
(the two vertices of the 1d simplex) prefer to remain at a fixed distance away from all other individuals;
however, their attraction to the other group forces them to coexist at the same location with half of the total
number of individuals in the group. The equilibrium therefore represents a compromise between these two
competing effects. The associated linear system

κL1 − L2. (6)

also contrasts with the classical consensus case (3); the matrices L1 and L2 equal the graph Laplacians
formed from two subgraphs of the full interaction structure. Given a graph with adjacency matrix A, we
first form the diagonal matrix D(A) that has the ith row sum of A as its ith diagonal element. For each
k = 1, 2 we define the corresponding (unnormalized) graph Laplacian as Lk := D(Ak) − Ak, where Ak
denotes the adjacency matrix of the kth subgraph. The first subgraph contains only those edges that do not
connect the two groups and the second subgraph contains only those edges that do connect the two groups.

The system parameter κ in (6) quantifies the balance between intra-group repulsion and inter-group
attraction. It is determined by the distance

√
2R between vertices of the simplex and the interaction kernel

g(s) through the relation

κ := − g(0)

2Rg′(R)
. (7)

If we assume g(0) > 0 and that g(s) has a single root at s = R then κ is always strictly positive. We can
therefore interpret the linear system (6) as a competition between positive semi-definite Laplacian matrices,
with the first term representing repulsion and the second term representing attraction.

Our interest lies in determining when the stability condition (4) holds for the more general linear system
(6). This question was originially posed in [56], where the authors proved rigorously that the stability
condition (4) holds provided p tends to zero with N in such a way that

Np = O
(

log3/2N
)
.

Moreover, the authors in [56] conjecture that stability persists for Np = O(logN) and provide a heuristic
derivation of this fact. They also conjecture that an explicit threshold for stability exists given by (8), but
again did not prove it rigorously. Our main result provides, in section 3, a rigorous proof of the following
theorem that settles the conjecture from [56] in the affirmative. We then demonstrate in section 4 how to
extend the analysis in order to prove similar results for higher dimensional simplex configurations, which
[56] did not consider.

Main Result 1.1. Let 0 < κ < 1 and let eij denote the N ×N adjacency matrix of an Erdős-Rényi random
graph G(N, p). There exists a constant p0c (independent of N) with the following property. If

p ≥ (p0c + ε)
logN

N

for some ε > 0 then the stability condition (4) holds for the system (6) asymptotically almost surely. If

p ≤ (p0c − ε)
logN

N

the stability condition (4) fails for the system (6) asymptotically almost surely. Moreover, p0c depends on κ
through the relation

p0c =
2

2− κ−κ/(κ+1) (1 + κ)
. (8)
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2 Preliminary Material

We first pause to fix our notation, terminology and to collect a few preliminary lemmas before we pro-
ceed with our main results. Capital roman letters such as A,B,C will always refer to matrices, while the
corresponding lower-case letters aij , bij , cij will denote the corresponding entries. We reserve Id for the iden-
tity matrix, 0 = (0, . . . , 0)t for the zero vector and 1 = (1, . . . , 1)t for the constant vector. We shall use
e1 = (1, 0, 1, 0, . . . , 1, 0)t to denote the vector in R2n with n copies of (1, 0)t and use e2 denote the analogous
vector with (0, 1)t repeated n times. The size of each of the preceeding is elucidated by the context in which
it appears. For an n × n symmertic matrix A, we let λi(A) denote its ith eigenvalue sorted in decreasing
order. In other words, we have

λ1(A) ≥ λ2(A) · · · ≥ λn(A), (9)

where each eigenvalue appears according to its algebraic multiplicity.
Given a sequence of measurable events {Wn}∞n=1, each of which lies in some (possibly different) probability

space, we say that the sequence of events {Wn}n≥1 holds asymptotically almost surely (a.a.s.) if

P(Wn)→ 1 as n→∞.

Here and in what follows, P always denotes the measure on the probability space in which the relevant event
lies. We denote by B(1, p) a Bernoulli random variable with parameter p and B(n, p) the corresponding
Binomial distribution. We use E(X) to denote the mean or expectation of the random variable X while
the notation X ∼ Y signifies that the random variables X and Y have the same distribution. We reserve
E = {eij} for the random matrix that corresponds to the adjacency matrix of Erdős-Rényi random graph.
Given such a random graph on n vertices with adjacency matrix E and a symmetric, deterministic matrix
M ∈Md×d(R) we form the generalized adjacency matrix A(M) ∈Mnd×nd(R) generated by M according to
the formula

A(M) := E ⊗M, (10)

where A ⊗ B denotes the Kronecker product of two matrices. These matrices naturally appear in the
linearization of (2) around the family of simplex equlibria.

Our arguments rely on two types of probabilistic estimates that apply either to a sum of random variables
or to a random matrix when a “mean-zero” hypothesis applies. Roughly speaking, these estimates allow us to
reduce our analysis to the “mean” of these components. This “mean” is then usually much easier to analyze
than the full component itself. Lemma 2.1 below, which states a variant of the well-known Chernoff bound
(c.f. [32]), provides the first result of this type. It furnishes tail estimates on a sum of random variables Xi

that satisfy the bona-fide mean zero hypothesis E(Xi) = 0 —

Lemma 2.1. (Chernoff Bound) Let X1, . . . , Xm denote discrete, independent random variables satisfying
E(Xi) = 0 and |Xi| ≤ 1. If E(X2

i ) = σ2
i and σ2 ≥

∑
σ2
i , then for any 0 ≤ λ ≤ 2σ

P

(
|
m∑
i=1

Xi| ≥ λσ

)
≤ 2e−λ

2/4. (11)

When dealing with generalized adjacency matrices of the form (32), it proves natural to decompose a
given a vector x ∈ Rnd as x = (x1, . . . ,xn)t, where each xi ∈ Rd. The “mean-zero” hypothesis in this
context enforces orthogonality of x ∈ Rnd with respect to the “constant vectors” vc = (w, . . . ,w)t ∈ Rnd,
or in other words it holds that

n∑
i=1

xi = 0. (12)

If we denote the corresponding subset of the unit ball Snd ⊂ Rnd as

Snd0 :=

{
x :

∑
i

xi = 0,
∑
i

||xi||22 ≤ 1

}
, (13)

then we may state the second type of probabilistic estimate as follows —
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Theorem 2.2. Let α and c0 denote arbitrary positive constants. Let E denote the adjacency matrix of a ran-
dom graph from G(n, p), M ∈Md×d(R) denote an arbitrary symmetric matrix and A(M) = E⊗M the corre-
sponding generalized adjacency matrix. If np > c0 log n then there exists a constant c = c(α, c0, d, ||M ||2) > 0
so that the estimate

max
(x,y)∈Snd0 ×Snd

|〈x, Ay〉| ≤ c√np (14)

holds with probability at least 1− n−α.

This theorem represents a generalization (and slight improvement when d = 1) of a theorem from [19], and
its proof follows that of [19] closely. We include it for completeness in the appendix.

The reductions that these estimates permit allow us to focus our efforts on the “mean” of the random
matrix under consideration. This “mean” essentially consists of weighted differences between independent
binomial distributions. Our method of estimating these weighted differences requires a few standard facts
regarding special functions, namely the gamma function Γ(z) and the digamma function Ψ0(z) defined by

Ψ0(z) :=
d

dz
log Γ(z).

For the gamma function, we shall use Stirling’s formula both in terms of upper and lower bounds

1 ≤ Γ(z + 1)√
2πz(z/e)z

≤ e√
2π

for z ∈ N (15)

and in terms of the asymptotic relation for z ∈ R+

log Γ(z + 1) =

(
z +

1

2

)
log z − z +O(1) as z →∞. (16)

For the digamma function Ψ0(z) we shall use the properties (c.f. [4], [39])

Ψ0(z) is increasing for z > 0 (17)

Ψ0(z + 1) = log z +O

(
1

z

)
as z →∞ (18)

log z ≤ Ψ0(z + 1) ≤ log(z + 1). (19)

With these preliminaries in place, we may now proceed to formalize and prove our main results. The
next section formalizes the linear stability problem for one-dimensional simplex equilibria and also proves a
sharp threshold for when stability of these solutions holds asymptotically almost surely. That is, it resolves
conjecture 1.1. Section 4 extends this formalization and analysis to the higher dimensional case.

3 Problem Statement in One Dimension

In this section we shall first describe in greater detail the random stability matrix that results from linearizing
(2) around the one-dimensional simplex equilibrium, or the “compromise” solution. We then proceed with a
few preliminary reductions that allow us to determine stability or instability of this solution by analyzing a
random, diagonal matrix instead of the full stability matrix. We then fully characterize the threshold...etc.

To begin, recall that we obtain the one-dimensional simplex equilibrium by subdividing a group of N = 2n
scalar particles xi ∈ R into two equal-sized groups of n individuals then placing them a distance R apart:

x1 = · · · = xn = 0 and xn+1 = · · · = xN = R.

As always let E ∈MN×N (R) denote the adjacency matrix of the G(N, p) random graph that determines the
interaction structure. We partition the adjacency matrix as

E =

(
A B
Bt C

)
, A = At, C = Ct, A,B,C ∈Mn×n(R)
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where A and C correspond to intra-group edges (interactions within the same group) and B corresponds
to inter-group edges (interactions across groups). The resulting stability matrix L for the compromise
equilibrium reads

L = κL1 − L2, L1 =

(
DA −A 0

0 DC − C

)
, L2 =

(
DB −B
−Bt DBt

)
.

For each M ∈ {A,B,Bt, C} the diagonal matrix DM has non-zero elements corresponding to row sums of M ,
so that L1 and L2 correspond to positive semi-definite graph Laplacian matrices. Here 0 < κ < 1 is a system
parameter fully determined by g(s), its first derivative and the distance R between the two compromised
groups (c.f. (7)).

The characterization of stability or instability relies on determining when the eigenvalues of L have the
appropriate sign. As 1 always defines an eigenvector with eigenvalue zero, our interest lies in placing proba-
bilistic bounds on when λ1(L) = 0 and the second-largest eigenvalue λ2(L) of L is non-positive asymptotically
almost surely. This is a necessary condition for stability of the compromise model. We therefore aim to
establish conditions on p for when the stability condition

max
{v∈1⊥:||v||=1}

〈v, Lv〉 < 0 (20)

holds asymptotically almost surely. The following subsections rigorously establish a critical threshold p = pc
for this stability condition to hold.

3.1 Reduction to the Diagonal Component

Clearly, if L has a positive diagonal entry then λ1(L) > 0 and λ2(L) ≥ 0, so we may reduce to the case when
the diagonal component D of the stability matrix L

D :=

(
κDA −DB 0

0 κDC −DBt

)
(21)

has non-positive entries. The following lemma asserts that having λ1(D) ≤ −c1Np for some c1 > 0 asymp-
totically almost surely suffices to guarantee that λ1(L) = 0 and λ2(L) < 0 asymptotically almost surely as
well.

Lemma 3.1. Assume that p = o(1), there exists a c0 > 0 so that Np ≥ c0 logN and a c1 > 0 so that
the diagonal component (21) of L satisfies λ1(D) ≤ −c1Np asymptotically almost surely. Then λ2(L) < 0
asymptotically almost surely.

Proof. Let V denote the subspace of RN that consists of mean-zero vectors, i.e. V := {v ∈ RN :
∑
i vi = 0},

and define 10 ∈ V as

10 =
1√
N

(
1
−1

)
for 1 ∈ Rn, and note that ||10||2 = 1. Let v ∈ V satisfy ||v||2 = 1, and note that v decomposes as

v = α10 + βy for y ∈ V ⊥0 :=

{
v ∈ RN :

n∑
i=1

vi =

N∑
i=n+1

vi = 0

}

where ||y||2 = 1 and α2 + β2 = 1. The definition of L1 implies L110 = 0, so that a direct computation of
〈v, Lv〉 shows that

〈v, Lv〉 = β2〈y, Ly〉 − α2〈10, L210〉 − 2αβ〈10, L2y〉

= β2〈y, Ly〉 − 4α2

N

n∑
i,j=1

bij − 2αβ〈y, L210〉.
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Define the random variables X :=
∑n
i,j=1 bij and Y := 〈y, L210〉. As E(bij) = p and the bij are independent,

it follows that E(X) = n2p and Var(X) = n2p(1 − p). The Chernoff bound (c.f. lemma 2.1) then implies
that

P
(
|X − E(X)| ≥ n

√
np(1− p)

)
≤ 2e−n/4

for all n sufficiently large, so in particular it holds that X/N = np/2+O(
√
Np) asymptotically almost surely.

To estimate Y , write y ∈ V ⊥0 as y = (y1,y2)t for yi ∈ Rn, then recall that the definition of L2 = Lt2
implies

Y := 〈L2y,10〉 =
1√
N

(〈1, DBy1〉 − 〈1, By2〉 − 〈1, DBty2〉+ 〈1, Bty1〉)

It follows by definition that DB1 = B1 and DBt1 = Bt1, which then implies

Y =
2√
N

(〈1, Bty1〉 − 〈1, By2〉) = 2〈10, Ey〉 − 2√
N

(〈1, Ay1〉 − 〈1, Cy2〉).

Applying theorem 2.2 with d = 1 shows that 〈10, Ey〉 = O(
√
Np) asymptotically almost surely. Define

ỹ1 := (y1,0)t and 1̃ := (1,0)t, so that the equality 〈1, Ay1〉 = 〈ỹ1, E1̃〉 holds. As (ỹ1,0)t ∈ SN0 and
E ∼ G(N, p), a direct application of theorem 2.2 with d = 1 suffices to yield |〈1, Ay1〉| =

√
nO(
√
np)

asymptotically almost surely. A similar argument demonstrates |〈1, Cy2〉| =
√
nO(
√
np) asymptotically

almost surely as well. Thus |Y | = O(
√
np) asymptotically almost surely. That 2αβ ≤ α2 + β2 = 1 then

implies

〈v, Lv〉 ≤ β2〈y, Ly〉 − 4α2

N
X − 2αβY ≤ −α2Np+ β2〈y, Ly〉+O(

√
Np)

asymptotically almost surely.
It remains to estimate 〈y, Ly〉. Again write y ∈ V ⊥0 as y = (y1,y2)t for yi ∈ Rn, and recall that

||yi||2 ≤ 1 and 1 · yi = 0 by definition. Thus

β2〈y, Ly〉 = β2〈y, Dy〉 − β2(1 + κ)(〈y1, Ay1〉+ 〈y2, By2〉) + β2〈y, Ey〉.

As each of y1,y2 and y have zero mean and ||y||2 = 1, it follows from theorem 2.2 that

β2〈y, Ly〉 = β2〈y, Dy〉+O(
√
Np) ≤ λ1(D)||y||22β2 +O(

√
Np) ≤ −c1Npβ2 +O(

√
Np).

As a consequence, that α2 + β2 = 1 then implies

max
v∈V :||v||2=1

〈v, Lv〉 ≤ −min{1, c1}Np+O(
√
Np) < 0

asymptotically almost surely. Noting that 1 always defines an eigenvector of L then yields the desired
result.

3.2 Estimating the Diagonal

With this reduction in hand, we may now proceed with the task of establishing the hypothesis λ1(D) ≤
−c1Np in the preceeding lemma. Each non-zero entry Dii of D has exactly the same distribution, i.e.
a difference of two independent binomial distributions (although dependencies exist between the diagonal
entires themselves due to the undirected graph). Specifically, we have

dii ∼ κX − Y

for X,Y ∼ B(n, p) with X and Y independent. We therefore wish to estimate when P(d11 ≥ −c1Np) holds
with probability sufficiently small to apply the union bound over all diagonal entries. In crude terms, for
Np = Θ(log n) and N = 2n we have that

P(d11 ≥ −c1Np) ≈ c2(n)e−c0(κ,c1)np, c0(κ, c1) = c0(κ, 0) + o(1) (as c1 → 0)
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for some function c0(κ, c1) that depends on κ and c1 and some function c2(n) that grows (or decays) more
slowly in n than any power. A threshold therefore occurs when c0(κ, 0)np = log n, or in other words when

P(d11 ≥ 0) ≈ c2(n)Θ

(
1

n

)
.

Indeed, if c0(κ, 0)np ≥ (1 + ε) log n then P(d11 > −c1Np) ≈ n−(1+ε) and we may apply the union bound over
all 2n diagonal entries. On the other hand, if c0(κ, 0)np ≤ (1 − ε) log n then P(d11 ≥ c1Np) ≈ n−(1−ε) and
the union bound fails. In this case, we expect L to have positive diagonal entries and therefore instability
to occur.

To realize this program, we must have a method for calculating c0(κ, c1) itself. Given X ∼ B(n, p) and
Y ∼ B(n, p), let Z = κX − Y then define

fn(p, κ, c1) := P(Z ≥ c1np) =

n∑
i=0

(
n

i

)
pi(1− p)n−i

bκi−c1npc∑
j=0

(
n

j

)
pj(1− p)n−j . (22)

As the following lemmas demonstrate, we can estimate fn(p, κ, c1) to the precision needed by considering only
the largest term in the sum. Finding and estimating this term only involves calculus and a few properties
of special functions.

Lemma 3.2. Suppose that there exists ε > 0 so that

(1− ε) log n

n
≤ p ≤ (1− ε)c0(κ)

log n

n
, c0(κ) :=

1

2− (1 + κ)κ−
κ

1+κ
. (23)

If 0 < c1 < κ
1

1+κ is sufficiently small, depending only on (ε, κ), then there exists a universal constant c′ > 0
so that

fn(p, κ, c1) ≥ c′n−1+ε/2. (24)

Proof. For a fixed n > 0, define

i0 := dκ−
κ

1+κnpe = δ(n)np, δ(n) = κ−
κ

1+κ (1 + ε1), ε1 = O

(
1

log n

)
,

j0 := b(1− c1κ−
1

1+κ )κi0c = γ(n)np, γ(n) = (1− c1κ−
1

1+κ )κ
1

1+κ (1 + ε2), ε2 = O

(
1

log n

)
.

Write (
n

i

)
pi(1− p)n−i = eΦ(i) Φ(i) := log n!− log i!− log(n− i)! + i log

p

1− p
+ n log(1− p),

and note that fn(p, κ, c1) > eΦ(i0)eΦ(j0) since the pair (i0, j0) contributes a singleton term in the sum. Indeed,
as

(1− c1κ−
1

1+κ )κi0 ≤ κi0 − c1np

it follows that j0 = b(1− c1κ−
1

1+κ )κi0c ≤ bκi0 − c1npc. Stirling’s formula (16) for the factorial and the fact
that log(1− p) = −p+O(p2) together imply that

Φ(i0) = n log
n

n− i0
− i0 log

i0
n− i0

+
1

2
log

n

i0(n− i0)
+ i0 log

p

1− p
+ n log(1− p) +O(1)

= i0 − i0 log
i0

n− i0
− 1

2
log np+ i0 log

p

1− p
− np+O(1),

Φ(j0) = j0 − j0 log
j0

n− j0
− 1

2
log np+ j0 log

p

1− p
− np+O(1).
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The definitions of i0 and j0 combine with these estimates to yield

Φ(i0) + Φ(j0) =
[
(1 + κ)κ−

κ
1+κ − (2 + c1)

]
np− log np+ i0 log

p(n− i0)

i0(1− p)
+ j0 log

p(n− j0)

j0(1− p)
+O(1),

=
[
(1 + κ)κ−

κ
1+κ − (2 + c1)

]
np− log np+ np

[
δ(n) log

1

δ(n)
+ γ(n) log

1

γ(n)

]
+O(np2) +O(1).

From the definitions of δ(n), γ(n), the fact εi = O(log−1 n) and the fact log(1 + εi) = O(log−1 n) it follows
that

δ(n) log
1

δ(n)
+ γ(n) log

1

γ(n)
= c1 log(κ

1
1+κ − c1)− κ

1
1+κ log(1− c1κ−

1
1+κ ) +O

(
1

log n

)
,

np

[
δ(n) log

1

δ(n)
+ γ(n) log

1

γ(n)

]
= np

[
c1 log(κ

1
1+κ − c1)− κ

1
1+κ log(1− c1κ−

1
1+κ )

]
+O(1).

As a consequence,

Φ(i0) + Φ(j0) =
[
(1 + κ)κ−

κ
1+κ − 2

]
np+ h(c1)np− log np+O(1),

h(c1) :=
[
c1 log(κ

1
1+κ − c1)− κ

1
1+κ log(1− c1κ−

1
1+κ )− c1

]
.

By (23), this implies

Φ(i0) + Φ(j0) ≥ (ε− 1) log n+ h(c1)np− log np+O(1) ≥ (ε− 1− |h(c1)|c0(κ)) log n− log np+O(1).

As h(c1)→ 0 as c1 → 0, it follows that that fn(p, κ, c1) ≥ exp(Φ(i0) + Φ(j0)) ≥ nε/2−1 for all n sufficiently
large if c1 is sufficiently small, depending only on ε and κ, as claimed.

For c1 > 0, define

fn(p, κ, c1) := P(Z ≥ −c1np) =

n∑
i=0

(
n

i

)
pi(1− p)n−i

bκi+c1npc∑
j=0

(
n

j

)
pj(1− p)n−j . (25)

Lemma 3.3. Suppose that there exist c, ε > 0 so that

np ≥ (1 + ε)c0(κ) log n, c0(κ) :=
1

2− (1 + κ)κ−
κ

1+κ
, np ≤ c log n. (26)

If 0 < c1 < 1−κ is sufficiently small, depending only on (κ, ε, c), then there exists a universal constant c′ > 0
so that

fn(p, κ, c1) ≤ c′n−1−ε/2. (27)

Proof. For x > −1 let H(x) denote the function H(x) := x − (1 + x) log(1 + x), and note that H(x) is
increasing for x ≤ 0 and is decreasing otherwise. Let 0 < ε0(c0) < 1, 0 < ε1(c0) denote the unique positive
solutions to

H(−ε0) = − 1

c0
, H(ε1) = − 2

c0
.

Let i0 := d(1 − ε0)npe and i1 := b(1 + ε1)npc, and consider first those terms in the sum (25) that satisfy
either i ≤ i0 or i ≥ i1. The fact that

(
n
i

)
≤ ni/i! and Stirling’s formula (15) yield(

n

i

)
pi(1− p)n−i ≤ exp

(
i(1 + log np) + (n− i) log(1− p)− log

√
2π − (i+ 1/2) log i

)
.

That 0 < p < 1 implies log(1− p) ≤ −p, which in turn implies(
n

i

)
pi(1− p)n−i ≤ exp (Φ(i)) , Φ(i) := i(1 + p+ log np)− np− log

√
2π − i log i.

10



Elementary calculus demonstrates that Φ(i) increases provided i ≤ np. As 0 < (1 − ε0) < 1 it follows that
i0 ≤ np, which together with the fact that (1− ε0)np2 < log

√
2π for n sufficiently large implies(

n

i

)
pi(1− p)n−i ≤ exp (Φ ((1− ε0)np)) ≤ exp (npH(−ε0))

for all 1 ≤ i ≤ i0 − 1 and all n sufficiently large. The definition of ε0 and the assumption (26) then combine
to imply

i0−1∑
i=0

(
n

i

)
pi(1− p)n−i

bκi+c1npc∑
j=0

(
n

j

)
pj(1− p)n−j ≤

i0−1∑
i=0

n−(1+ε)

bκi+c1npc∑
j=0

(
n

j

)
pj(1− p)n−j ≤ i0n−(1+ε).

Next consider a term in the sum (25) that satisfies i ≥ i1. As before, the facts that Φ(i) decreases for i ≥ i1
and (1 + ε1)np2 < log

√
2π if n is sufficiently large imply(

n

i

)
pi(1− p)n−i ≤ exp (Φ(i)) ≤ exp (Φ((1 + ε1)np)) ≤ exp (npH(ε1))

for all i ≥ i1 +1 and n sufficiently large. The definition of ε1 and the assumption (26) then combine to imply

n∑
i=i1+1

(
n

i

)
pi(1− p)n−i

bκi+c1npc∑
j=0

(
n

j

)
pj(1− p)n−j ≤

n∑
i=i1+1

n−2(1+ε)

bκi+c1npc∑
j=0

(
n

j

)
pj(1− p)n−j ≤ n−(1+2ε).

As i0 = O(log n), it follows as a consequence of these estimates that

fn(p, κ, c1) =

i1∑
i=i0

bκi+c1npc∑
j=0

(
n

i

)
pi(1− p)n−i

(
n

j

)
pj(1− p)n−j +O

(
log n

n1+ε

)
.

Now let G(i, j) denote the function,

G(i, j) :=

(
n

i

)
pi(1− p)n−i

(
n

j

)
pj(1− p)n−j = eΦ0(i)eΦ0(j)

Φ0(i) := log Γ(n+ 1) + i log
p

1− p
+ n log(1− p)− (log Γ(i+ 1) + log Γ(n− i+ 1))

and let S denote the constraint set

S :=
{

(i, j) ∈ R2
+ : (1− ε0)np ≤ i ≤ (1 + ε1)np, 0 ≤ j ≤ κi+ c1np

}
.

For all indices i, j such that (i, j) ∈ S it trivially holds that

G(i, j) ≤ G∗ := max
(i,j)∈S

G(i, j).

As np = O(log n), i0 = O(log n) and i1 = O(log n) it follows that

i1∑
i=i0

bκi+c1npc∑
j=0

(
n

i

)
pi(1− p)n−i

(
n

j

)
pj(1− p)n−j ≤ O(log2 n)G∗.

Suppose that the maximum G∗ occurs on the boundary ∂S of the constraint set. This leaves four cases to
consider. In the first two cases, if i = (1− ε0)np or i = (1 + ε1)np the preceeding arguments imply that

G((1− ε0)np, j) ≤ exp {Φ(npH(−ε0))} ≤ n−(1+ε),

G((1 + ε1)np, j) ≤ exp {Φ(npH(ε1))} ≤ n−2(1+ε).
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In the third case, i.e. j = 0 and (1− ε0)np ≤ i ≤ (1 + ε1)np, the maximum satisfies

G(i, 0) ≤ (1− p)n = elog(1−p)n ≤ e−np ≤ n−(1+ε)c0(κ),

which decays faster than n−(1+ε) due to the fact that c0(κ) > 1 for 0 < κ < 1 by definition.
The final case proves the most difficult. In this remaining case it holds that j = κi+ c1np and that

G(i, κi+ c1np) = eΦ1(i), Φ1(i) := 2 log Γ(n+ 1) + [i(1 + κ) + c1np] log
p

1− p
+

2n log(1− p)− [log Γ(i+ 1) + log Γ(κi+ c1np+ 1) + log Γ(n− i+ 1) + log Γ(n− κi− c1np+ 1)] .

If a maximum of Φ1(i) occurs between i0 and i1 then the maximum must occur when

(1 + κ) log
p

1− p
= Ψ0(i+ 1) + κΨ0(κi+ c1np+ 1)− κΨ0(n− κi− c1np+ 1)−Ψ0(n− i+ 1) := χ(i). (28)

Indeed, as Ψ0(z) > 0 increases for z > 0, if a solution i0 < i∗ < i1 to (28) exists then it is unique
and is a maximum of Φ1(i). Let δ(κ, c1) denote the unique, positive solution to δ(δκ + c1)κ = 1 and set
iu = 2δ(κ, c1)np. From the digamma estimate (19) it follows that

χ(iu) ≥ log

(
iu(κiu + c1np)

κ

(n− κiu − c1np+ 1)κ(n− iu + 1)

)
= log

(
p(1+κ) 2δ(κ, c1)(κ2δ(κ, c1) + c1)κ

(1− κ2δ(κ, c1)p− c1p+ 1
n )κ(1− 2δ(κ, c1)p+ 1

n )

)
> (1 + κ) log

p

1− p

for all n sufficiently large. The last inequality follows due to the fact that 2δ(κ, c1)(κ2δ(κ, c1) + c1)κ > 1 is
constant in n, so when p = o(1) the coefficient of p1+κ on the left hand side (which asymptotically equals
2δ(κ, c1)(κ2δ(κ, c1) + c1)κ) always exceeds the coefficient of p1+κ (which equals one) on the right hand side.
As the right hand side, i.e. χ(i), of (28) is increasing, it follows that i∗ < iu for all n sufficiently large.
Defining il := δ(κ, c1)np/2, it follows in a similar fashion that il < i∗ for all n sufficiently large as well. In
particular, i∗ = Θ(np). Write i∗ = δ(n)np, and note that the critical point equation (28) and the digamma
estimate (19) also imply

log

(
(i∗ + 1)(κi∗ + c1np+ 1)κ

(n− κi∗ − c1np)κ(n− i∗)

)
≥ (1 + κ) log

p

1− p
≥ log

(
i∗(κi∗ + c1np)

κ

(n− κi∗ − c1np+ 1)κ(n− i∗ + 1)

)
.

These inequalities imply that

(δ(n) + 1
np )(κδ(n) + c1 + 1

np )κ

(1− κδ(n)p− c1p)κ(1− δ(n)p)
≥ 1

(1− p)κ+1
≥ δ(n)(κδ(n) + c1)κ

(1− κδ(n)p− c1p+ 1
n )κ(1− δ(n)p+ 1

n )
.

From the fact that p = o(1), the fact that np→∞ and the fact that δ(n) is a bounded sequence, by passing
to the limit in the previous expression it follows that any limit point δ∞ of the sequence δ(n) must satisfy

δ∞ (κδ∞ + c1)
κ ≥ 1 ≥ δ∞ (κδ∞ + c1)

κ
.

In particular, δ∞ is the unique solution to δ(κδ + c1)κ = 1. As any convergent subsequence of δ(n) must
converge to δ(κ, c1), i.e. the unique solution to δ(κδ+ c1)κ = 1, it follows that in fact δ(n) = δ(κ, c1) + o(1).

Write the value at such a maximum as eΦ1(i∗) with Φ1(i∗) defined above. Using Stirling’s approximation
(16) it follows that Φ1(i∗) =

n log

(
n2

(n− i∗)(n− κi∗ − c1np)

)
+ [(1 + κ)i∗ + c1np] log

p

1− p
+ 2n log(1− p)− i∗ log

(
i∗

n− i∗

)
1

2
log

(
n2

i∗(κi∗ + c1np)(n− i∗)(n− κi∗ − c1np)

)
− (κi∗ + c1np) log

(
κi∗ + c1np

n− κi∗ − c1np

)
+O(1).
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Now recall that i∗ = δ(n)np for δ(n) = δ(κ, c1) + o(1), so that

1

2
log

(
n2

i∗(κi∗ + c1np)(n− i∗)(n− κi∗ − c1np)

)
= − log np+O(1)

n log

(
n2

(n− i∗)(n− κi∗ − c1np)

)
= −n (log(1− δ(n)p) + log(1− κδ(n)p− c1p))

That log(1− p) = −p+O(p2) and np = O(log n) imply 2n log(1− p) = −2np+ o(1), which yields Φ1(i∗) =
O(1)− log np +

[δ(n)(1 + κ) + c1 − 2]np+ [(1 + κ)i∗ + c1np] log
p

1− p
− i∗ log

(
i∗

n− i∗

)
− (κi∗ + c1np) log

(
κi∗ + c1np

n− κi∗ − c1np

)
.

Appealing to the asymptotic formula (18) for the digamma function then shows

log(i∗)− log(n− i∗) = Ψ0(i∗ + 1)−Ψ0(n− i∗ + 1) +O

(
1

i∗

)
+O

(
1

n− i∗

)
i∗ {log(i∗)− log(n− i∗)} = i∗

{
Ψ0(i∗ + 1)−Ψ0(n− i∗ + 1)

}
+O (1)

κi∗ {log(κi∗ + c1np)− log(n− κi∗ − c1np)} = i∗
{
κΨ0(κi∗ + c1np+ 1)− κΨ0(n− κi∗ − c1np+ 1)

}
+O (1) .

As a consequence, the critical point equation (28) implies

i∗ log

(
i∗

n− i∗

)
+ κi∗ log

(
κi∗ + c1np

n− κi∗ − c1np

)
= i∗(1 + κ) log

p

1− p
+O(1),

Φ1(i∗) = [(1 + κ)δ(n) + c1 − 2]np− log np+ c1np log

(
1− κδ(n)p− c1p

(1− p)(δ(n)κ+ c1)

)
+O(1).

That f(δ) := δ(κδ + c1)κ increases with δ and f(κ−
κ

1+κ ) > 1 implies δ(κ, c1) < κ−
κ

1+κ . The fact that
δ(n) = δ(κ, c1) + o(1) and the hypothesis (26) then combine to demonstrate

Φ1(i∗) ≤
(
− 1

c0(κ)
+ c1(1− log(κδ(κ, c1) + c1)) + o(1)

)
np ≤ −(1 + 2ε/3) log n

provided c1 is sufficiently small (depending on (ε, κ, c)). Thus, if a maximum i∗ occurs between i0 and i1
then it must satisfy

G(i∗, κi∗ + c1np) ≤ c′n−(1+ε/2).

As a consequence, in all four cases there exists a c′ > 0 so that the maximum G∗ satisfies G∗ ≤ c′n−(1+2ε/3).
In summary, provided

G∗ := max
(i,j)∈S

G(i, j) = max
(i,j)∈∂S

G(i, j) (29)

the estimate

fn(p, κ, c1) =

i1∑
i=i0

bκi+c1npc∑
j=0

(
n

i

)
pi(1− p)n−i

(
n

j

)
pj(1− p)n−j +O

(
log n

n1+ε

)

≤ O(log2 n)G∗ +O

(
log n

n1+ε

)
≤ O(log2 n)n−(1+2ε/3)

holds for all n sufficiently large. It therefore suffices to establish (29), i.e. that the maximum of G(i, j) occurs
along the boundary ∂S of the constraint set S := {(i, j) : (1− ε0)np ≤ i ≤ (1 + ε1)np, 0 ≤ j ≤ κi+ c1np}. If
the maximum G∗ were attained in the interior of the at some point (i∗, j∗) then both Φ′0(i∗) = Φ′0(j∗) = 0
would simultaneously hold. Differentiating Φ0 shows that this would imply

log
p

1− p
= Ψ0(i∗ + 1)−Ψ0(n− i∗ + 1), log

p

1− p
= Ψ0(j∗ + 1)−Ψ0(n− j∗ + 1).

As Ψ0(i+ 1)−Ψ0(n− i+ 1) is strictly increasing, this would imply i∗ = j∗ as a consequence. Moreover, the
digamma estimate (19) implies np− 1 ≤ i∗ = j∗ ≤ p(n+ 1), which since κ+ c1 < 1 yields in turn

κi∗ + c1np ≤ κ(n+ 1)p+ c1np = (κ+ c1)np+ p < np− 1 ≤ j∗
for all n sufficiently large. In other words, (i∗, j∗) /∈ S and the maximum must occur on ∂S.
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3.3 Proof of the Main Result

We now have all the ingredients necessary to establish the threshold for stability of the compromise equi-
librium. If np ≥ (1 + ε)c0(κ) log n then lemma 3.3 suffices to guarantee that each diagonal entry dii of the
diagonal component (21) satisfies

dii ≤ −c1Np

with probability at least 1− c′n−(1+ε/2). As a consequence, the union bound implies that there exists c1 > 0
so that

λ1(D) ≤ −c1Np

asymptotically almost surely. The reduction furnished by lemma 3.1 then implies stability asymptotically
almost surely.

The converse direction proves slightly more difficult due to the fact that the diagonal entries dii exhibit
a mild dependence. This dependence results from the undirected graph. Nevertheless, a standard technique
easily adapts to the present situation and allows us to handle this lack of independence. If np ≤ (1− ε) log n
then a previous result [56] already implies instability asymptotically almost surely. We therefore may as
well assume that (1− ε) log n ≤ np ≤ c0(κ)(1− ε) log n, so that lemma 3.2 applies and there exists a c1 > 0
sufficiently small so that

dii ≥ c1np

with probability at least c′n−1+ε/2 for any given diagonal entry. Let Xi := 1{dii≥c1np} denote the indicator
of such an event and define

N0 :=

n∑
i=1

Xi

as the total number of such events that occur over the first n diagonal entries. Let µ0 := E(N0) = nfn(p, κ, c1)
denote the expected number of such entries. Chebyshev’s inequality then implies that (writing fn as short-
hand for fn(p, κ, c1)) for any γ > 0 the inequality

P(|N0 − µ0| > γnfn) ≤ Var(N0)

γ2n2f2
n

(30)

holds. The variance satisfies

Var(N0) =

n∑
i=1

Var(Xi) + 2

n∑
i=1

∑
j>i

Cov(Xi, Xj) = nfn(1− fn) + 2

n∑
i=1

∑
j>i

Cov(Xi, Xj),

whereas the covariance satisfies

Cov(Xi, Xj) = P(Xi = 1 ∩Xj = 1)− f2
n.

Recalling the definition of D in (21) shows that we may decompose

dii = κ

n∑
k=1

aik −
n∑
k=1

bik djj = κ

n∑
k=1

ajk −
n∑
k=1

bjk,

which obviates the fact that the only dependence between dii and djj occurs via the entry aij ; indeed, the
entries {aik}nk 6=j , {ajk}nk 6=i and {bij}nij=1 are independent. With this in mind, define

d̃ii := κ

n∑
k 6=j

aik −
n∑
k=1

bik = dii − κaij

and define d̃jj similarly. Conditioning on the possible values of aij ∈ {0, 1} shows

P(Xi = 1 ∩Xj = 1) = P(d̃ii ≥ c1np− κ)P(d̃jj ≥ c1np− κ)p+ P(d̃ii ≥ c1np)P(d̃jj ≥ c1np)(1− p).
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Note that we may write

P(d̃ii ≥ c1np− κ) =

n∑
i=1

bκi−c1npc∑
j=0

(
n− 1

i− 1

)(
n

j

)
pi−1(1− p)n−ipj(1− p)n−j .

As in the proof of lemma 3.3, there exists an i1 = O(np) sufficiently large so that

n∑
i=1

bκi−c1npc∑
j=0

(
n− 1

i− 1

)(
n

j

)
pi−1(1− p)n−ipj(1− p)n−j =

i1∑
i=1

bκi−c1npc∑
j=0

+ O

(
1

n

)

fn =

i1∑
i=1

bκi−c1npc∑
j=0

(
n

i

)(
n

j

)
pi(1− p)n−ipj(1− p)n−j + O

(
1

n

)
.

For i = O(np) it holds that (
n− 1

i− 1

)
pi−1(1− p)n−i = O(1)

(
n

i

)
pi(1− p)n−i,

which implies

P(d̃ii ≥ c1np− κ) ≤ O(1)fn +O

(
1

n

)
.

The fact that {d̃ii ≥ c1np} ⊂ {Xi = 1} implies

P(d̃ii ≥ c1np) ≤ fn,

which yields as a consequence the estimate

P(Xi = 1 ∩Xj = 1) ≤ f2
n +O(1)f2

np+O
( p
n

)
= f2

n +O(1)f2
np.

The last line follows as a consequence of lemma 3.2. Substituting this estimate into the covariance, we
conclude that

Var(N0) ≤ nfn +O(1)n2f2
np.

This estimate combines with (30), the fact that np = O(log n) and the fact that fn ≥ c′n−1+ε/2 to show
that for any fixed γ > 0 the inequality

P(|N0 − µ0| > γnfn) ≤ 1 +O(1) log n

γ2nfn
.

log n

nε/2
(31)

holds. In particular, if γ = 1/2 this yields N0 ≥ nfn/2 asymptotically almost surely. Thus the stability ma-
trix has at least O(nε/2) positive diagonal entries, and so the compromise solution is unstable asymptotically
almost surely.

4 Problem Statement in Higher Dimensions

We begin this section by describing the stability matrix and the associated linear stability condition, i.e the
analogue of (20), that arises by linearizing (2) around the two-dimensional simplex. We may then state the
general d-dimensional problem as a straightforward generalization of the two-dimensional case.

The two-dimensional version of the compromise model consists of three equal-sized groups of individ-
uals that occupy the vertices of a regular, two-dimensional simplex. Specifically, let p1 = (1, 0)t,p2 =
(−1/2,

√
3/2)t and p3 = (−1/2,−

√
3/2)t denote the vertices of an equilateral triangle. Let n denotes the

number of individuals in each group and let vi ∈ R2 denote the position of the ith individual. Without loss
of generality, we may order the individuals in such a fashion so that

v1 = · · · = vn = p1, vn+1 = · · · = v2n = p2, v2n+1 = · · · = vN = p3 N = 3n.
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Let G1 = {1, . . . , n}, G2 = {n+ 1, . . . , 2n} and G3 = {2n+ 1, . . . , N} denote the corresponding partition of
the vertices into the three groups. Finally, let

x = (p2 − p1)/|p2 − p1|, y = (p3 − p1)/|p3 − p1|, z = (p2 − p3)/|p2 − p3|.

From an undirected Erdős-Rényi random graph G(N, p) with edges {eij} and adjacency matrix E, we
first form four 2N × 2N generalized adjacency matrices A(Id), A(xxt), A(yyt) and A(zzt) in such a way so
that

A(xxt) = E ⊗ xxt A(yyt) = E ⊗ yyt A(zzt) = E ⊗ zzt A(Id) = E ⊗ Id (32)

where A⊗B denotes the Kronecker product of two matrices. In more explicit terms, given a 2×2 symmetric
matrix M , we partition A(M) into 2× 2 blocks Aij(M):

A(M) =


A11(M) A12(M) · · · A1N (M)
A21(M) A22(M) · · · A2N (M)

...
...

. . .
...

AN1(M) AN2(M) · · · ANN (M)

 . (33)

For j ≥ i we set Aij(M) = M if eij = 1 and Aij = 0 otherwise. For j < i we set Aij(M) = Atji(M), or
in other words we define the lower triangle via symmetry. The matrices A(Id), A(xxt), A(yyt) and A(zzt)
constructed in this manner agree with the generalized adjacency matrices (32) defined via the sub-blocks
Id,xxt,yyt and zzt, respectively.

Next, we decompose each generalized adjacency matrix A(M) into 2n×2n blocks Akl(M) that correspond
to the interactions between group Gk and group Gl:

A(M) =

A11(M) A12(M) A13(M)
A21(M) A22(M) A23(M)
A31(M) A32(M) A33(M)

 . (34)

Note that Akl(M) = (Alk(M))t due symmetry. While only a portion of each generalized adjacency matrix
appears in the linear stability matrix, referencing the full generalized adjacency matrices will prove useful in
deriving estimates. We therefore denote the relevant portions of each matrix as follows —

B(Id) =

A11(Id) 0 0
0 A22(Id) 0
0 0 A33(Id)

 B(xxt) =

 0 A12(xxt) 0
A21(xxt) 0 0

0 0 0


B(yyt) =

 0 0 A13(yyt)
0 0 0

A31(yyt) 0 0

 B(zzt) =

0 0 0
0 0 A23(zzt)
0 A32(zzt) 0

 . (35)

Lastly, using each B(M) we define corresponding generalized Laplacian matrices in the straightforward
way, i.e. by using block-diagonal row sums. In other words, we may define these matrices by noting that,
analogously to A(M), each B(M) decomposes into a 2× 2 block-matrix structure according to (33). We can
therefore define a corresponding block-diagonal matrix D(M) with 2× 2 blocks along the diagonal by using
row sums of the 2× 2 blocks in B(M),

Dii(M) =

N∑
j=1

Bij(M) Dij(M) = 0 if i 6= j.

We then define the Laplacian matrix L(M) = D(M)−B(M) for each M ∈ {Id,xxt,yyt, zzt}, and for κ > 0
consider the random stability matrix

L := κL(Id)− (L(xxt) + L(yyt) + L(zzt)). (36)

Linearizing (2) around the two-dimensional simplex equilibrium produces a random matrix of precisely this
form.
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Like the one-dimensional case, this stability matrix necessarily has a non-trivial nullspace due to the
underlying translation and rotation invariances inherent in the ODE system. Analogously to (20), we must
therefore account for these zero eigenvalues when definining our notion of stability. For any w ∈ R2 put
vc = (w,w, . . . ,w)t ∈ R2N , i.e. a “constant vector.” A straightforward computation reveals that Lvc = 0.
Additionally, set

vr = (p⊥1 , . . . ,p
⊥
1 ,p

⊥
2 , . . . ,p

⊥
2 ,p

⊥
3 , . . . ,p

⊥
3 )t ∈ R2N

where each p⊥i appears exactly n times, and for a given w = (w1, w2)t ∈ R2 we define w⊥ = (−w2, w1)t.
Using the antisymmetry 〈p⊥i ,pj〉 = −〈p⊥j ,pi〉 and the definitions of x,y, z then shows Lvr = 0 as well. If
V denotes the subspace spanned by vc and vr, we therefore wish to know when the stability condition

max
v∈V ⊥,||v||=1

〈v, Lv〉 < 0 (37)

holds asymptotically almost surely.

Remark 4.1. The construction of the stability matrix for the d-dimensional simplex solutions follows anal-
ogously. We let p1, . . . ,pd+1 ∈ Rd denote the vertices of a regular simplex and form kd := d(d + 1)/2
vectors xk, k = 1 · · · kd from all possible differences between unique pairs of vertices. We then form the
corresponding nd × nd generalized adjacency matrices E ⊗ Id and E ⊗ xkx

t
k and construct the Laplacian

matrices L(Id) and L(xkx
t
k) in a similar fashion to the two dimensional case. The relevant random matrix

L = κL(Id)−
∑kd
k=1 L(xkx

t
k) necessarily has a kd dimensional nullspace. The first d result from the constant

vectors vc = (w,w, . . . ,w)t ∈ RNd(d+1) and the remaining d(d− 1)/2 vectors vr result from the total possi-
ble independent rotations of the simplex. The stability analysis then proceeds by estimating the equivalent of
(37).

4.1 Reduction to the Diagonal Component

We now turn to the task of establishing the existence of a critical scaling Np = O(logN) for stability in the
two-dimensional compromise model. As in the one-dimensional case, we first reduce the task to understanding
the (block) diagonal of the corresponding stability matrix. Corresponding to the block decomposition (35),
we may decompose each of the diagonal matrices D(Id), D(xxt), D(yyt) and D(zzt) as

D(Id) =

D11(Id) 0 0
0 D22(Id) 0
0 0 D33(Id)

 D(xxt) =

D12(xxt) 0 0
0 D21(xxt) 0
0 0 0


D(yyt) =

D13(yyt) 0 0
0 0 0
0 0 D31(yyt)

 D(zzt) =

0 0 0
0 D23(zzt) 0
0 0 D32(zzt)

 .

Recall that we use e1 := (1, 0, 1, 0, . . . , 1, 0)t ∈ R2n and e2 = (0, 1, 0, 1, . . . , 0, 1)t ∈ R2n to denote the
vectors comprised of n copies of the vectors (1, 0)t or (0, 1)t, respectively. Note that by the construction the
generalized adjacency matrices and block diagonal matrices satisfy

Dij(M)ek = Aij(M)ek ∀M ∈
{

Id,xxt,yyt, zzt
}
∀k ∈ {1, 2}. (38)

Note also that an arbitrary unit vector v ∈ R2N that is orthogonal to all vectors of the form vc := (w, . . . ,w)t,
where w ∈ R2 is arbitrary, decomposes as

v =
α1√
6n

 2e1

−e1

−e1

+
α2√
2n

 0
e1

−e1

+
β1√
6n

 2e2

−e2

−e2

+
β2√
2n

 0
e2

−e2

+ γ

w1

w2

w3

 , (39)

where α2
1 + α2

2 + β2
1 + β2

2 + γ2 = 1 and each wk ∈ R2n satisfies

〈wk, e1〉 = 〈wk, e2〉 = 0.
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The eigenvector vr of L with eigenvalue zero that arises due to rotation invariance satisfies

vr =
1

2

 2e2

−e2

−e2

+

√
3

2

 0
−e1

e1

 ,

so that enforcing 〈v,vr〉 = 0 for any v of the form (39) imposes the additional relation β1 = α2 on the
coefficients. Thus we can write an arbitrary v ∈ V ⊥ with ||v|| = 1 as

v =
α1√
6n

 2e1

−e1

−e1

+
β1√
2n

 0
e1

−e1

+
β1√
6n

 2e2

−e2

−e2

+
β2√
2n

 0
e2

−e2

+ γ

w1

w2

w3

 (40)

v := α1v1 + β1v2 + β2v3 + γv4, α2
1 + 2β2

1 + β2
2 + γ2 = 1. (41)

We therefore wish to characterize when 〈v, Lv〉 < 0 for any vector v satisfying (40), i.e. those vectors in the
subspace V ⊥ = span(vc,vr)

⊥ with norm one.
We may now follow the proof of lemma 3.1 to extract the dominant components of 〈v, Lv〉. Write

L = κL(Id)− L̃ for
L̃ := L(xxt) + L(yyt) + L(zzt),

and note that (38) implies
L(Id)v = L(Id)v4.

After some simplification, this yields as a consequence that

〈v, Lv〉 = γ2〈v4, Lv4〉 − 〈α1v1 + β1v2 + β2v3, L̃(α1v1 + β1v2 + β2v3)〉 − 2γ〈α1v1 + β1v2 + β2v3, L̃v4〉.

Due to (38), a simple computation demonstrates that

√
6n〈v1, L̃v4〉 = 3〈(A12(xxt) +A13(yyt))e1,w1〉 − 3〈A21(xxt)e1,w2〉 − 3〈A31(xxt)e1,w3〉.

Now realize that if w̃ = (w1,0,0)t and ẽ1 = (0, e1,0)t then asymptotically almost surely it holds that

〈w1, A
12(xxt)e1〉 = 〈w̃, A(xxt)ẽ1〉 =

√
NO(

√
Np) (42)

uniformly for v ∈ V ⊥. The last statement follows as w̃ ∈ Snd0 , so theorem 2.2 applies. In a similar fashion
we have that asymptotically almost surely

〈A13(yyt)e1,w1〉 =
√
NO(

√
Np), 〈A21(xxt)e1,w2〉 =

√
NO(

√
Np) 〈A31(yyt)e1,w3〉 =

√
NO(

√
Np)

uniformly for v ∈ V ⊥, so that 〈v1, L̃v4〉 = O(
√
Np) asymptotically almost surely as well. Applying this

argument twice more, with v2 and v3 in place of v1, suffices to demonstrate that

〈v2, L̃v4〉 = O(
√
Np), 〈v3, L̃v4〉 = O(

√
Np), max

v∈V ⊥:||v||=1
〈v, Lv〉 =(

max
v∈V ⊥:||v||=1

γ2〈v4, Lv4〉 − 〈α1v1 + β1v2 + β2v3, L̃(α1v1 + β1v2 + β2v3)〉
)

+O(
√
Np),

asymptotically almost surely, where the last line follows due to the fact that max{|α1|, |β1|, |β2|, |γ|} ≤ 1
from the normalization requirement α2

1 + 2β2
1 + β2

2 + γ2 = 1.
We now turn to the second term. To write this quantity in a more tractible fashion, we first appeal to

the following set of identities that follow by direct computation from the definitions of x,y, z, the relation
(38) and the construction of the generalized adjacency matrices—

√
3A12(xxt)e2 +A12(xxt)e1 = 0,

√
3A13(yyt)e2 −A13(yyt)e1 = 0, A23(zzt)e1 = 0,

√
3A21(xxt)e2 +A21(xxt)e1 = 0,

√
3A31(yyt)e2 −A31(yyt)e1 = 0, A32(zzt)e1 = 0.
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These identities then allow us to simplify the action of L̃ on each of v1,v2,v3, in that we have
√

6nL̃v1 = 3(A12(xxt)e1 +A13(yyt)e1,−A21(xxt)e1,−A31(yyt)e1)t

√
nL̃v2 =

√
2(A13(yyt)e1 −A12(xxt)e1, A

21(xxt)e1,−A31(yyt)e1)t

√
2nL̃v3 = (A13(yyt)e2 −A12(xxt)e2, A

21(xxt)e2 + 2A23(zzt)e2,−A31(yyt)e2 − 2A32(zzt)e2)t.

These formulae, when combined with the previous identities, allow us to compute each possible combination
of 〈vi, L̃vj〉 solely in terms of easily estimated, element-wise sums of the adjacency matrix E of the underlying
random graph. Specifically, we have that

2n

3
〈v1, L̃v1〉 =

n

2
〈v2, L̃v2〉 = 2n〈v1, L̃v3〉 = 〈e1, A

12(xxt)e1〉+ 〈e1, A
13(yyt)e1〉

n√
3
〈v1, L̃v2〉 =

√
3n〈v3, L̃v2〉 = 〈e1, A

13(yyt)e1〉 − 〈e1, A
12(xxt)e1〉

2n〈v3, L̃v3〉 = 4〈e2, A
23(zzt)e2〉+ 〈e2, A

12(xxt)e2〉+ 〈e2, A
13(yyt)e2〉. (43)

Note that the construction of the generalized adjacency matrices A(xxt), A(yyt) and A(zzt) implies that

〈e1, A
12(xxt)e1〉 =

 n∑
i=1

2n∑
j=n+1

eij

 (xte1)2 〈e2, A
12(xxt)e2〉 =

 n∑
i=1

2n∑
j=n+1

eij

 (xte2)2 (44)

〈e1, A
13(yyt)e1〉 =

 n∑
i=1

3n∑
j=2n+1

eij

 (yte1)2 〈e2, A
13(yyt)e2〉 =

 n∑
i=1

3n∑
j=2n+1

eij

 (yte2)2 (45)

〈e2, A
23(zzt)e2〉 =

 2n∑
i=n+1

3n∑
j=2n+1

eij

 (zte2)2, (46)

where eij denote the edges of the underlying random graph. Following lemma 3.1, if np = Θ(log n) then
standard concentration of measure arguments (i.e. the Chernoff bound) imply that

n∑
i=1

2n∑
j=n+1

eij = n(np+O(
√
Np))

with probability at least 1 − 2e−n/4. Analogous results hold for the remaining edge sums in (44). We
now substitute this fact, along with the facts that (xte1)2 = (yte1)2 = 3/4, (xte1)2 = (yte1)2 = 1/4 and
(zte2)2 = 1, into (43) to conclude that

〈α1v1 + β1v2 + β2v3, L̃(α1v1 + β1v2 + β2v3)〉 = −
[

3

2
(α2

1 + 2β2
1 + β2

2) +
3

4
(α1 + β2)2

]
np+O(

√
Np).

This estimate holds with probability at least 1 − ce−n/4 uniformly for v ∈ V ⊥, so that the subsequent
estimate

max
v∈V ⊥:||v||=1

γ2〈v4, Lv4〉 − 〈α1v1 + β1v2 + β2v3, L̃(α1v1 + β1v2 + β2v3)〉 =(
max

v∈V ⊥:||v||=1
γ2〈v4, Lv4〉 −

[
3

2
(α2

1 + 2β2
1 + β2

2) +
3

4
(α1 + β2)2

]
np

)
+O(

√
Np).

also holds with at least this probability.
It remains to estimate 〈v4, Lv4〉, which we decompose as

〈v4, Lv4〉 = 〈v4, DLv4〉 − 〈v4, BLv4〉.

Here DL := κD(Id) − (D(xxt) + D(yyt) + D(zzt)) denotes the block-diagonal component of L and BL :=
−κB(Id) +B(xxt) +B(yyt) +B(zzt) denotes the off-diagonal component. As in the one dimensional case,
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we may reduce our analysis of the stability of the two-dimensional compromise solution to a study of when
the largest eigenvalue λ1(DL) of DL is sufficiently negative. Specifically, suppose there exists a c1 > 0 so
that λ1(DL) ≤ −c1Np asymptotically almost surely. Then as ||v4|| = 1 it follows that

〈v4, Lv4〉 ≤ −c1Np− 〈v4, BLv4〉.

In much the same manner as we arrived at (42), it follows from theorem 2.2 that

〈v4, BLv4〉 = O(
√
Np)

uniformly for v ∈ V ⊥. Combining this with the previous reductions, if Np = Θ(logN) and λ1(DL) ≤ −c1Np
asymptotically almost surely then

max
v∈V ⊥:||v||=1

〈v, Lv〉 ≤ −min

{
c1,

1

2

}
Np+O(

√
Np) < 0

asymptotically almost surely as well. In other words, the two-dimensional simplex configuration is stable.

4.2 Estimating the Diagonal

With these reductions in place, the procedure for determining the threshold follows the program outlined in
the one dimensional case. Given any of the 2 × 2 blocks Dii that constitute the diagonal component D of
the stability matrix, define

fn(p, κ, c1) := P(λ1(Dii) ≥ c1np).

We may determine the critical probability pc from the relation

fn(pc, κ, 0) = c2(n)Θ

(
1

n

)
,

where c2(n) denotes a function of n that grows (or decays) more slowly than any power. This again amounts
to a computation involving independent binomial distributions. If p = (1 + ε)pc then there exists a c1 < 0
so that

fn(p, κ, c1) = O
(
n−1−ε/2

)
,

and this implies stability asymptotically almost surely by the previous reductions and the union bound.
Conversely, when p = (1− ε)pc then

fn(p, κ, c1) ≥ c′n−1+ε/2

for some c1 > 0, and this implies instability asymptotically almost surely.
The principle that underlies the calculation of pc is straightforward. Nevertheless, this computation can

prove quite technical as the one dimensional case shows. For the sake of brevity, we shall content ourselves
with an easily established upper bound on pc for now and leave a full calculation of the threshold for future
work. For 1 ≤ i ≤ n note that

Dii = κ

(
n∑
i=1

eij

)
Id−

(
2n∑

i=n+1

eij

)
xxt −

(
3n∑

i=2n+1

eij

)
yyt,

E(Dii) = np(κId− xxt − yyt). (47)

The definitions of x and y show that (x− y) yields the eigenvector of E(Dii) with largest eigenvalue along
with its value

λ1(E(Dii)) =

(
κ− 1

2

)
np.

When np ≥ (1 + ε) log n for some ε > 0, the Chernoff bound yields∣∣∣∣∣
n∑
i=1

eij − np

∣∣∣∣∣ ≤ 2
√

(1 + ε)np log n
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with probability at least 1−2n−(1+ε). As a consequence, the union bound and the triangle inequality combine
to show that with probability at least 1−O(n−(1+ε)) the estimate

λ1(Dii) ≤ np
(
κ− 1

2
+ 6
√

log n(1 + ε)/np

)
holds. For 0 < κ < 1/2 fixed and

np >
36(1 + ε) log n

(κ− 1/2)2

it follows that there exists c1 > 0 so that λ1(Dii) ≤ −c1np with probability at least 1 − O(n−(1+ε)). Of
course, the same estimate holds for λ1(Dii) when n+1 ≤ i ≤ N as well. The union bound then demonstrates
that

λ1(D) ≤ −c1np

with probability at least 1 − O(n−ε), which suffices to yield stability asymptotically almost surely by the
previous reductions. We may summarize the preceeding in the following theorem:

Theorem 4.2. Fix 0 < κ < 1/2 and ε > 0. If np(κ − 1/2)2 > 36(1 + ε) log n then the two dimensional
compromise solution, with n = N/3 individuals in each group, is stable asymptotically almost surely. That
is, (37) holds with probability approaching one as n→∞.

This theorem implies that np = O(log n) suffices to guarantee stability of the two-dimensional simplex
asymptotically almost surely. Using a connectivity-based argument similar to that used in [56], we may
conclude that stability asymptotically almost surely necessitates np ≥ c log n for some constant c > 0 as
well. In other words, the stability threshold for the two-dimensional simplex configuration exhibits the same
critical scaling np ∝ log n as the one-dimensional case.

5 Conclusion

This paper analyzes the behavior of a large system of interacting particles whose interaction structure is
dictated by an Erdős-Rényi random graph. Specifically, we proved theorems that yield stability or instability
for two types of simplex equilibria as the number of particles becomes infinite. For the one-dimensional
simplex equilibria we rigorously established a conjecture first formulated in [56], i.e. an explicit formula
for the critical probability above which stability holds asymptotically almost surely. We also established
that the threshold for two-dimensional simplex equilibria exhibits the same critical scaling, with respect to
the number of particles, as the one-dimensional case. Moreover, these same arguments reduce complicated
stability estimates to a more straightforward estimation of weighted differences of binomial distributions.
This reduction should allow for the calculation of an explicit threshold in the two dimensional setting in
a manner analogous to the one-dimensional setting. We leave an investigation of this threshold for future
work, however. We also leave a study of arbitrary d-dimensional simplex equilibria for future work, although
in principle our two-dimensional arguments generalize in a straightforward way to handle simplicial solutions
in arbitrary dimensions.

We selected the standard Erdős-Rényi random graph model G(N, p) primarily for simplicity and math-
ematical convenience. Specifically, using G(N, p) provided a good starting point from which we developed
the analytical machinery required to address the types of problems studied in this paper. While the choice
of G(N, p) might prove correct in some models and applications, it certainly proves inappropriate in many
situations as well. Many real-world social networks and internet graphs exhibit degree statistics that deviate
markedly from the standard Erdős-Rényi model, for instance. Nevertheless, some generalizations of the
Erdős-Rényi model G(N, p) can overcome this difficulty by allowing for arbitrary degree sequences [9, 10].
Moreover, many of the analytical techniques we employed to study G(N, p) have also been extended to handle
generalized G(N, p) models [11, 12, 38]. We therefore reasonably expect that some verison of our analysis
and results should generalize in this setting, though perhaps in a manner not quite as sharp as theorem 1.1.

Finally, our present work does not shed light on a number of related but inherently more complicated
problems of interest. A study of random structures that do not lie in equilibrium under all choices of random
graphs, such as the ring-like equilibria in figure 1, would likely require substantially different techniques than
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those we employed here. Similarly, our techniques likely do not extend in a straightforward way to random
interaction models where the network structure evolves in time. This especially applies if the random graph
itself depends on the temporally evolving position of the agents. This type of random interaction proves
more natural in models of biological flocking [3], for instance. However, using some version of our methods
it might be possible to study emergent behavior and flocking in a Cucker-Smale type model [15] with a
random, but temporally constant, interaction structure between agents.
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A Estimates for Generalized Adjacency Matrices

Given a random graph drawn from G(n, p), let A ∈ Mnd×nd(R) denote an nd × nd generalized adjacency
matrix using any symmetric matrix M ∈Md×d(R) as a sub-block. In other words, if E denotes the adjacency
matrix of the graph then we have

A = E ⊗M

for ⊗ denoting the Kronecker product. Let Mjk = Mkj , 1 ≤ j ≤ n, j ≤ k ≤ n denote the i.i.d. matrix-
valued random variables corresponding to the edges in the graph, so that E(Mjk) = pM . For a given a
vector x ∈ Rnd consider the partition x = (x1, . . . ,xn)t for xi ∈ Rd, and recall the “mean-zero” hypothesis

n∑
i=1

xi = 0. (48)

If we denote the corresponding subset of the unit ball Snd ⊂ Rnd as

Snd0 :=

{
x :

∑
i

xi = 0,
∑
i

||xi||22 ≤ 1

}
,

our aim lies in proving the following generalization of the theorem due to [19]:

Theorem A.1. Let α and c0 denote arbitrary positive constants. If np > c0 log n then there exists a constant
c = c(α, c0, d, ||M ||2) > 0 so that the estimate

max
(x,y)∈Snd0 ×Snd

|〈x, Ay〉| ≤ c√np (49)

holds with probability at least 1− n−α.

Note carefully that we only require one of x or y to satisfy the mean zero property (48). The proof of the
theorem essentially reproduces the arguments of [19] by changing a few scalars to vectors and multiplications
to inner products. The first ingredient is the following lemma:

Lemma A.2. Fix (x,y) ∈ Snd0 × Snd and let Λ = {(j, k) : |〈xk,Myj〉| ≤
√
p/n}. Then∣∣∣∣∣∣E

 ∑
(j,k)∈Λ

〈xk,Mkjyj〉

∣∣∣∣∣∣ ≤ ||M ||22√np. (50)
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Proof. As x ∈ Snd0 it follows that

0 = p
∑
j,k

〈xk,Myj〉 = E

 ∑
(j,k)∈Λ

〈xk,Mkjyj〉

+ p
∑

(j,k)∈Λc

〈xk,Myj〉.

By definition, whenever (j, k) ∈ Λc it follows that |〈xk,Myj〉| >
√
p/n. Thus p|〈xk,Myj〉| <

√
np|〈xk,Myj〉|2 ≤√

np||M ||22||xk||22||yj ||22 for any such (j, k), where the last inequality follows from Cauchy-Schwarz. Combining
these facts yields∣∣∣∣∣∣E

 ∑
(j,k)∈Λ

〈xk,Mkjyj〉

∣∣∣∣∣∣ = p

∣∣∣∣∣∣
∑

(j,k)∈Λc

〈xk,Myj〉

∣∣∣∣∣∣ ≤ ||M ||22√np
∑
j,k

||xk||22||yj ||22 = ||M ||22
√
np||x||22||y||22

as desired.

For a fixed (x,y) ∈ Snd0 × Snd let S(x,y), L(x,y), U(x,y) denote the random variables defined as

S(x,y) :=
∑

(j,k)∈Λ

〈xj ,Mjkyk〉 =
∑

(j,k)∈Λ
j≤k

〈xj ,Mjkyk〉+
∑

(j,k)∈Λ
j>k

〈xj ,Mjkyk〉 := U(x,y) + L(x,y).

Although dependencies exist between L and U due to the undirected graph, when considered in isolation
each random variable is simply a sum of independent indicator random variables. Indeed, fix any ordering of
the indices Λ∩{j ≤ k} and write U(x,y) =

∑
i ui, where the sum ranges from one to the (deterministic) size

of Λ ∩ {j ≤ k}, and note that each ui is either zero or 〈xj ,Myk〉 with probability (1− p) or p, respectively.
Obviously for L(x,y) an analogous statement holds.

Note that |ui| ≤
√
p/n by definition of Λ, and that∑

i

Var(ui) = p(1− p)
∑

Λ∩{j≤k}

|〈xj ,Myk〉|2 ≤ p||M ||22||x||22||y||22 ≤ p||M ||22.

By applying the Chernoff bound 2.1 to the random variables (ui − E(ui))/2
√
p/n with the choices σ2 =

nK||M ||22/4 and λ2 = nK||M ||22 these facts imply that for any K ≥ 1 the estimate

P
(
|U(x,y)− E(U(x,y))| ≥ K√np||M ||22

)
≤ 2e−Kn||M ||2/4

holds. A similar argument shows that the same inequality holds for L(x,y) as well. As S = L + U, the
triangle inequality and the union bound yield the estimate

P
(
|S(x,y)− E(S(x,y))| ≥ 2K

√
np||M ||22

)
≤ 4e−Kn||M ||2/4. (51)

Next, given 0 < δ < 1 define the finite grid

T δ :=

{
x ∈

(
δ√
n
Z
)nd

: ||x||2 ≤ 1

}

and its mean-zero variant

T δ0 :=

{
x ∈

(
δ√
n
Z
)nd

:
∑
i

xi = 0 ||x||2 ≤ 1

}
.

The following lemma allows us to control the norm of A on Snd0 by controlling 〈x, Ay〉 for pairs of vectors in
the finite grid instead:

Lemma A.3. If |〈x, Ay〉| ≤ c for all (x,y) ∈ T δ0 × T δ then |〈x, Ay〉| ≤ cd
(1−δ)2 for all (x,y) ∈ Snd0 × Snd.
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Proof. Let z = (1− δ)x,u = (1− δ)y and note that∑
i

zi = 0. (52)

Decompose z as z = z1 + · · · + zd where the non-zero components of zk correspond to the kth equation in
(52); that is, zk contains the kth, (d+ k)th, (2d+ k)th, etc. components of z and has zeros elsewhere. As

||z||22 = ||z1||2 + · · ·+ ||zd||2 ≤ (1− δ)2,

the vector in Rn comprised of the non-zero locations of zk has norm less than (1− δ) and entries that sum
to zero. By lemma 2.3 of [19], each zk is therefore a convex combination of points of T δ0 ,

zk =

Jk∑
j=1

θkj v
k
j , θkj > 0,

Jk∑
j=1

θkj = 1.

Summing the zk then shows that there exists an N = J1 + · · ·+ Jd ∈ N, θl > 0 and vl ∈ T δ0 so that

z =

N∑
l=1

θlvl,

N∑
l=1

θl = d.

Lemma 2.3 of [19] also implies that u is a convex combination of points in T δ, so that there exist M ∈ N,
ηj > 0 and wj ∈ T δ so that

u =

M∑
j=1

ηjwj ,

M∑
j=1

ηj = 1.

As a consequence,

(1− δ)2|〈x, Ay〉| = |〈z, Au〉| =

∣∣∣∣∣∣
N∑
l=1

θl

M∑
j=1

ηj〈vl, Awj〉

∣∣∣∣∣∣ ≤ c
N∑
l=1

θl

M∑
j=1

ηj = cd.

An estimate of the total number of points |T δ|, |T δ0 | in the δ-nets follows from a direct appeal to claim 2.9
of [19]. As T δ0 ⊂ T δ and |T δ| ≤ ec(nd) for some constant c that depends on δ, which follows from claim 2.9 of
[19], it follows that |T δ0 × T δ| ≤ e2c(nd) as well. Applying the union bound over T δ0 × T δ, we may therefore
summarize the preceeding in the following lemma:

Lemma A.4. Given any c > 0 there exists c′ > 0 so that with probability at least 1− e−cn the estimate

max
(x,y)∈T δ0×T δ

|S(x,y)| ≤ c′√np (53)

holds.

It remains to estimate, for (x,y) ∈ T δ0 × T δ, the remaining contribution

H(x,y) := 〈x, Ay〉 − S(x,y) =
∑

(j,k)∈Λc

〈xj ,Mjkyk〉

where we recall Λc := {(j, k) : |〈xj ,Myk〉| >
√
p/n}. From Cauchy-Schwarz it follows that

|H(x,y)| ≤ ||M ||2
∑

(k,l)∈Λc

||xk||2||yl||21{ekl=1}. (54)
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Here and in what follows, for an index subset W the notation 1W denotes the indicator function. If we
define the sets

Xi :=

{
k ∈ {1 . . . n} :

δ√
n

2i−1 ≤ ||xk||2 <
δ√
n

2i
}

Yi :=

{
k ∈ {1 . . . n} :

δ√
n

2i−1 ≤ ||yk||2 <
δ√
n

2i
}

and fix an edge (k, l) corresponding to a non-zero term in the sum (54), then k ∈ Xi and l ∈ Yj for some
(i, j) and an edge (k, l) exists between these two vertex sets. Moreover, as (k, l) ∈ Λc it follows that√

p/n < |〈xk,Myl〉| ≤ δ2||M ||22i+j/n ⇒ 2i2j >
√
pn

provided we take δ||M ||2 ≤ 1. As a consequence,

|H(x,y)| ≤ δ2||M ||2
∑
i,j

2i2j>
√
np

edge(Xi, Yj)
2i2j

n
, (55)

where edge(Xi, Yj) denotes the number of edges between the sets.
To bound (55), we let c1 denote an as-yet-undetermined constant and put

W := {(i, j) : 2i2j >
√
np, max{|Xi|, |Yj |} > (n/e)},

then decompose the sum further as∑
i,j

2i2j>
√
np

edge(Xi, Yj)
2i2j

n
=
∑
W

edge(Xi, Yj)
2i2j

n
+
∑
W c

edge(Xi, Yj)
2i2j

n
. (56)

Assuming that each vertex has degree bounded by c1np (c.f. lemma A.5) then edge(Xi, Yj) ≤ c1npmin{|Xi|, |Yj |}.
Thus the first term is bounded by∑

W

edge(Xi, Yj)
2i2j

n
≤ c1ep

∑
W

min{|Xi|, |Yj |}max{|Xi|, |Yj |}
2i2j

n
≤ c1e

√
np
∑
i,j

22i|Xi|22j |Yj |n−2.

Noting that ∑
i

|Xi|22i

n
≤ 4δ−2||x||2

∑
j

|Yj |22j

n
≤ 4δ−2||y||2 (57)

then shows that the first term is O(
√
np) provided the bounded degree property holds. Fortunately, if

np > c0 log n for any c0 > 0, this property holds with probability at least 1− n−α for any α > 0 provided c1
is sufficiently large:

Lemma A.5. (Bounded Degree) Let p ≥ c0 log n/n for any c0 > 0 and deg1, . . . ,degn denote the vertex
degrees of an Erdős-Rényi random graph G(n, p). For any α > 0 there exists a c1 = c1(c0, α) > 2 so that

P
(

max
i

degi > c1np
)
≤ 2n−α. (58)

Proof. Write degi =
∑
j eij where eij denote the edges of the graph. As E(degi) = np and Var(degi) =

np(1− p) ≤ (c1 − 1)np it follows from the Chernoff bound and the union bound that

P
(
|degi − np| > λ

√
(c1 − 1)np

)
≤ 2e−λ

2/4 ⇒ P
(

max
i
|degi − np| > λ

√
(c1 − 1)np

)
≤ 2e−λ

2/4+logn.

The choice λ =
√

(c1 − 1)np yields

P
(

max
i
|degi − np| > (c1 − 1)np

)
≤ 2e−np(c1−1)/4+logn ≤ 2elogn(1−c0(c1−1)/4).

Taking c1 sufficiently large gives the desired result.
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Therefore with probability at least 1−n−α, the first term in (56) is O(
√
np) uniformly for (x,y) ∈ T δ0 ×T δ

as long as the bounded degree property holds. It remains to handle the second term. From the definition of
W c, if V = {1, . . . , n} and 2|V | its power set we need only consider those sets X ∈ 2|V | with |X| ≤ (n/e),

Vs := {(X,Y ) ∈ 2|V | × 2|V | : max{|X|, |Y |} ≤ n/e}.

Before proceeding, we first need to establish an estimate on the random variable edge(X,Y ) when (X,Y ) ∈
Vs:

Lemma A.6. For (X,Y ) ∈ Vs let edge(X,Y ) denote the random variable corresponding to the number of
edges from an Erdős-Rényi random graph G(n, p) between X and Y . Let µ(X,Y ) = E(edge(X,Y )) and
M(X,Y ) := max{|X|, |Y |}. Given any α > 0 let k0(X,Y ) denote the unique solution to

k0 log(k0/e) =
α+ 4

µ
M log

ne

M
. (59)

Then

P
(

max
Vs

(edge(X,Y )− k0(X,Y )µ(X,Y )) > 0

)
≤ n−α. (60)

Proof. From the union bound, it follows (through slight abuse of notation) that

P
(

max
Vs

(edge(X,Y )− k0(X,Y )µ(X,Y )) > 0

)
≤

n/e∑
|X|=1

n/e∑
|Y |=1

( n
|X|)∑
X

( n
|Y |)∑
Y

P (edge(X,Y ) > k0(X,Y )µ(X,Y ))

Using a one-sided concentration inequality (c.f. [32]) for sums of indicator variables,

P(edge(X,Y ) > kµ(X,Y )) ≤ e−k log(k/e)µ(X,Y ),

which is valid for any k > 1, shows that

P(edge(X,Y ) > k0(X,Y )µ(X,Y )) ≤ e−(α+4)M log(ne/M)

since k0 > 1. It therefore follows that

n/e∑
|X|=1

n/e∑
|Y |=1

( n
|X|)∑
X

( n
|Y |)∑
Y

P (edge(X,Y ) > k0(X,Y )µ(X,Y )) ≤
n/e∑
|X|=1

n/e∑
|Y |=1

(
n

|X|

)(
n

|Y |

)
e−(α+4)M log(ne/M)

n/e∑
|X|=1

n/e∑
|Y |=1

exp {|X| log(ne/|X|) + |Y | log(ne/|Y |)− (α+ 4)M log(ne/M)} .

The fact that f(x) := x log(ne/x) is increasing for 1 ≤ x ≤ n then implies

|X| log(ne/|X|) + |Y | log(ne/|Y |) ≤ 2M log(ne/M), M log(ne/M) ≥ 1 + log n.

Combining this with the previous estimate yields

P
(

max
Vs

(edge(X,Y )− k0(X,Y )µ(X,Y )) > 0

)
≤

n/e∑
|X|=1

n/e∑
|Y |=1

n−(α+2) ≤ n−α

as desired.

The definition of k0(X,Y ) and the fact µ(X,Y ) ≤ p|X||Y | then combine to yield the following corollary,
which provides the basic estimate for the remaining contribution of W c to the sum.
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Corollary A.7. With probability at least 1− n−α, the estimate

edge(X,Y ) log
edge(X,Y )

ep|X||Y |
≤ (α+ 4)M(X,Y ) log

ne

M(X,Y )
(61)

holds for all X,Y ∈ Vs.

Estimating the second term in (56) ∑
W c

edge(Xi, Yj)
2i2j

n

now proceeds by decomposing into the following cases:

I := W c ∩ {edge(Xi, Yj) ≤ e2
√
p/n|Xi||Yj |2i2j}

IIA := W c ∩ {2i > √np 2j} IIB := W c ∩ {2j > √np 2i}
III := W c \ (I ∪ IIA ∪ IIB) .

On I we have that ∑
I

≤ e2√np
∑
i,j

22i|Xi|22j |Yj |n−2 = O(
√
np)

due to (57) as before. On IIA and IIB the bounded degree property implies that edge(Xi, Yj) ≤ c1np|Xi|
and edge(Xi, Yj) ≤ c1np|Yj |, respectively. Therefore∑

IIA

≤ c1
√
np
∑
IIA

|Xi|22i

n

2j
√
np

2i
= c1
√
np
∑
i

|Xi|22i

n

∑
j

2j
√
np

2i
1IIA(i, j).

For fixed i let jmax(i) denote the largest j so that (i, j) ∈ IIA. Then

∑
j

2j
√
np

2i
1IIA(i, j) ≤

2jmax(i)√np
2i

∞∑
j=0

2−j ≤ 2 ⇒
∑
IIA

≤ 2c1
√
np
∑
i

|Xi|22i

n
= O(

√
np) (62)

due to (57) once again. By reversing the roles of i and j, a similar argument shows∑
IIB

= O(
√
np)

as well. For the remaining set III, let III = IIIi>j ∪ IIIj>i where the notation signifies |Yj | ≥ |Xi| on IIIj>i

and vice-versa. We treat the first set and leave the second as an exercise since it follows analogously. Using
the probabilistic estimate (61) as a guide, we decompose further into

IIIj>iA := IIIj>i ∩
{

4 log
edge(Xi, Yj)

ep|Xi||Yj |
≥ log

ne

|Yj |

}
IIIj>iB := IIIj>i ∩

{
4 log

edge(Xi, Yj)

ep|Xi||Yj |
< log

ne

|Yj |

}
∩
{
ne

|Yj |
≤ 24j

}
IIIj>iC := IIIj>i ∩

{
4 log

edge(Xi, Yj)

ep|Xi||Yj |
< log

ne

|Yj |

}
∩
{
ne

|Yj |
> 24j

}
For the first set the estimate (61) implies∑

IIIj>iA

≤ 4(α+ 4)
√
np
∑
j

|Yj |22j

n

∑
i

2i

2j
√
np

1IIIj>iA
(i, j) = O(

√
np)

due to the fact that 2j
√
np > 2i, the geometric series argument from (62) and the estimate (57). For the

second set note that if (i, j) ∈ III then (i, j) /∈ I, so that the inequality

edge(Xi, Yj) > e2
√
p/n|Xi||Yj |2i2j
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holds on III by definition. This combines with the definition of IIIj>iB to imply that

e ≤ e
2i2j
√
np
≤ edge(Xi, Yj)

ep|Xi||Yj |
≤ 2j ,

which shows that 1 ≤ log
edge(Xi,Yj)
ep|Xi||Yj | and that 2i <

√
np as well. The estimate (61) therefore implies

∑
IIIj>iB

≤ 4(α+ 4)
∑

IIIj>iB

|Yj | log(2j)2i2j

n
≤ 4(α+ 4)

√
np
∑
j

|Yj |22j

n

∑
i

2i
√
np

1IIIj>iB
(i, j) = O(

√
np)

due to the fact that 2i >
√
np, the geometric series argument (62) and the estimate (57), exactly as before.

On the final set the facts that

ne

|Yj |
<

(
ne

|Yj |22j

)2

, 4 ≤ 4 log
edge(Xi, Yj)

ep|Xi||Yj |
< 2 log

ne

|Yj |22j
< 4 log

ne

|Yj |22j

imply that edge(Xi, Yj) ≤ e2np|Xi|2−2j , whence

∑
IIIj>iC

≤ e2√np
∑
i

|Xi|22i

n

∑
j

√
np

2i2j
1IIIj>iC

(i, j).

Arguing as before, the fact that 2i2j >
√
np gives that each sum over j is bounded by two, so that applying

(57) one final time demonstrates that the sum is O(
√
np).

The following lemma summarizes the preceeding arguments:

Lemma A.8. Let np > c0 log n for any c0 > 0 and α denote an arbitrary positive constant. Then there
exists a c > 0 independent of n so that with probability at least 1− n−α the estimate

|H(x,y)| ≤ c√np (63)

holds for all (x,y) ∈ T δ0 × T δ.

Combining this with the estimate for S(x,y) and the reduction to the discrete set T δ0 × T δ yields the
theorem.
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