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SHOCK SOLUTIONS FOR PARTICLE-LADEN THIN FILMS∗

BENJAMIN P. COOK† , ANDREA L. BERTOZZI† , AND A. E. HOSOI‡

Abstract. We derive a lubrication model describing gravity-driven thin film flow of a suspension
of heavy particles in viscous fluid. The main features of this continuum model are an effective mixture
viscosity and a particle settling velocity, both depending on particle concentration. The resulting
equations form a 2 × 2 system of conservation laws in the film thickness h(x, t) and in φh, where
φ(x, t) is the particle volume fraction. We study flows in one dimension under the constant flux
boundary condition, which corresponds to the classical Riemann problem, and we find the system
can have either double-shock or singular shock solutions. We present the details of both solutions
and examine the effects of the particle settling model and of the microscopic length scale b at the
contact line.
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1. Introduction. The flow of thin viscous films [44] is of great importance to
many problems in science and engineering. Flows in thin films can result from slow
processes such as spreading [17] and evaporation [6] or stronger driving forces such as
capillarity [38] or gravity [21]. As shown by Huppert in [21], gravity-driven films on
an incline can be described roughly by the conservation law

(1.1)
∂h

∂t
+

∂

∂x
h3 = 0

for the film thickness h. However, in many cases, there exist large gradients in h and
dry regions where h = 0, requiring more complex models that incorporate capillary
forces and the thermodynamic wetting process.

Wetting occurs as a fluid domain evolves, moving in particular the contact line,
where the solid, liquid, and vapor phases meet. Despite the fundamental importance of
contact lines to fluid dynamic boundary conditions, many of their basic properties are
not fully understood [2, 13]. The standard no-slip boundary condition is inadequate
near a moving contact line [14, 20], and two common contact line models either
allow a small slip velocity [20] or assume a thin “precursor” film rather than a dry
substrate [55]. These models have contributed to understanding the capillary ridge
that often develops near the contact line [3, 16, 19, 23, 28, 55], the rupture of thin
films [39, 57], the contact angle that the free surface makes with the substrate [16,
23, 25, 50], and the relevance of the material composition of the fluid and substrate
[12, 24, 50]. A “fingering” instability observed in [21] which deforms the contact line in
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some driven films has also motivated analysis [3, 55], simulation [28], and experiments
[12, 24, 50] on thin film flow.

Film flows of more complex materials are much less understood. For dry granular
flows, air can frequently be neglected, and the central modeling challenge is to deter-
mine an appropriate constitutive relation [26]. Replacing the fluid with a suspension,
however, introduces the possibility of phase segregation, allowing new behaviors not
seen in pure fluids and only recently observed in film flows [54, 59]. Segregation of
viscous suspensions can be driven by gravity [59], but has also been observed with
neutrally buoyant particles in thin films [54] and in the related Hele–Shaw flow [53].
Direct numerical simulation of suspension flows considering individual particles is
computationally demanding, and existing methods do not account for the complexi-
ties of a contact line [49, 58]; consequently, continuum models play an essential role
in understanding these flows.

Continuum descriptions of viscous suspensions involve three main effects: an
“effective viscosity” greater than that of the suspending fluid [30, 52], the settling of
heavy particles due to gravity [11], and particle fluxes thought to result from particle
interactions in the presence of shear [34]. Various models have incorporated some or
all of these effects [40, 42, 45, 47]; however, only a limited number of flow geometries
have been studied, most commonly the one-dimensional Couette and Poiseuille flows
(for exceptions see [15]). In particular Schaflinger, Acrivos, and Zhang [47] model a
gravity-driven thin film, though they do not consider variation in the flow direction
caused by gravitational segregation that we model below.

Our work is motivated by the experiment and model described by Zhou et al. in
[59]. The experiment consists of a gravity-driven film of a dense (≥ 17% by volume)
suspension of glass beads in oil which flows down an inclined plane under constant flux
upstream conditions. They observed three different particle behaviors in this exper-
iment, depending on the inclination angle and particle concentration of the initially
well-mixed suspension, which they summarized in a phase diagram. At low inclina-
tion angles and concentrations, the particles settle out of the flow, leaving a film of
clear fluid, while at intermediate angles and concentrations the suspension appeared
well mixed for the duration of the experiment. At high angles and concentrations the
particles accumulate near the moving contact line in a “particle-rich ridge.” They also
observed that while the well-known fingering instability [21] occurs in the first two
regimes, it is largely suppressed when the ridge appears. Their new model describes
this third regime, characterized by spatially varying rheology, which appears to have
no analogue in pure fluid motion.

Zhou et al. derived their model by treating the mixture locally as a Newtonian
fluid, which allows the use of standard lubrication techniques. The two-phase flow is
described by an overall velocity determined from the local value of a concentration-
dependent effective viscosity, and a settling velocity of the heavy particles relative to
the fluid. They derived a system of two coupled fourth-order evolution equations for
the film thickness and particle concentration, and argued that the essential dynamics
are determined by a system of conservation laws obtained by retaining only the first-
order terms. They also presented double-shock solutions for this system depending on
the parameter b appearing in their contact line model, which represents the thickness
of a precursor film appearing ahead of the bulk flow. They compared these solutions
to the experimentally observed ridge, and noted that the calculated speeds of the
two shocks become nearly equal at small values of b. Their calculations, however,
were not sufficient to determine whether the shock speeds actually coincide at some
finite b∗ > 0, an important issue since this would call into question the existence of
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solutions for b < b∗. Furthermore, they described the physical derivation and the
shock solutions only briefly.

The purpose of the present work is to give a more complete derivation of this model
describing the ridge regime, and to more thoroughly characterize its shock solutions,
including their dependence on b. Aspects of these solutions motivate a revision of the
particle settling model, which appears later in the manuscript. In section 2 we present
a full derivation following the assumptions of Zhou et al., which was not included in
their work. While the equations we derive are slightly different, they appear to have
the same qualitative behavior. As in [59] we present two forms of the model equations.
The “full system” including fourth-order terms due to surface tension is beyond the
scope of our subsequent analysis, but nonetheless important for a faithful description
and for modeling phenomena such as the capillary ridge and the fingering instability.
The first-order “reduced system,” which we study in section 4, is expected though not
guaranteed to approximate the full system away from the contact line. In section 3 we
recall the classical theory for hyperbolic systems of conservation laws, and in section 4
we apply these methods to the reduced system. For double-shock solutions, we find
the two shock speeds do become equal at a certain precursor thickness b, below which
the equations have no classical solution. In section 5 we compare this case to the
mathematical theory of singular shocks, in which a delta mass is concentrated at the
discontinuity. We study one approximate singular shock solution and find the particle
concentration exceeds the limit of close packing, suggesting this form of the model
is inaccurate at high concentrations. We propose a modified form for the settling
velocity in section 6 which causes both the particle and fluid velocities to vanish at
close packing, and we find the resulting equations appear to be well-posed for all
precursor thicknesses. We summarize our results in section 7, concluding that the
modified equations appear more realistic, though a comparison with the fourth-order
system and/or with experiments is still needed to establish their ultimate validity.

2. Derivation. Two common methods for describing binary mixtures in a con-
tinuum framework are the “two-fluid” and the “mixture” or “one-fluid” models [56].
The two-fluid model balances forces on the two components separately, with the forces
of interaction appearing explicitly as a function of the two velocities. It therefore re-
quires a separate viscosity for each phase. The one-fluid model balances forces on the
mixture as a whole, using an effective viscosity, and postulates a form for the relative
velocity between the two components. Since empirical formulae are readily available
for the effective mixture viscosity and settling velocity, we follow Zhou et al. in using
the one-fluid model. We also note that the fluid and particle velocities are nearly
equal, so the one-fluid equations describing average and relative velocities can be
expected to be less strongly coupled than their two-fluid counterparts.

Deriving a one-fluid model involves balancing forces first for the mixture as a
whole, without regard to interactions between the two components. In the present
case inertia is negligible, and these forces are just gravity and viscous stress. We use
an empirical expression for the latter in which the mixture is considered a Newtonian
fluid, with an effective viscosity depending on the particle volume fraction φ. For a
fluid of kinematic viscosity μf one form for this relation is [30, 52]

(2.1) μ(φ) = μf (1 − φ/φm)−2,

where φm ≈ 0.67 is the random packing fraction of spheres. This viscosity leads to a
stress tensor of the form

(2.2) Π = pI − 1

2
μ(φ)

[
∇v + (∇v)T

]
,
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where p is the fluid pressure and v is a velocity characterizing the motion of the
mixture. Since the two mixture components in general have different velocities, say
vf and vp for the fluid and particulate phases, respectively, v must be some average of
the two. Much of the experimental literature deals with neutrally buoyant mixtures,
in which the two velocities are the same and the distinction is unnecessary, but in
this case the question is relevant. We argue that since the constitutive model involves
neither inertia nor gravity, it should be independent of the masses of the two phases.
Therefore we select the volume-averaged velocity: defining

(2.3) v = (1 − φ)vf + φvp, vrel = vp − vf

thus comprises the one-fluid model for the mixture, and the individual phase velocities
can be recovered by

(2.4) vp = v + (1 − φ)vrel, vf = v − φvrel.

The average velocity satisfies the Stokes equations:

(2.5) ∇ · Π = ρ(φ)g, ∇ · v = 0,

where ρ(φ) is the mixture density and g is the gravitational field. The density is given
by ρ(φ) = ρf (1+Δφ), where Δ = (ρp− ρf )/ρf and ρf and ρp are the densities of the
fluid and particulate phases.

Fig. 2.1. Geometry of the film problem. While our derivation will allow y dependence, we study
the y-independent case. Our model assumes φ is independent of z.

We now define the problem geometry as in Figure 2.1, considering an advancing
film that coats a plane inclined at the angle θ. In deriving the equation for v, we
follow the standard methods used for pure fluid films [17, 44]. The lubrication ap-
proximation, valid at small Reynolds numbers and geometric aspect ratios, assumes v
lies in the x-y plane and

∣∣∂v
∂z

∣∣ � max
(∣∣∂v

∂x

∣∣, ∣∣∂v
∂y

∣∣). Correspondingly, we now consider

all velocities to be two-dimensional vectors, as well as the gradient ∇ = x ∂
∂x + y ∂

∂y ,

and define g⊥ = g · z = |g| cos θ and g‖ = g− g⊥z = (|g| sin θ)x. In this notation, the
Stokes equations now read

∂p

∂z
= −ρ(φ)g⊥,(2.6a)

∇p = μ(φ)
∂2v

∂z2
+ ρ(φ)g‖.(2.6b)

The Laplace–Young boundary condition states that the pressure at the free sur-
face, z = h(x, y), is given by

(2.7) p (x, y, h(x, y)) = −γ∇2h(x, y),
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where γ is the coefficient of surface tension. The pressure is then determined by

(2.8) p(x, y, z) = −γ∇2h(x, y) +

∫ h(x,y)

z

ρ(φ(x, y, z′))g⊥dz
′

from the depth and particle concentration of the film. Here it is convenient to assume
the particle concentration is independent of the z coordinate, so that the integral in
(2.8) is merely ρ(φ)g⊥(h−z). We will discuss this assumption further in our treatment
below of particle motion.

Combining (2.6b) and (2.8) and defining P (x, y) = −γ∇2h + ρ(φ)g⊥h, we have

(2.9) ∇P − zg⊥ρ
′(φ)∇φ = μ(φ)

∂2v

∂z2
+ ρ(φ)g‖.

The boundary conditions of interest are no stress (∂v/∂z = 0) at the free interface
and no slip (v = 0) at the solid interface. Equation (2.9) can now be integrated twice
in z with the constants of integration determined by these conditions, to arrive at the
equation

(2.10) μ(φ)v =

(
hz − z2

2

)
(ρ(φ)g‖ −∇P ) +

1

2
(h2z − z3/3)g⊥∇ρ(φ)

for the volume-averaged velocity. Integrating once more gives the depth-averaged
velocity

(2.11) vav =
h2

3μ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h) − 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

]
.

Modeling the relative velocity due to particle settling turns out to be more dif-
ficult. Recall that in the above lubrication analysis, we have assumed the particles
are evenly distributed across the film depth. This may seem unrealistic because the
normal component of gravity is pulling the particles toward the solid substrate, but
this model is concerned with the particle-rich ridge regime occurring at high angles
and concentrations, in which Zhou et al. found that particles do not settle out of
the flow. A similar effect was also observed in a thin film experiment [54] performed
by Timberlake and Morris with neutrally buoyant particles: they found higher con-
centrations near the free surface, and attributed this to a shear-induced particle flux
such as Leighton and Acrivos describe in [34]. This flux consists of a nonlinear diffu-
sion in the presence of shear, and in inhomogeneous flows an additional migration of
particles away from regions of high shear. Schaflinger, Acrivos, and Zhang, in their
model for film flow [47], balance gravity-driven settling with only the diffusive flux,
and find steady state solutions in which the concentration increases with depth. While
the corresponding problem including both diffusion and migration remains unsolved,
Carpen and Brady found nonmonotone concentration profiles in a model for the re-
lated inclined Poiseuille flow [9] and also showed that these profiles are unstable due
to heavy material suspended above lighter material. Thus it is unclear whether the
actual concentration profile for film flow increases or decreases with depth, so we find
it reasonable to consider the simplest case, a uniform depth profile.

We begin our model of the relative motion with the settling velocity

(2.12) vs =
2a2Δρfg‖

9μf



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHOCK SOLUTIONS FOR PARTICLE-LADEN THIN FILMS 765

of a single sphere of radius a in R
3, while noting that this expression neglects the ef-

fects of the solid boundary, the free surface, and other particles. Equation (2.12) uses
g‖ because particles were not observed to settle vertically in the ridge regime. The
problem of determining settling rates of concentrated mixtures is complex, even in
the idealized case of monodisperse spherical particles in a large domain [11]. Some of
the challenges are summing the interactions between spheres, which decay only as 1/r
in Stokes flows, and interpreting theoretical results that imply divergent fluctuations
about the mean particle velocity [5, 8]. Since there is no general agreement of theo-
retical and numerical results with experiments, sedimentation is commonly modeled
by an empirical hindered settling function,

(2.13) vrel = f(φ)vs,

such as the Richardson–Zaki function (see [46])

(2.14) fRZ(φ) = (1 − φ)n, n ≈ 5.

We also seek a correction to represent the impeding effect of the solid substrate
on particle motion. A similar problem involving a sphere falling next to a vertical
wall has been solved approximately by the method of images [18], leading to the series
solution

(2.15) vrel =

(
1 − 259

256

(a
z

)
+

9

16

(a
z

)
log

(a
z

)
− 1

16

(a
z

)3

+
15

256

(a
z

)4

+ · · ·
)

vs

for the velocity, where z > a is the distance from the center of the particle to the wall.
The important quantity in a lubrication model is the depth-averaged velocity, which

in the case of particle settling can be interpreted as (1/h)
∫ h

a
v(z)dz. Figure 2.2 shows

this average for a range of the nondimensional parameter h/a, along with the simpler
function that we will use to approximate wall effects:

(2.16) w(h) =
A(h/a)2√

1 +
[
A(h/a)2

]2

with A = 1/18. This function has the desired properties w ≈ 0 for h < a, w ≈ 1 for
h � a, and unlike (2.15) is differentiable and positive on (0,∞). We have chosen the
parameter A so that this function resembles (2.15), but since the latter neglects the
net flow and the effects of other particles it should mainly be viewed as a correction
to ensure vrel → 0 for very thin films.

For lack of a comprehensive theory incorporating both wall effects and hindered
settling, we simply assume the effects are multiplicative, obtaining the settling velocity

(2.17) vrel = f(φ)w(h)vs

relative to the fluid which we interpret as a depth average. We assume f refers to
fRZ until section 6, when we consider another settling function. The velocities vrel

in (2.17) and vav in (2.11) complete the one-fluid description (2.3). The evolution
equations

(2.18)
∂h

∂t
+ ∇ · (hvav) = 0,

∂φh

∂t
+ ∇ · (φhvp) = 0
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Fig. 2.2. Our correction representing the impeding effect of the solid boundary on a single
particle’s settling velocity (solid), and the depth average of (2.15) (dashed).

follow from conservation of volume in both the mixture as a whole and, using (2.4),
in the particulate phase. Note that (2.18) differs from the model proposed by Zhou
et al., which incorrectly used conservation of mass. Identifying vav in (2.18) with v
in (2.4) and inserting (2.11) and (2.17) into (2.18) then gives the complete system

∂h

∂t
+ ∇ ·

(
h3

3μ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h) − 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

])
= 0,(2.19a)

∂(φh)

∂t
+ ∇ ·

(
φh3

3μ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h) − 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

]

+ φh(1 − φ)f(φ)w(h)vs

)
= 0.(2.19b)

Next we nondimensionalize the equations for the constant flow rate problem, with
the rescaling used in [3] for a clear fluid. If the upstream gate height h0 represents a
typical film thickness, then the first- and fourth-order terms in (2.19) are comparable
at a length scale x0 = (�2h0)

1/3, where � =
√
γ/ρfg‖ is the capillary length. The

time derivative is on the same scale as well if t ∼ t0 = (3μf/γ)x0�
2/h2

0, and the

corresponding capillary number is Ca ≡ μfx0/γt0 = h2
0/3�

2. Defining h̃ = h/h0,

x̃ = x/x0, t̃ = t/t0, ρ̃(φ) = 1+Δφ, μ̃(φ) = (1−φ/φm)−2, w̃(h̃) = w(h), and dropping
the tildes, and replacing ∇ with ∂/∂x in anticipation of a y-independent solution, we
obtain the dimensionless system

∂h

∂t
+

∂

∂x

(
h3

μ(φ)

[
hxxx −D(θ)

(
(ρ(φ)h)x − 5

8
hρ(φ)x

)
+ ρ(φ)

])
= 0,(2.20a)

∂(φh)

∂t
+

∂

∂x

(
φh3

μ(φ)

[
hxxx −D(θ)

(
(ρ(φ)h)x − 5

8
hρ(φ)x

)
+ ρ(φ)

]

+ vsφh(1 − φ)f(φ)w(h)

)
= 0.(2.20b)
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Note that the inclination angle θ has been scaled out, and now appears only in the
parameter D(θ) = (3Ca)1/3 cot θ measuring the relative importance of the second-
order terms.

Before introducing the boundary conditions, a discussion is necessary of the mi-
croscopic contact-line physics, for which we rely on literature dealing with pure fluids.
It has been shown [14] that the no-slip boundary condition we have employed above
requires infinite viscous energy dissipation in the vicinity of a moving contact line.
This singularity is removed if the fluid-solid boundary condition is modified to allow
finite slip [20], which generally takes the form

(2.21) v|z=0 = b
∂v

∂z

∣∣∣∣
z=0

,

where b is a length on the order of the molecular size. This slip length has been
observed experimentally and is known to be particularly large (on the order of mi-
crons [33]) for polymer liquids such as the PDMS used in [59]. Another technique used
to model the contact line derives from attractive Van der Waals forces between the
fluid and solid, which for many wetting films (again including PDMS on acrylic) causes
a precursor film of microscopic thickness to extend ahead of the apparent contact line
[1, 10]. Modeling this precursor explicitly is a complex thermodynamic problem at a
microscopic length scale; however, it has been shown that the effect of the precursor
on the macroscopic fluid problem can be approximated by incorporating this length
scale into the fluid boundary condition [13]. Models that simply impose a thickness
b for the precursor have been used successfully [3, 55] and been seen to give similar
predictions to the slip model with the same value of b [41, 51]. In both cases b is
difficult to know precisely and is often treated as an unknown parameter. Meaningful
values range from perhaps 100 μm for a prewet surface down to 1 nm for a smooth,
dry surface.

In this work, we choose the precursor model because it preserves the symmetry of
the Riemann problem, discussed in section 3 below, and will present results for a range
of thicknesses. With an inflow at concentration φL and a precursor of nondimensional
thickness b 
 1 and concentration φR, the initial conditions for the constant flow rate
problem are

(2.22) (h, φ)|t=0 =

{
(1, φL) if x < 0,
(b, φR) if x > 0.

In addition to b, φR is also a model parameter not determined by the bulk flow, and
must be specified. The appropriate value of φR may vary: for a prewet surface it
may be equal to φL, while in a microscopic precursor it is probably zero. We mainly
consider φR = φL for definiteness, but also discuss φR = 0.

The large-scale behavior of lubrication equations such as (2.20) is often well
described by the corresponding first-order system, obtained by simply dropping all
higher-order terms. This reduced system,

∂h

∂t
+

∂

∂x

(
h3ρ(φ)/μ(φ)

)
= 0,(2.23a)

∂(φh)

∂t
+

∂

∂x

(
φh3ρ(φ)/μ(φ) + vsφh(1 − φ)f(φ)w(h)

)
= 0,(2.23b)

corresponds to a rescaling of (2.19) with x � x0 and t � t0; however, we study it
below because it allows solutions to be understood as simple shocks and rarefactions,
while retaining the essential convective dynamics.
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Zhou et al. [59] presented numerical evidence that first-order and fourth-order
models agree well for this problem. This agreement is also seen in the homogeneous
case (φ ≡ 0, or φ ≡ φ0 > 0 with a = 0), where (2.23) reduces to (1.1). The Riemann
problem for that equation features simple shock solutions; however, it was first studied
by Huppert with Dirac mass initial data, which leads to rarefaction-shock solutions
(defined in section 3) that compare favorably to a constant-volume experiment [21].
Such correspondence between full and reduced systems is not guaranteed, however:
Bertozzi, Münch, and Shearer [4] studied a variant of (1.1) in which Marangoni forcing
competes with gravity, and they described examples of more complex shock structures
for which the first-order and fourth-order solutions do not agree. Similar lubrication
models have given rise to pairs of equations describing a thin film containing surfactant
[22, 35]. Also related are models for sedimenting mixtures in which the particle
concentration exhibits kinematic shocks [31].

3. The Riemann problem for systems of conservation laws. This section
reviews the theory of systems of nonlinear conservation laws in one dimension, of
which (2.23) is an example. This class contains equations of the form

(3.1a)
∂U

∂t
+

∂

∂x
F (U) = 0, U, F (U) ∈ Ω ⊂ R

n.

Although initial-value problems for (3.1a) are not in general well-posed, there is a
large body of analytical techniques for finding and characterizing solutions when they
exist [32]. The analysis is especially simplified for the Riemann problem, in which the
initial data is a step function

(3.1b) U(x, 0) =

{
UL if x < 0,
UR if x > 0,

such as (2.22) with uniform concentration.
Both the equation and initial data of the Riemann problem can be expressed in

terms of the single variable ξ = x/t, and this symmetry extends to solutions as well.
Imposing this form on the solution reduces the problem to finding a heteroclinic orbit
for the autonomous system

[
J
(
U(ξ)

)
− ξI

]
U̇(ξ) = 0,(3.2a)

U(−∞) = UL, U(+∞) = UR,(3.2b)

where J(U) is the Jacobian derivative of the flux function F . Smooth solutions of
(3.1a), known as rarefactions, are therefore either constant or vary along integral
curves Ri of a Jacobian eigenvector ri. For this reason, most existence results apply
to strictly hyperbolic systems, in which the eigenvalues are real and distinct.

Equation (3.2a) also requires that rarefaction solutions be parametrized by the
corresponding eigenvalue λi, which is possible only if λi is strictly increasing on Ri

between UL and UR. We discuss here the simplified case when F satisfies the genuine
nonlinearity condition, which states that λi varies strictly monotonically along Ri for
all i and Ri; we consider the more general case in the appendix.

In a genuinely nonlinear system, Ri(U) consists of two connected curves R+
i (U) =

{U ′ ∈ Ri(U) | λi(U
′) > λi(U)} and R−

i (U) = {U ′ ∈ Ri(U) | λi(U
′) < λi(U)},

and a connecting orbit exists when UL = U and UR ∈ R+
i (U), or UR = U and

UL ∈ R−
i (U). Consequently smooth solutions do not exist for general data, and

solutions are generally sought from the larger class of weak solutions.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHOCK SOLUTIONS FOR PARTICLE-LADEN THIN FILMS 769

A weak solution to the conservation law (3.1a) is an L∞ function U(x, t) that in
addition to the initial condition satisfies

(3.3)

∫ x2

x1

(
U(x, t2) − U(x, t1)

)
dx +

∫ t2

t1

(
F (U(x2, t)) − F (U(x1, t))

)
dt = 0

for all x2 > x1 and t2 > t1 > 0. This includes all smooth solutions to (3.1a), but also
allows discontinuities along a curve x = st that satisfies the vector Rankine–Hugoniot
condition

(3.4) F (U+) − F (U−) = s
(
U+ − U−),

where U− and U+ are the values of U on either side of the discontinuity. The Hugoniot
locus H(U−) is defined as the set of U+ that satisfy (3.4) for some s. (Note that while
the symmetry of (3.4) implies U2 ∈ H(U1) is equivalent to U1 ∈ H(U2), it does not
follow that H(U1) = H(U2).)

Such weak solutions are not unique, however, and a method must be chosen
to select a single solution. Various criteria, known as entropy conditions, have been
proposed in order to distinguish the shock, or admissible discontinuity, from any other
weak solutions. One condition, the method of viscous profiles, is motivated by the
fact that conservation laws often appear physically as approximations to higher-order
regularized equations such as

(3.5)
∂

∂t
U ε +

∂

∂x
F (U ε) = ε

∂2

∂x2
U ε,

which are well-posed for ε > 0. A solution to (3.1a), according to this method, should
be stable in the sense that it appears as the pointwise limit in x, t of solutions Uε

to (3.5) as ε → 0. This condition has the advantage of a clearly desirable physical
interpretation that assures shock solutions are unique; however, it has the drawback
of being difficult to verify.

A simpler method from the analytical perspective is the Lax entropy condition,
which is equivalent to the viscous profile condition for a certain class of scalar con-
servation laws. This method relies on strict hyperbolicity to index the eigenvalues
λi of J(U) in increasing order for each U . These eigenvalues represent the char-
acteristic speeds at which the equation propagates information, as can be seen in
rarefaction solutions to the Riemann problem in the persistence of the left state UL

for x ≤ λi(UL)t and the right state UR for x ≥ λi(UR)t. The Lax entropy condition
requires the discontinuity to be continually reinforced by conflicting information from
a single characteristic field, i.e., it moves with a speed s that satisfies

(3.6) λi(UL) > s > λi(UR)

for exactly one i. That characteristic is emphasized by calling the discontinuity an
i-shock.

In a neighborhood of any U the Hugoniot locus H(U) consists of two smooth
curves intersecting at U , and the four branches leaving U correspond to the four cases
of 1- or 2-shocks with U as the right or left state. We denote the continuations of these
branches by U+

i if U is the left state and U−
i if U is the right state. The allowable

connections C+
i (UL) = R+

i (UL) ∪ S+
i (UL) through the ith characteristic also locally

form a smooth curve for each i. The variation of an i-shock or i-rarefaction solution
is confined to the interval {ξ : min(λi(UL), λi(UR)) < ξ < max(λi(UL), λi(UR))},
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so compound connections can be generated by stringing together waves of different
characteristics as long as ξ increases with i. In fact, {C+

i }ni=1 locally generate a
smooth coordinate system, so if UR is sufficiently close to UL, the Riemann problem
is well-posed.

Existence of solutions for large data depends on the topology of H(U). A famous
example of a system with no solutions for certain Riemann data is the Keyfitz–Kranzer
equation (5.1) [29], in which H(U) is compact. A bounded Hugoniot locus implies a
bound on the strength of a shock, and consequently some large-data Riemann prob-
lems have no weak solutions. Section 5 describes a theory for such systems relating
the regularized profiles to a Dirac mass; however, this theory is far from complete.

A final complication to the selection of weak solutions is the nature of the reg-
ularization actually present in the physical system. The Lax and Oleinik conditions
are intended to admit those shocks that appear as viscous limits under the simplest
possible regularization. If the actual regularization is different, the viscous profiles
could converge to a weak solution other than that selected by the entropy criteria.
This possibility is indeed relevant to conservation laws describing thin films, which
are generally regularized by nonlinear fourth-order capillary terms such as in (2.20).
In fact, a scalar thin film equation with similar regularization is known to select an
entropy-violating double-shock solution, rather than the single-shock entropy solu-
tion [4].

4. Particular solutions. The system (2.23) is physically meaningful for h > 0
and 0 ≤ φ < φm, or equivalently 0 ≤ v < φmu in terms of the conserved quantities
u ≡ h and v ≡ φh. While the above theory depends on the latter parameterization,
the equations are most simply expressed in terms of the physical variables h and φ,
which we will use to present our results.

As shown in Figure 4.1, the equations using (2.14) are not strictly hyperbolic
near the maximum concentration, where the eigenvalues become complex and the
equations become elliptic. It is not clear whether this feature is desired in a model
of the thin film. Change of type certainly complicates the mathematical question
of well-posedness for such a system, but the parabolic system (2.20) is well-posed
regardless of the first-order approximation. Also models proposed for dry granular
materials result variously in hyperbolic, parabolic, and elliptic equations, so physically
the change of type does not seem altogether unreasonable. Equations (2.23) are also
not genuinely nonlinear on the entire domain; the significance of this is discussed in
the appendix.

Since h has been rescaled to unity and θ appears only in the time scale, solutions
to (2.23), (2.22) depend on φL, φR, b, and a. Although the relative values of φL

and φR appear to be important, we consider only the cases φR = φL and φR = 0,
which are most likely to occur in experiments. The value of φL itself appears to have
only qualitative significance. The particle radius a has two effects: the time scale is
proportional to a2, and the film thickness at which the wall effect cutoff occurs (the
inflection point of w(h)) is proportional to a. The appropriate range for a is fairly
small, however; as for a > 0.2 discrete particle effects may be important, and for
small a the relative velocity vanishes as a2, so we use a = 0.1 for all calculations.
The precursor thickness b is the most important parameter, but before discussing its
effects we describe a typical solution.

We choose (hL, φL) = (1.0, 0.3) as a representative left (upstream) state, and
display in Figure 4.1 the four connection curves (1-shock, 1-rarefaction, 2-shock, 2-
rarefaction) containing points that can be reached directly from this state. The rar-
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Fig. 4.1. The phase space of the reduced model, and the connections from (h0, φ0) = (1.0, 0.3),
�. The system is hyperbolic except in the shaded region. Black lines represent shock connections
and gray represents rarefactions. Solid lines are connections to the right, i.e., the (h0, φ0) is the
left state, and dashed lines are connections to the left. 1-waves and 2-waves can be distinguished
by their slope at (h0, φ0): 2-waves are nearly horizontal at this scale. Except at very small h, the
shocks and rarefactions nearly coincide.

efaction curves have been integrated from (3.2a) by a Runge–Kutta method, and
H(UL) has been calculated by eliminating s from (3.4) at each point and solving the
resulting equations for u and v. For a given shock connection, the shock speed can
be recovered by substituting u and v back into (3.4).

For a specified right state (b, φR) representing the precursor, a solution can be
determined by finding an intersection between the two connection diagrams, since
the intersection represents an intermediate state that connects to both the left and
right boundary conditions through shocks and/or rarefactions. In Figure 4.2 we have
plotted the possible shock-shock connections for four values of b with φR = φL. At
b = 0.1 there is a solution with a 1-shock from the upstream state to an intermediate
height and concentration slightly larger, and a 2-shock from this intermediate state
to the precursor. As the precursor becomes thinner, the height and concentration of
this intermediate state increase. For b = 0.01 the intermediate state is approximately
(h, φ) = (1.1757, 0.3663). In Figure 4.3 we compare this connection with a numerical
solution with the same initial data and find that both shock speeds and the height and
concentration of the ridge are in agreement. The numerical solution was calculated
using the Lax–Friedrichs finite difference method with grid spacing 3.3 × 10−7 and
time step 3.3 × 10−7.

At b = 0.008 the Hugoniot locus has undergone a bifurcation such that the 1- and
2-shock curves are no longer distinct, and an additional connected component has
appeared. Inspection of the shock speed and characteristic speeds along these curves
reveals that various sections correspond to 1-shocks, 2-shocks, or are not admissible
at all. There is still a shock-shock connection for b = 0.008 that satisfies the Lax
entropy condition; however, at b = 0.0015 there are no longer any intersections, and
therefore no solution. We discuss this last case in section 5, and in section 6 describe
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Fig. 4.2. 1-shock connections (solid line) from an upstream state (hL, φL) = (1.0, 0.3) (�) and
1- and 2-shock connections from four precursor states (hR, φR) = (b, 0.3) (�), where b = 0.1 (dot),
0.01 (dash), 0.002 (dot-dash), and 0.0005 (dot-dash-dash). The solutions involve an intermediate
state between the two shocks, marked by ©. As b becomes small, the Hugoniot locus undergoes a
bifurcation and ultimately fails to produce a shock solution.

0.455 0.46
x
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1
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 φ

Fig. 4.3. Film thickness (solid) and concentration (dashed) of a numerical solution of the
conservation laws at t = 1, with (hL, φL) = (1.0, 0.3) and (hR, φR) = (0.01, 0.3). The intermediate
state (between the shocks) is (h, φ) = (1.1757, 0.3663), as calculated in Figure 4.2. The speed of the
(trailing) 1-shock is nearly equal to one of the characteristic speeds, making this shock especially
susceptible to numerical diffusion.

a change to the hindered settling function that ensures a solution does exist.
If the concentration in the precursor is taken to be 0 rather than φL, double-shock

solutions still occur for moderately small b, and again no solution exists for smaller
b. At larger b, another type of solution occurs consisting of a 1-rarefaction and a
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Fig. 4.4. Numerical solution of the conservation laws at t = 1, with (hL, φL) = (1.0, 0.3) and
(hR, φR) = (0.02, 0), corresponding to a 1-rarefaction and 2-shock. While some of the smoothness
is due to numerical diffusivity, the 1-rarefaction can also be distinguished from a 1-shock by the fact
that both h and φ are less than their values on the left.

2-shock, with both h and φ in the intermediate state less than their values at the left.
A numerical solution for this case is shown in Figure 4.4, again computed using the
Lax–Friedrichs method in a moving frame.

As found by Zhou et al., the double-shock solutions agree qualitatively with the
particle-rich ridge seen in experiments. The consistent trend is toward a thicker and
more concentrated ridge as the b becomes smaller, until the solution ceases to exist.
While it is difficult to know what value to use for b for a given experiment, this trend
does indicate that a prewet surface or a more strongly wetting fluid-solid combination
will result in a relatively smaller and less concentrated ridge. Very small values of b
for which there is no solution are harder to interpret, since it is possible that solutions
to the full system (2.20) display behavior that cannot be approximated by first-order
equations. The problem of nonexistence is avoided, however, in the modified equations
introduced below in section 6, which indicate a simple continuation of the trend toward
thicker ridges. In contrast the rarefaction-shock solutions obtained with a fairly thick
and particle-free precursor are unlike anything seen in experiments. These solutions
are characterized by a thinner, particle-depleted region near the contact line which
is created as the advancing film is diluted by the clear fluid in the precursor, and
this effect is enhanced as the resulting drop in viscosity causes the depleted region
to spread downstream. Perhaps this behavior may be observable with a sufficiently
thick and particle-free prewet surface.

5. Singular shocks. The problem of nonexistence due to nontrivial Hugoniot
topology has been studied before, and a weaker form of solution known as a singular
shock has been described. An illustrative example is the Keyfitz–Kranzer equation [29]

(5.1)
∂

∂t

(
u
v

)
+

∂

∂x

(
u2 − v
1
3u

3 − u

)
= 0,

which is everywhere both strictly hyperbolic and genuinely nonlinear, but for all U =
(u, v) the Hugoniot locus is compact, specifically figure-eight shaped. Thus shocks can
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only connect states that are sufficiently close, and certain Riemann problems have no
classical solution.

In [27], Kranzer and Keyfitz present three sequences of functions U ε(ξ = x/t) to
(5.1) that approximately solve (5.1) as ε → 0 but are also singular in this limit. The
first sequence results from an asymptotic expansion of the solution to the regularized
equation

(5.2)
∂U

∂t
+

∂

∂x
F (U) = εt

∂2U

∂x2

in ε, and the second and third are explicitly constructed from C∞ functions and
piecewise constant functions. They introduce a space of measures in which these se-
quences converge to a limit involving Dirac-like masses superimposed on a classical
shock. They also propose overcompression as an admissibility requirement for singu-
lar shocks, i.e., (3.6) must hold for both characteristics; if singular shocks are accepted
under this restriction, (5.1) is well-posed for all Riemann data. However, these con-
clusions are restricted to (5.1). Also, Kranzer and Keyfitz emphasize that while the
limiting measures appear as limits of approximate solutions, no well-defined criterion
has been proposed by which the limits themselves can be called solutions.

Sever discusses the selection mechanism for singular shocks in a more general
context in [48]. For a distribution solution

(5.3) U(x, t) = M(t)δ(x− st) +

{
UL if x < st,
UR if x > st

characterized by a point mass M(t) located at x = st, conservation implies the singular
mass must satisfy

(5.4)
dM

dt
= s(UR − UL) −

[
F (UR) − F (UL)

]
.

Since the speed s is unknown, this is an undetermined system for the n+1 parameters
dM/dt, s. For (5.1), Kranzer and Keyfitz determined unique solutions by requiring
the first component of M to vanish, justified by an argument specific to that system.
Sever writes that this last constraint generally comes from properties of the system
such as symmetry groups or a convex entropy function. The proper constraint for
system (2.23) is not yet apparent.

Equations (2.23) with regularization (3.5) also show behavior consistent with a
singular shock. In order to investigate this, numerical solutions were generated with
a fully implicit centered difference scheme on a moving nonuniform grid. The number
of grid points at each mesh size was fixed; however, every 10 time steps the grids were
rearranged using cubic interpolation as necessary to center the area of maximum
resolution around the singularity. Meanwhile the entire computational domain moved
at a constant speed chosen to approximately match the speed of the discontinuity.
The scaling of the regularized solution satisfies U ε(x, t) = U1(εx, εt), so rather than
take ε → 0 we fixed ε = 1 and evaluated the solution at long times.

Figure 5.1 contains the results of this calculation. Both components of the singular
mass increase linearly in time, as required by (5.4), and the singularity is overcom-
pressive. As the singularity evolves in time the maximum height and concentration
grow, and at t ≈ 3× 108 the concentration exceeds the packing fraction. Clearly this
solution does not describe the physical problem. While the nonlinear fourth-order dif-
fusion in (2.20) may behave differently than the linear second-order diffusion studied
here, possibly resulting in realistic solutions for the full model, the modification to
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Fig. 5.1. Film thickness (top) and particle concentration (bottom), from numerical solutions
of the regularized system (3.5) in the singular shock regime, with b = 0.001, φ0 = 0.3, and ε = 1,
calculated on a grid moving at speed s = 0.45547 and evaluated at times 5 × 107 (solid), 1 × 108

(dot-dash), and 2 × 108 (dot).

the model introduced in section 6 suggests the crucial issue is the high-concentration
physics, rather than any divergence between the first- and fourth-order equations.

6. Alternative settling function. In this section we propose a modification
to the unregularized system (2.23) that prevents the concentration from exceeding
φm. We begin with a heuristic explanation of how (2.14) may be incompatible with
(2.1) in the limit φ → φm. The volume-averaged velocity is controlled by μ(φ)−1,
which vanishes in this limit, while fRZ(φ), and hence the relative flux, is nonzero.
This imposes a forward flux of particles with no net volume flux, requiring fluid
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Fig. 6.1. Two forms of the hindered settling function. The Richardson–Zaki function (solid
line) given by (2.14) vanishes at concentration 1.0; the Buscall et al. function (dashed line) given
by (6.1) vanishes at the packing fraction φm = 0.67.

therefore to move backward. This situation is probably unrealistic, because the limit
μ(φ) → ∞ is intended to model the case when the particles are packed tightly enough
to prevent any shear flow. In that case, it seems more appropriate to model the
particles as an immobile porous medium, with a Darcy’s law flux of pure fluid and
vrel < 0. Incorporating such a transition into the current model presents challenges,
as the particle velocity must be specified relative to the laboratory frame rather than
the fluid, essentially changing to a two-fluid model at high concentrations. A much
simpler alternative is to simply let vrel vanish along with v at φ = φm; this is readily
accomplished by using the hindered settling function proposed by Buscall et al. [7],

(6.1) fB(φ) = (1 − φ/φm)5,

instead of (2.14). The two settling functions are plotted in Figure 6.1.
With this modification, solving the Riemann problem is simplified in two signif-

icant ways: the equations are strictly hyperbolic throughout the relevant domain Ω,
and the bifurcation causing shock solutions to break down does not occur. In Fig-
ure 6.2 we have plotted shock-shock connections for four values of b. These solutions
exist even for very small precursors, so the system appears to be well-posed regardless
of b. Figure 6.3 summarizes the manner in which the type of solution depends on the
settling function and the Riemann data.

In Figures 6.4–6.5, we compare the shock solutions to the two systems and their
dependence on the precursor b. The behavior of the Hugoniot curves in the fRZ(φ)
system, shown in Figure 4.2, implies the intermediate height and concentration ap-
proach a maximum value at a critical precursor thickness b = b∗ ≈ 9 × 10−4, below
which there is no meaningful solution. As b → 0 in the fB(φ) system, the intermediate
height increases apparently without bound and the concentration approaches φm. We
also observed in both limits that the speeds of the 1- and 2-shocks become approx-
imately equal, indicating that the ridge, located between the shocks, is compressed
horizontally while growing vertically.
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Fig. 6.2. Shock connections using the settling function fB(φ) instead of fRZ(φ). The bifurca-
tion that caused some initial data to have no solution no longer occurs. The solid line is the 1-shock
connection from (hL, φL) (�), and the 2-shocks are plotted from various precursors (�) given by
b = 10−1 (dot), 10−2 (short dash), 10−3 (long dash), 10−4 (dot-dash), 10−5 (dot-dot-dash), and
10−6 (dot-dash-dash). Each solution involves an intermediate state marked by ©.
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Fig. 6.3. Type of solution (1-rarefaction and 2-shock, 1-shock and 2-shock, or singular shock)
as determined by b and φL (assuming hL = 1 and either φR = φL or φR = 0) for both hindered
settling functions. Richardson–Zaki settling and φR = φL (upper left), Richardson–Zaki settling
and φR = 0 (lower left), Buscall et al. settling and φR = φL (upper right), Buscall et al. settling
and φR = 0 (lower right).
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Fig. 6.4. Height and concentration of the intermediate state vs. the precursor thickness b.
Squares and circles are the height and concentration of solutions using the hindered settling function
fRZ(φ), triangles and diamonds are the height and concentration of solutions using fB(φ).
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Fig. 6.5. The speed of the shocks that make up the solutions to the connection problem for
various precursors. Squares are solutions using the hindered settling function fRZ(φ), and triangles
with fB(φ).

7. Conclusion. In section 2, we derived a lubrication model for particle-laden
films in the case where particle settling occurs only in the direction of flow. We did not
analyze this fourth-order system, but rather the associated first-order reduced model;
analogies with similar problems suggest this may be a reasonable approximation to the
full system. While establishing correspondence between the reduced and full models
is beyond the scope of this paper, the potential correspondence motivates our main
result, a complete characterization of the first-order problem and a discussion of its
possible connections to experiments.
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The most important parameter in the reduced system is the precursor thickness
b. When b is large enough, this system has a double-shock solution in qualitative
agreement with the experimentally observed particle-rich ridge, while for smaller b,
there is no classical solution. If the concentration in the precursor is the same as in
the upstream source, these are the only two cases; setting the precursor concentration
to zero allows a third possibility of a rarefaction-shock solution that has not been
seen in experiments. We have confirmed the converging shock speeds that Zhou
et al. reported in their preliminary discussion of the double-shock solutions, and we
find that the speeds appear to become equal precisely (at the same value of b) when
the classical shock solution breaks down.

At precursor thicknesses for which classical solutions do not exist, we have in-
vestigated a simple regularization of the equations for which the solution resembles
a singular shock. These solutions are not at all realistic, partly because the growing
delta mass at the shock location means the height is unbounded as t → ∞, and partly
because the close packing concentration φm is eventually exceeded.

A heuristic explanation was offered in section 6 for this exotic behavior: inspecting
the limiting fluxes as φ → φm suggests the relative velocity should also vanish in this
limit. This can be achieved by substituting the hindered settling function (6.1) of
Buscall et al. for that of Richardson and Zaki, and the resulting Riemann problem
appears to be well-posed for all precursor thicknesses. Thus physical arguments and
the expectation of a well-posed first-order system both suggest that functions such as
fB(φ) that vanish at φm are most appropriate for this problem.

Many interesting questions remain unanswered regarding this model. More work
is needed to determine how well the present results concerning the first-order system
(2.23) approximate the full fourth-order system (2.20). Also of interest is the sta-
bility of the two-dimensional model (2.19) with respect to fingering patterns, as the
experiments of Zhou et al. found the instability to be suppressed when a particle-rich
ridge develops [59]. Other questions arise from the limitations of the current model.
Explaining the three distinct settling behaviors observed by Zhou et al. requires a
more general model considering particle settling in the normal direction, perhaps
balanced by a shear-induced particle flux as in [47]. In addition to explaining the
phase diagram, such a model could help determine whether the assumption in the
current model—that particle concentration is constant across the film depth—is real-
istic. Changes to the model may also be needed to describe very high concentrations,
as suggested in section 6, because contact forces between particles can be expected to
become important.

Appendix. Genuine nonlinearity. While most physical systems are strictly
hyperbolic, systems arising naturally are often not genuinely nonlinear. In the Eu-
ler equations of compressible flow, one characteristic field is linearly degenerate:
ri · ∇λi ≡ 0. For this characteristic, Ri(U) and Si(U) coincide and connections
take the form of contact discontinuities, which satisfy (3.4) with the inequalities in
(3.6) replaced by equality. More generally, when the variation of λi along Ri changes
sign, the strict inequality in (3.6) becomes too restrictive and a more general entropy
condition is needed to select which contact discontinuities are admissible solutions.

For a scalar conservation law, genuine nonlinearity is simply the strict convexity
(or concavity) of the flux function F . If the function changes concavity, contact
discontinuities are chosen by the Oleinik condition [43], which states that the shock
speed s(UL, UR) satisfies

(A.1) s(UL, UR) ≤ s(UL, U)
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Fig. A.1. Failure of genuine nonlinearity for (2.23): ∇λ1 ·r1 = 0 on the gray line. Connections
from (hL, φL) = (1.0, 0.3) (�) are plotted on the dashed line, which include shocks up to (h∗, φ∗) ≈
(1.18, 0.369) (�) or a compound shock to (h∗, φ∗) followed by a rarefaction. 2-shocks are plotted from
right states (�) for one case (b = 0.02, dotted line) with a simple 1-shock, 2-shock solution, and
another case (b = 0.002, dashed line) with a compound 1-shock, 1-rarefaction wave and a 2-shock.
The equations are elliptic in the shaded region.

for every U between UL and UR. Liu has generalized the Oleinik condition to 2×2 [36]
and n× n systems [37] by requiring (A.1) to hold for all U ∈ H(UL) between UL and
UR. Both Liu’s and Oleinik’s conditions reduce to (3.6) for a genuinely nonlinear
system. While potentially only a bounded segment of H(UL) could be available for
discontinuous waves, relaxing condition (3.6) provides more solutions by allowing
both continuous and discontinuous waves in the same characteristic. Liu provides an
existence proof by constructing such a compound wave. This connection involves a
shock to the first point U∗ satisfying s(UL, U∗) = λi(U∗), followed by a rarefaction
from U∗ to UR ∈ R+

i (U∗). The point U∗ is both the first local minimum of s along
H(UL), hence the last point for which Liu’s entropy condition is satisfied, and the
first point for which λi ≥ s, necessary for a continuing rarefaction wave.

In (2.23), r1 ·∇λ1 = 0 holds along the curve shown in Figure A.1. For (hL, φL) =
(1, 0.3) the branches S+

1 and R−
1 nearly coincide, so this branch represents to good

approximation the states accessible through a 1-shock, 1-rarefaction compound wave
as well. In Figure A.2 the eigenvalue and shock speed are plotted on this curve as a
function of φ. For φ < φL, both speeds increase away from UL, indicating a simple
rarefaction. With φL < φ∗ ≈ 0.369, the shock speed is strictly decreasing with φ
so the connection is a shock satisfying the Liu–Oleinik condition. This case includes
the solutions described in section 4 for b = 0.1 and b = 0.01. For φ > φ∗ neither
simple wave is feasible, but a contact discontinuity from φL to φ∗ can connect with
a rarefaction from φ∗ to φ because λ1 is now both increasing and greater than the
shock speed.

This compound wave is in practice difficult to distinguish from a simple shock. As
noted above, the states accessible to a compound wave are nearly the same states lying
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φ
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s, λ

Fig. A.2. Rarefaction speeds (dashed line) and shock speeds (solid) for the connections along
the first characteristic from a left state (hL, φL) = (1.0, 0.3) (�) (corresponding to Figure 4.1),
plotted as a function of the concentration φR at the right state. The linear degeneracy curve in
Figure A.1 indicates the location of the minimum characteristic speed. If φR > φ∗ ≈ 0.37 (�), a
single shock solution is not admissible and the solution consists of a hybrid shock-rarefaction wave.

on R1 or S1, so the constant state UI appearing between 1-waves and 2-waves cannot
easily be used to identify the compound wave. Additionally, Figure A.2 demonstrates
that λ1 changes very slowly along its characteristic at intermediate concentrations,
so, for instance, in the presence of numerical diffusion, the rarefaction appears indis-
tinguishable from a shock. Thus although some solutions are necessarily compound
waves, their observable properties (other than failing to satisfy the Lax condition) are
similar to those of a simple shock.
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