
Pattern formation, stability and collapse in 2D
driven particle systems

Maria R. D’Orsogna1, Yao-li Chuang2, Andrea L. Bertozzi1, Lincoln S.
Chayes.1

1 Department of Mathematics, UCLA, Los Angeles, CA 90095
dorsogna@math.ucla.edu

2 Department of Physics, Duke University, Durham, NC 27708

Interacting, multi-robot systems show increasing promise for advances in ex-
ploration and defense applications. Here, we model a non-linear system of
self-propelled individuals interacting via a pairwise attractive and repulsive
potential. Depending on the interaction parameters, the agents may disperse,
accumulate into self-organizing structures such as flocks and vortices, or col-
lapse onto themselves. Borrowing tools from Statistical Mechanics, we discuss
the connections between the H-stable nature of the interaction potential and
resulting aggregating patterns and asymptotic behaviors.

1 Introduction

Designing and controlling robot assemblies to achieve specific collective goals
has drawn considerable interest in recent years [1, 2, 3, 4]. An individual
agent may be programmed to be fully autonomous and independent, but be-
cause of physical and resource constraints, its abilities may be limited. On the
other hand, groups of individuals exchanging information and optimally self-
organizing may have a much broader range of capabilities. Natural examples
of interacting ‘swarms’ abound: fish, birds, bacteria and insects communi-
cate to create complex patters with new and useful group properties [5, 6].
These structures often form without the aid of a leader or of mediating chem-
ical fields and only in response to local interactions. The underlying idea of
robot swarming is to coordinate agent motion in a similar, intelligent manner,
sometimes looking at nature for inspiration [7]. Teams of interacting artificial
agents may someday be routinely used in underwater or space exploration
missions, or for the completion of military and other dangerous tasks, such as
land-mine detection and removal or earthquake recovery [1].

A major issue is the control of swarm size and stability with respect to con-
stituent number. Given N agents that interact through simple rules, how does
the size of the swarm depend on N? Can we design interactions so that swarms
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Fig. 1. H-stable and catastrophic behaviors. The pairwise panels I, II show the
two-body interaction between agents. In both cases a minimum separation distance
exists. If agents are placed on an infinite triangular lattice of spacing d, the overall
energy is minimized in dramatically different ways. For the pairwise I case, in the
large number limit, agents are separated by a finite distance. For the pairwise II
case, the infinite system energy is minimized with lattice constant d → 0. This is
the catastrophic case where agents collapse upon themselves.

are stable as the number of constituents increases so that inter-agent spacings
are fixed without agents collapsing or dispersing as N grows? Obviously the
answer depends on the particular agent-agent interaction. Here, we discuss
stability and pattern formation of a prototypical system of N self-propelled
individuals interacting through pairwise attractive and repulsive potentials.
We have addressed most of these issues in Ref. [8].

2 Stability and Collapse

Many-body, interacting individuals are often encountered in physical systems
at the microscopic scale. Statistical mechanics aims at describing such aggre-
gates in a more macroscopic, ‘thermodynamic’ way [9]. To make the passage
to the macroscopic world meaningful, so that thermodynamics can be fully
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Fig. 2. H-stability phase diagram of the Morse potential (taken from Ref. [8]).
Catastrophic and stable behavior are predicted as a function of the parameter
ratios ` = `r/`a and C = Cr/Ca. Extrema of the potential dmin exist only for
` > max{1, C} and for ` < min{1, C}. In these cases dmin = `r log (`/C)/ (` − 1).
For each region a qualitative pattern outcome is shown. In region V agents disperse
to infinity.

obtained, the pairwise interactions must obey specific requirements. In partic-
ular, for any arbitrarily large number N of agents, if a constant B ≥ 0 exists
such that

∑
i U(xi) ≥ −NB the microscopic agents will not collapse onto

themselves and a typical distance between individuals will be well defined.
This is the fundamental property of H-stability. Systems that do not obey
this constraint are called catastrophic. Upon increasing the number of agents,
the latter will tend to accumulate at the same region in space. For catas-
trophic systems the thermodynamic limit cannot be defined. We will apply
these concepts to our multi-vehicular ensembles.

Mathematically, H-stability translates to many conditions on the pairwise
potential [10, 11]. For example if its spatial integral is negative, the system is
proven to be catastrophic and collapse will occur. An illustration is given in
Fig. 1, where two cases of pairwise potentials and their corresponding many-
body energy on an infinite lattice are shown. The two pairwise curves are
qualitatively similar: both are soft-core, have a minimum and decay to zero
exponentially. The pairwise potential on the right, however, subtends a nega-
tive area, signaling catastrophic behavior. This is seen, for example, as agents
are placed on an infinite triangular lattice of variable lattice constant d. For
the H-stable potential, depicted on the left, a typical spacing emerges that
minimizes the energy: agents assemble at this finite distance even as N →∞.
In particular, the system behaves extensively and agents do not collapse onto
each other. The right panels correspond to the catastrophic regime. Here,
a minimum exists for the two body potential, as seen in the upper figure;
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however, as N → ∞ global energy minimization occurs for inter-agent spac-
ing d = 0. The system will now collapse onto itself in the large agent limit.
Similar trends persist when agents assemble on a square lattice. Other rules
for H-stability are given in D. Ruelle’s book [10]. Lennard-Jones and hard-
core potentials are always stable: for systems interacting according to either,
catastrophic behavior never occurs.

One other requisite for thermodynamic, macroscopic behavior, is that of
temperedness, namely, that the long range attractive part of the potential
should not be too strong. In particular, it can be shown that in d dimensions
the attractive part of the potential should go to zero faster than r−d. Three di-
mensional gravitational interactions scale as r−1: the universe does not obey
the laws of thermodynamics! The same can be said about Coulomb forces
between same charge particles [10, 11]. The generalized Morse potential of
Eqn. 3 decays exponentially, and satisfies the temperedness condition regard-
less of the potential parameters. Macroscopic, extensive behavior therefore
can be violated only in the catastrophic regime.

3 The model

We let the 1 ≤ i ≤ N discrete swarming agents be governed by the following
equations of motion [12, 8]:

dxi

dt
= vi, (1)

mi
dvi

dt
= (α− β|vi|2)vi −∇iU(xi). (2)

The self-accelerating force αvi tends to balance the self-decelerating term
β|vi|2vi, giving individuals the tendency to travel close to the self-propelling
speed |vi| =

√
α/β, a mechanism first introduced by Rayleigh [13, 14]. Note

that the self-propelling mechanism tends to fix the magnitude of the veloc-
ity but not the direction of motion. Two major dynamical outcomes, mostly
dependent on the initial conditions, are then possible: circular motion or a
coherent agent drift. Interactions follow the generalized Morse potential:

U(xi) =
∑
j 6=i

[Cre
−|xi−xj |/`r − Cae−|xi−xj |/`a ], (3)

where `a, `r represent the range of the attractive and repulsive part of the
potential and Ca, Cr are their respective amplitudes. As we shall see, the
existence of a preferred speed coupled with pairwise interactions among agents
leads to interesting aggregation patterns. The potential of Eqn. 3 is used as an
example of soft-core potential; combinations of other attractive and repulsive
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Fig. 3. A ‘Kelly’ vehicle guided by two virtual potentials of the Morse type: one to
guide the vehicle towards a target site, the other to avoid an obstacle. From Ref. [15].

terms lead to collective trends that can be easily understood through this
specific example. For simplicity, we shall only consider a 2D description and
focus here on identical mass agents: mi = m.

Actual realizations of self-propelled vehicles interacting according to vir-
tual Morse potentials have been already introduced in the robotics literature
[1, 15]. For example, in Ref. [15], ‘Kelly’ vehicles were built to be self-propelled
by a set of two fans separated by a variable distance and driven by virtual
attractive and repulsive forces. The equations of motion for speed and an-
gular velocity of the Kellys were directly mapped onto equations similar to
those presented in Eqns. 1-3. In particular, changing the self-propulsion and
the Morse parameters enabled the vehicle to effectively orient itself towards
an attractive target, or to avoid multiple stationary obstacles. Further coop-
erative strategies could also be implemented so that a many-vehicle system
could be used to effectively search more than one location. An example of the
Kelly motion is given in Fig. 3.

In the remainder of this paper we discuss the consequences of decentralized
control of the form presented in Eqns. 1-3 when applied to a large system of
vehicles interacting with each other.

4 Pattern formation

In this section we apply the criteria for H-stability to the Morse potential of
Eqn. 3. The choice of the parameters C ≡ Cr/Ca and ` ≡ `r/`a determines
stable or catastrophic behavior [8], as seen in the phase diagram of Fig. 2. A
similar analysis can be extended to most potentials introduced in the robotics
literature, for example that of Refs. [16, 17], where catastrophic behavior is
seen.
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Fig. 4. Aggregating geometries for different Morse potential parameters and for
N = 100 agents. From left to right: clumps (region I), a ring (region I), a vortex
and a flock (region VII).

By numerically integrating Eqns. 1-3 [18] with free boundaries and ran-
dom initial conditions, we can distinguish different aggregation regimes in the
{C, `} phase space. All are consistent with the stable or catastrophic predic-
tions of Fig. 2. Regions I through IV of the phase diagram define catastrophic
potentials and structures decrease in size as N increases. In Fig. 4 we show
different aggregating patterns. Clumps form whenever the pairwise interac-
tion admits a minimum (region I) and rings occur when that minimum is zero
(region II). In regions III and IV, where the pairwise potential does not allow
for a minimum, clumped rings form (not shown) as a way to minimize the to-
tal energy while keeping a constant speed. Region V corresponds to dispersive
behavior, where the agents occupy the entire volume.

Regions VI and VII are the most interesting of the phase diagram. In the
stable region VI, coherent structures can form only at relatively low values
of α/β, when the kinetic energy of the agents is comparable to the confining
interaction potential. Swarming individuals assemble in a flock or in a disk,
depending on the initial conditions; generally spacings are well defined, the
motion is rigid-body like and the structures are extensive. For the case of
rigid-body motion, the agents do not define a stationary center of mass, but
rather the latter executes a non trivial trajectory. For larger values of α/β,
individuals disperse.

In the catastrophic region VII, in addition to the two extreme behaviors
seen in region VI – rigid-like motion and dispersion at low and high values of
α/β, respectively – rotating vortices may be generated for intermediate values
of α/β. Here, the swarming individuals travel close to the characteristic speed
|vi|2 ∼ α/β and for random initial directions of motion, the center of mass is
fixed. As shown pictorially in the left hand panel of Fig. 5 vortex size decreases
dramatically with agent number. In the right hand side of Fig. 5 we also plot
vortex area scaling with number of constituents N , for various α at fixed β
in the catastrophic regime. Note that as N increases the area dramatically
decreases.
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Fig. 5. Left: Swarms in the catastrophic region VII of Fig. 1. From bottom to top
N = 100, 200, 300. Due to the catastrophic nature of the potential, the vortex area
decreases dramatically with N , and the density increases. The specific potential
parameters are chosen as: Ca = 0.5, Cr = 1, `a = 2, `r = 0.5. The self-propelling
values α and β are set as: α = 1.6 and β = 0.5. Right: Vortex area as a function of
N for various α in log-log scale for the same values of potential parameters. Note
the collapsing trend as N →∞.

In the case of vortex motion, the dynamics of the center of mass, moving
with velocity V, can be obtained by summing Eqn. 2 over all particles i with
|vi|2 = α/β. We obtain:

m
∑

i

v̇i ≡ NmV̇ =
∑

i

∇iU(xi) = 0 (4)

where the latter equality arises from the distance dependence of the potential
in Eq. 3 and the double sum in all pairs {i, j}. Vortices thus are localized in
space, to the contrary of rigid body structures for which the equality |vi|2 =
α/β does not hold.

Structures such as clumps, vortices and rings generally rotate counter-
clockwise or clockwise, depending on the initial conditions. In the catastrophic
regime however, under particular choices of the initial conditions, the two ro-
tational directions may coexist, with a portion of the agents going clockwise
and the rest counterclockwise. This left and right rotational coexistence is not
present in the H-stable regime, where agents must keep a fixed distance from
each other; in the catastrophic regime, on the other hand, it persists over very
large simulation times and can be considered one of its hallmarks.

It is also important to note that the equations of motion giving rise to
patterns of the type shown in Fig. 4 treat all individuals in the same way:
there is no central commander and the motion of each agent depends only
on its position relative to other members of the swarm. Our modeling is thus
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Fig. 6. Catastrophic vortex in the case of variable masses mi, ranging continuously
from 1.0 to 3.5. Only four colors are shown for these mass subgroups: from 1.0 to
1.7 blue; from 1.7 to 2.3 green; from 2.3 to 2.9 yellow; from 2.9 to 3.5 red. The
red agents concentrated on the outer periphery, with higher masses, circulate with
a larger radius. Those in blue are the lightest and describe smaller circles. Similar
patterns arise in the case of uniform masses but variable self accelerations αi or
friction βi. The interaction parameters are the same as in Fig. 5.

consistent with the fact that natural swarming occurs in a ‘democratic’ fashion
with no leader emerging from the aggregate.

5 Variations

In this section we present more complex realizations of the model in Eqns.1-2.
One interesting scenario is the usage of vehicle swarms of different masses
mi. Segregation is likely to occur. For the vortex scenario of region VII, for
instance, all agents i rotate at a constant speed |vi|2 = α/β and experience a
a mass dependent, centripetal force. This force must be balanced by the mass
independent centrifugal term arising from the Morse potential. We obtain:

miα

βri
= |∇iU(xi)|. (5)

In this expression, the first term represents the centripetal force mi |vi|2/ri.
From Eq. 5, it is evident that the quantity mi/ri must be constant: agents with
larger masses segregate and tend to describe larger radii of motion, as seen
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in Fig. 6. Similar arguments can be applied to the case of same-mass agents
when the α parameter is not chosen uniformly for all vehicles, but from a
distribution αi (or equivalently for β). In this case αi/ri is constant and
similarly, agents with larger self-propulsion and faster speeds tend to describe
larger radii of motion. For systems where the self-propulsion is programmed
to be inversely proportional to the mass of the agent, vehicle segregation is
no longer observed, in agreement with Eq. 5.

6 Continuum limit

Numerical simulations of the set of coupled, discrete equations of motion 1-3
are time consuming and generally for the systems shown here, one cannot go
beyond a few thousand of interacting agents. In this section, we briefly outline
the methodology for passing to the continuum limit, where discrete quantities
are replaced by continuously varying fields that can offer insight for the col-
lective behavior of large vehicle numbers. The continuum limit might also be
useful to study systems for which the exact details of individual constituent
motion are not necessary and a macroscopic, statistical picture is more perti-
nent. We coarse grain the equations of motion by following the work of Irving
and Kirkwood [19] who first derived the macroscopic equations of hydrody-
namics for a set of particles in a fluid. The density of the system is defined
as:

ρ(x) =
∑

i

mi〈δ(x− xi)|f〉 (6)

where brackets signify averaging over many configurations in the phase space
defined by the position and momentum of the i particles. The associated phase
space probability distribution is denoted by f . Similarly, the velocity of the
swarm u can be defined as:

ρ(x)u(x) =
∑

i

mi〈vi δ(x− xi)|f〉 (7)

Using these definitions, the dynamics of individual agents, and ensemble av-
eraging, one obtains the following conservation and transport laws [19, 12]:

∂ρ

∂t
+ ∇ · (u ρ) = 0 (8)

∂u
∂t

+ (u ·∇)u = αu− β|u2|u−
∫

ρ(x′) ∇U(x− x′)dx′ (9)
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where U(x − x′) is the two body Morse interaction. The derivation of these
equations relies on the assumption that agents are not intrinsically corre-
lated, so that the pair density ρ(2)(x,x + x′, t) can be written as the product
of mass densities ρ(x, t) ρ(x + x′, t). Furthermore it is assumed that velocity
fluctuations and the energy flux into the system are negligible. In this case,
local deviations of each agent velocity from the macroscopic group velocity
are considered small. These assumptions are peculiar to the swarming system
under consideration, where, for example, interaction terms are much stronger
than statistical fluctuations. On a more fundamental note, the system de-
scribed through Eqns. 1-3 is of a non-conserved type, whereas the standard
Irving-Kirkwood derivation of the hydrodynamics equations assumes strictly
Hamiltonian type forces. Coarse graining these systems depends on the clas-
sical Liouville equation for the time evolution of the position and momentum
phase space density function f . In the present case, where there are dissipative
terms, a strict usage of the Liouville equation is not possible, and a variant is
needed [20].

The continuum model reproduces many features observed in the discrete
case, and the phase diagram behavior anticipated in Fig. 2 is recovered. Coun-
terclockwise and clockwise rotating structures are not observed anymore how-
ever, due to coarse graining. In particular, steady state solutions for flocking
and vortex behavior may be found. In the first case, flocking will arise for
u = α/β ẑ where ẑ is the flock direction and ρ(r) = constant; vortex so-
lutions correspond to u = α/β(− sin θ, cos θ). In this case, the momentum
equation gives an intrinsic formula for the density ρ(r) as follows:

∫ ∞

0

ρ(r′)∇U(r− r′) dr′ = −α

β

r
|r|2

. (10)

This equation can be inverted by going to Fourier space and utilizing the
convolution theorem. In the flocking case, a linear stability analysis around the
uniform solution can be easily performed [20]. In the unstable regime, which
corresponds to the catastrophic regime of potential parameters, perturbations
will lead to the emergence of multiple, smaller rotating vortices, regularly
spaced. We thus expect multiple spirals to arise in the discrete case as well,
in the limit of large agent numbers - larger than the numbers used in the
discrete systems analyzed here. A linear stability analysis can be performed
in the case of vortex solutions as well, although the analysis is more complex.
More details will be presented in Ref. [20].

7 Further work and Conclusions

Many issues still need to be addressed, such as determining typical swarm
scaling as a function of N , both in the stable and catastrophic regimes, as
well as the time required for pattern formation and whether these times can
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be cleverly expedited. In addition, when the interaction parameters are cho-
sen to lie between the H-stable to catastrophic transition the time for pat-
tern formation increases and breathing phenomena occur within the emerging
structures. It would be interesting to characterize these breathing modes. Fur-
thermore, this study is of a deterministic type, but actual implementations of
this model would involve the presence of stochastic terms, due to inevitable
random sources of noise. Another issue of relevance is understanding the ro-
bustness of this multi-vehicular ensemble, both in the stable and catastrophic
regimes, as well as its response to individual failure or in the presence of un-
wanted fields. Delays in communication between agents should be considered
as well.

The goal of this work was to present various phases of aggregation for
agents interacting through a tunable soft-core potential. Under certain condi-
tions catastrophic behavior arises and in the limit of infinite constituents, the
system collapses upon itself. It is easy to avoid such behavior: the insertion
of a short-range infinite hard-core repulsion will make any potential stable.
Collapsing behavior however, in spite of its name, might be quite useful in de-
signing robot interactions: programming a stable to unstable crossover might
lead the robots to change from a dispersive, searching mission to convergence
at a specific site.
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