
Finite-time Blow-up of Solutions of Some
Long-wave Unstable Thin Film Equations

A. L. BERTOZZI AND M. C. PUGH

ABSTRACT. We consider the family of long-wave unstable lu-
brication equations

ht = −(hhxxx)x − (hmhx)x

with m ≥ 3. Given a fixed m ≥ 3, we prove the existence of
a weak solution that becomes singular in finite time. Specifi-
cally, given compactly supported nonnegative initial data with
negative energy, there is a time T∗ < ∞, determined by m
and the H1 norm of the initial data, and a compactly supported
nonnegative weak solution such that lim supt→T∗ ‖h(·, t)‖L∞ =
lim supt→T∗ ‖h(·, t)‖H1 = ∞. We discuss the relevance of these
singular solutions to an earlier conjecture [Comm. Pure. Appl.
Math. 51 (1998), 625-661] on when finite-time singularities are
possible for long-wave unstable lubrication equations.

1. INTRODUCTION

The study of finite-time singularities in nonlinear PDEs is important in problems
ranging from inviscid incompressible fluid flow [15, 30] to concentrations in bac-
terial colonies [14]. A common theme is the role of scaling and self-similarity in
determining the existence and structure of singularities. A classical example that
shows the role of scaling is the semilinear heat equation

ht = ∆h+ hp
and its degenerate generalization

ht = ∆(hm)+ hp.
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A comprehensive discussion of how scaling properties of the equations relate to
singularity formation can be found in [39]. Both equations possess a maximum
principle which helps in proving strong results such as the universality of self-
similar blow-up for the initial value problem.

In contrast, fourth-order analogues of these equations do not possess a maxi-
mum principle. An important class of examples is the Cahn-Hilliard equation and
its brethren; here, like in the above equations, a long-wave instability can couple
with the nonlinearity to yield finite-time blow-up. Hocherman and Rosenau [25]
considered a family that included equations of the form:

ht = −(f (h)hxxx)x − (g(h)hx)x.(1)

This equation is long-wave unstable if f and g are nonnegative: Perturbing around
a positive constant steady state, the fourth-order term is linearly stabilizing and
the second-order term is linearly destabilizing. They were interested in when such
equations admit solutions that blow up in finite time: lim supt→T∗ ‖h(·, t)‖∞ =
∞. They conjectured that the large-y behavior of g(y)/f(y) determines the
presence or absence of a finite-time blow-up:

lim
y→∞

g(y)
f(y)

=


∞ : h→∞ in finite time for some solutions,

finite : marginal case,

0 : globally stable solutions.

Their conjecture addressed a larger class of equations including those of form (1).
Also, their conjecture included both degenerate coefficients (f(y)→ 0 as y → 0)
and nondegenerate coefficients (f(y)→ f(0) > 0 as y → 0).

In a recent paper [13], we considered the possible formation of finite-time
singularities in the subclass of degenerate problems. Such degeneracy can lead to a
nonnegativity principle: Initially nonnegative solutions remain nonnegative. Also,
since equation (1) is in divergence form, the evolution conserves the area of the
solution. The following scaling argument takes into account both this volume
conservation and the nonnegativity of solutions, suggesting a modified conjecture
for the degenerate case.

 L

H

Consider a solution with a height-scale H and length-scale L. Nonnegativity
and volume conservation require that HL ≤ V , where V is the total fluid volume.
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The critical regime for the evolution equation should correspond to a balance
between the nonlinear terms in equation (1)

f(H)H
L4 ∼ g(H)H

L2 ⇒ f(H)
g(H)

∼ L2.

From the volume constraint, this implies H2f(H)/g(H) < V 2. This suggests
that the solution can grow without bound only if limy→∞y2f(y)/g(y) < ∞.
Including the ht term of equation (1) in the scaling argument yields

Ḣ ≤ g(H)H
L2 ∼ g(H)

2

f(H)
H.

This suggests that any blow-up must take infinite time whenever
limy→∞ g(y)2/f(y) = A < ∞ since the solution would then be dominated by
eAt . These scaling arguments led to the following result:

Conjecture. ([13]) Consider the evolution equation

ht = −(f (h)hxxx)x − (g(h)hx)x.

Assume f and g are nonnegative, g(y)/f(y) is bounded as y ↓ 0, and f is degener-
ate: f(y) → 0 as y ↓ 0. Then the large-y behavior of g(y)/(y2f(y)) determines
the presence or absence of blow-up for nonnegative solutions:

lim
y→∞

g(y)
y2f(y)

=


∞ : supercritical: blow-up possible,

finite : critical case,

0 : subcritical: solutions are globally bounded.

If limy→∞ g(y)/
√
f(y) = ∞, then it is possible that the blow-up will occur in finite

time.

For power-law coefficients f(y) = yn and g(y) = ym, the conjecture of
Hocherman and Rosenau suggests that if m > n, then finite-time blow-up is
possible. Our conjecture suggests that if 0 < n ≤ m < n + 2, then nonnegative
solutions are bounded for all time. We proved the uniform boundedness part of
the conjecture for positive smooth solutions for all n and for nonnegative weak
solutions when 0 < n < 3 [13].1 For the supercritical case (m > n + 2), we
provided numerical evidence suggesting finite-time blow-up was possible and that
the conjecture is sharp [13]. The conditionm ≥ n is a ‘well-posedness’ condition

1Their conjecture certainly still stands for equations with nondegenerate fourth-order terms: In fact,
finite-time singularities have been proven to exist for some equations withm = n+ 1 [7, 13].
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that ensures the fourth order diffusion dominates the second order ‘anti-diffusion’
in the limit as h → 0. Heuristically we expect this condition to be necessary for
well-posed dynamics, otherwise the problem behaves like a backward degenerate
diffusion equation near the contact line. Further, we find that the estimates needed
for our existence methods seem to require that the condition m ≥ n hold.

In [13] we state the conjecture for periodic solutions. It is natural to extend
this conjecture (unchanged) to the problem on the line since compactly supported
initial data yield solutions whose support has finite speed of propagation (Theorem
2). Indeed, we use this equivalence between the periodic problem and the problem
on the line to prove existence of compactly supported solutions to the Cauchy
problem. We proved the subcritical part of the conjecture for periodic nonnegative
weak solutions for a subclass of subcritical coefficients f and g. This includes the
case f(y) = y and g(y) = ym withm < 3.

Here, we consider solutions on the line and prove that our conjecture is sharp
for nonnegative solutions of the equation

ht = −(hhxxx)x − (hmhx)x.(2)

Proving the sharpness for solutions on the line involves two steps. First, we prove
that for the subcritical case, uniformly bounded compactly supported nonnegative
weak solutions exist on the line for all time (Proposition 3). Second, we prove that
given any m ≥ 3, there exists a nonnegative compactly supported weak solution
on the line that becomes singular in finite time:

Theorem. Let h0 be nonnegative and compactly supported, h0 ∈ H1(R). If
m ≥ 3 and

E(0) = 1
2

∫∞
−∞
h0

2
x(x)dx −

1
m(m+ 1)

∫∞
−∞
hm+1

0 (x)dx < 0,

then there is a singular time T∗ < ∞ and a compactly supported nonnegative weak
solution in the sense of distributions (5) on [0, T∗) such that

lim sup
t→T∗

‖h(·, t)‖L∞(R) = lim sup
t→T∗

‖h(·, t)‖H1(R) = ∞.

We prove finite-time blow-up for both the critical m = 3 case and for the
supercritical m > 3 case. As we discuss in the conclusions, Section 5, the two
cases have self-similar solutions with markedly different properties, and numeri-
cal simulations of the initial value problem suggest solutions blow up in distinct
manners.

An outline of the proof is as follows:
• Given m ≥ 3 and nonnegative compactly supported initial data h0 sup-

ported in (−a,a), then m, a, and ‖h0‖H1 determine a time of existence,
T0 > 0. There exists a periodic nonnegative weak solution h on [−a,a] ×
[0, T0] (Theorem 1).
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• The time of existence T0 can be taken to depend on m and ‖h0‖H1 only
(equation (40)).

• Given compactly supported initial data, the above solution has finite speed
of propagation of the support. This speed is bounded by a function of
‖h0‖H1 and m. By taking the interval [−a,a] sufficiently large, one can
extend the periodic weak solution to a weak solution on R× [0, T0] (Propo-
sition 2).

• This solution can be continued in time if either the L∞ or the H1 norm of
h at time T0 is finite (Theorem 2). The L∞ norm is continuous in time.

• There is some time T∗, determined by m and ‖h0‖H1 , past which this
solution cannot exist. It then follows that the H1 and L∞ norm of the
solution must have blown up at or before the time T∗ (Theorem 3).

The nonexistence time T∗ follows from a second-moment argument, found for-
mally by Andrew Bernoff [6]. One of our results is that compactly supported
nonnegative weak solutions satisfy the following second-moment inequality:

Lemma. There is a sequence of times 0 < T0 < · · · < Ti < · · · < ∞ such
that the compactly supported nonnegative weak solution satisfies the second-moment
inequality∫∞

−∞
x2h(x, Ti)dx ≤

∫∞
−∞
x2h0(x)dx + 6E(0)Ti

− 2(m− 3)
m(m+ 1)

∫ Ti
0

∫∞
−∞
hm+1(x, t)dx dt,

where

E(t) = 1
2

∫∞
−∞
h2
x(x, t)dx −

1
m(m+ 1)

∫∞
−∞
hm+1(x, t)dx.

It follows immediately that ifm ≥ 3, then at the times Ti∫∞
−∞
x2h(x, Ti)dx ≤

∫∞
−∞
x2h0(x)dx + 6E(0)Ti.

Given initial data h0 for which E(0) < 0, if Ti → ∞ then the right-hand side
would become negative, which is impossible. Therefore Ti → T∗ < ∞. In the
construction, the times Ti are the end-times of intervals of existence: Specifically,
Ti+1 − Ti is an explicit function of the exponent m and the H1 norm of the
solution at time Ti. We prove their having a finite limit implies the constructed
solution must blow up. While the blow-up argument is straightforward, much of
the effort in this article involves proving that the nonnegative compactly supported
weak solution satisfies the above second-moment inequality. Also, we note that the
blow-up result is somewhat striking in that although we do not prove theH1 norm
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of the solution is continuous in time, we prove that it is blowing up at a sequence
of times. The L∞ norm is continuous in time and is also blowing up.

This (constructed) solution lives in a particular regularity class of “strong”
weak solutions (see Section 3). To date, there is no proof of uniqueness of weak
solutions in the regularity class determined by Theorem 2. For this reason, while
we believe this solution cannot be continued as a weak solution past the time T∗,
we cannot exclude the possibility that the same initial data might yield a different
solution that exists beyond the time T∗. Numerical studies of the initial value
problem robustly show finite-time blow-up of the following form: It is focused at
a single point away from the edge of the support. This describes the large-scale
structure of the blow-up for both the critical and super-critical cases; however their
fine structure, such as scaling properties, differ [8].

Using functionals of the solution to prove finite-time blow-up of solutions was
first introduced by Levine [29] in his study of nonlinear wave equations. As he
wrote there, a key aspect was having a system where the energy was unsigned and
contained two terms with opposite sign, one corresponding to potential energy
and the other to kinetic energy. Glassey [21] used a functional involving the
variance of the solution,

∫
x2|h(x, t)|2 dx, to prove blow-up for the nonlinear

Schrödinger equation.

2. BACKGROUND AND PRIOR WORK

Among other places, degenerate fourth-order equations arise in the study of thin
liquid films driven by surface tension. The simplest example is a thin viscous
layer of liquid on a flat surface. The air/liquid interface is at z = h(x,y, t) and
the liquid/solid interface at z = 0. At each point on the air/liquid interface, the
pressure jump is proportional to the curvature of the interface at that point. If one
assumes the flow is uniform in the y-direction, the evolution of the film thickness
can be modeled by

ht = −(f (h)hxxx)x,(3)

where f(h) = h3 + βhn and n > 0 [18, 23, 24, 33]. We refer readers interested
in the physical and mathematical aspects of this and similar equations to review
articles [9, 26, 31, 33].

Since h represents the thickness of the liquid film, it should be a nonnegative
quantity. This makes it important to prove that nonnegative initial data yield
nonnegative solutions; the degeneracy, f(h) → 0 as y → 0, is key in proving this.

A well-known second-order degenerate parabolic equation is the porous med-
ium equation

ht = (Φ(h))xx,
where Φ′(h) > 0 for h > 0, and Φ(h) ∼ hm as h→ 0 withm > 1. This equation
has been studied by a many researchers; we refer the reader to [38] for references.
It enjoys the following properties:
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• instantaneous smoothing of the solution in regions of positive h,
• a maximum principle,
• finite speed of propagation of the support of the solution,
• well-posed weak solutions for smooth nonnegative initial data.

Equation (3), a fourth-order analogue of the porous medium equation, satisfies
some related properties. We address each property in turn.

First of all, the evolution equation is uniformly parabolic where the solution
is bounded away from zero [5]. As a result, the solution is C∞-smooth at points
where it is strictly positive, but can be less regular at the boundary of its support.
Also, if a strictly positive solution becomes zero at some point in finite time, there
must be an accompanying loss of regularity. Indeed, as discussed in [17], given
any equation in flux form ht + (hU)x = 0, if a smooth positive solution becomes
zero at a point in finite time T∗, then

∫ T∗
0
Ux(xmin(t), t)dt = ∞,

where xmin(t) is the position at time t of the local minimum that is touching
down. For ht = −(hhxxx)x this means that at the very least hxxxx would blow
up in finite time. For equation (3) the positive classical solution can then be
continued in time as a nonnegative weak solution [1, 5, 12].

The maximum principle is not satisfied by fourth-order diffusion equations.
For ht = −hxxxx , positive initial data can lead to solutions that change sign.
However, if equation (3) is sufficiently degenerate, then there is a nonnegativity
principle. Specifically, for f(h) = hn with n ≥ 3.5, if the initial condition h0
is positive, then a periodic solution h(x, t) will stay positive [10, for n ≥ 3.5],
[5, for n ≥ 4]. (Numerical simulations of periodic solutions suggest there is a
critical exponent nc ∈ (1,2) such that if n > nc , then initially positive solutions
remain positive [10].) Also, nonnegative initial data yield nonnegative “strong”
weak solutions of equation (3) for 0 < n < 3 [1, 5, 12]. The nonnegativity prin-
ciple is not solely due to the degeneracy; other fourth-order degenerate diffusion
equations have weak solutions that change sign [2].

Another physical property is finite speed of propagation. Compactly sup-
ported initial data should yield a solution whose contact line (where air, liquid,
and solid meet) moves with finite speed. Bernis proved this for 0 < n < 3 in
[3, 4].

Finally, concerning well-posedness, there are simple counter-examples [1] to
uniqueness of solutions. These counter-examples involve solutions like the steady
state h(x) = [(a − x)(x − b)]+ that are not C1 at the contact line. It may be
that solutions are unique within the class of ‘strong solutions’: solutions that are
not classical but are continuous in time and are C1 at the contact line at almost all
times. The weak solution we construct here is such a strong solution.
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In general, the proofs of the above properties rely heavily on energy methods.
The exception is Otto’s work on ht = −(hhxxx)x in which he uses variational
methods [35].

Equation (3) with periodic or zero-flux boundary conditions has very simple
long-time dynamics: Solutions spread and flatten until they become completely
flat [1, 12]. More complex dynamics occur when destabilizing forces are present.
This often enters as a destabilizing second-order term, resulting in equation (1).
Unlike equation (3), whose only periodic steady state is constant, the long-wave
unstable equation (1) can have a variety of nontrivial steady states [28, 32]. Given
a fixed period and volume, there can be both linearly stable and linearly unstable
steady states with that period and volume [27]. Also, as we prove here, in addition
to ever-possible h→ 0 singularities, the long-wave unstable equation (1) can have
h → ∞ in finite time: We believe it is not possible to continue the weak solution
past this time.

3. SHORT-TIME EXISTENCE OF COMPACTLY-SUPPORTED WEAK
SOLUTIONS ON THE LINE

In this section we consider the initial value problem for

ht = −(hhxxx)x − (hmhx)x,(4)

with compactly supported initial data h0 ∈ H1(R). We prove that there exists a
time T0, depending only onm and the H1 norm of the initial data, such that the
initial data h0 yields a weak solution h of (4) in the following sense of distribu-
tions:

(5) −
∫ T0

0

∫∞
−∞
h(x, t)ϕt(x, t)dx dt +

∫∞
−∞
h(x, T0)ϕ(x, T0)dx

−
∫∞
−∞
h0(x)ϕ(x,0)dx

=
∫ T0

0

∫∞
−∞
ϕxxx(x, t)h(x, t)hx(x, t)dx dt

− 1
m+ 1

∫ T0

0

∫∞
−∞
ϕxx(x, t)hm+1(x, t)dx dt

+ 3
2

∫ T0

0

∫∞
−∞
ϕxx(x, t)h2

x(x, t)dx dt

for all compactly supported test functions: ϕ in C∞c (R × [0, T0]). The weak
solution h is in

L2(0, T0;H2(R))∩ L∞(0, T0;H1(R)).

This weak form of the equation is different from those considered in [5, 12, 13]
in that only h and its first spatial derivatives are expressed explicitly in the weak
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form. It bears closest resemblance to the weak forms considered in [12, 13]. The
weak form (5) makes explicit use of the fact that f(h) = h (in (1)) and therefore
f ′′ = 0. Also, the test functions are not required to be zero for times near t = 0;
ϕ(x, t) can be nonzero at both t = 0 and t = T . These differences are crucial for
obtaining the second moment inequality used to prove finite-time blow-up.

We prove existence on the line by first proving existence of a periodic nonneg-
ative weak solution on an interval [−a,a] containing the support of the initial
data (see Section 3.1). The periodic solution exists up to a time T0 determined by
m, the interval length a, and ‖h0‖H1 . We then prove that the support of the solu-
tion has finite speed of propagation, V (see Section 3.3). The speed V is bounded
above by a function of m and the H1 norm of the initial data. This allows us to
choose the interval [−a,a] sufficiently large so that at the time T0, the support of
the solution remains in a compact subset of (−a,a). Hence the periodic solution
can be extended by zero from (−a,a) to R (see Section 3.4).

Notation. Throughout this section, ‖·‖H1 refers the the norm inH1(−a,a).
3.1. Short-time existence of periodic nonnegative weak solutions. We

prove the existence of a nonnegative periodic weak solution by approximating
it with smooth solutions of an approximate equation. For the porous medium
equation, ht = (hmhx)x , m > 0, a natural approximate equation is the uni-
formly parabolic equation hεt = ((hεm+ε)hεx)x . This equation is second-order,
and the maximum principle implies positive initial data yield positive solutions.
A subsequence of these positive approximate solutions will have a nonnegative
ε → 0 limit, which is then proved to be a weak solution of the original equation.
The equation ht = −(hnhxxx)x is a fourth-order equation. Because the max-
imum principle does not apply to strictly parabolic fourth-order equations, the
approximate equation hεt = −((hεn + ε)hεxxx)x can take positive initial data
to solutions that are negative in regions. It is not obvious that the limit of such
solutions would be nonnegative. For this reason and for reasons concerning the
numerical approximation of solutions, we use a degenerate approximate equation,
one that has been chosen so that positive initial data yield positive solutions. These
approximation issues are also relevant for the long-wave unstable equation (1) we
consider here. The regularization we use is a modification of that introduced in
Bernis and Friedman for the purely fourth-order equation [5].

3.2. The approximate problem. We use the approximate problem:

ht = −(fε(hε)hεxxx)x − (gε(hε)hεx)x,(6)

hε(x,0) = hε0(x) = h0(x)+ δ(ε) > 0,

h(·, t) periodic on [−a,a],

where δ(ε) = εϑa−1/2, ϑ < 2
5 , and 0 < ε < 1. The constraint on ϑ is used

to guarantee a ‘zero contact angle’ weak solution in the limit as ε → 0 (see e.g.



1332 A. L. BERTOZZI & M. C. PUGH

[1, 12]). The initial data has been “lifted” so that hε0 is strictly positive. As we
discuss shortly, the dependence of δ(ε) on the interval size a has been chosen so
that the a priori bounds can be taken independent of ε. The coefficients fε and
gε are

fε(y) = y5

εy +y4 and gε(y) =


ym+4

εym +y4 , m < 4,

ym, m ≥ 4.

The regularization fε was introduced in [5] and later used in [1, 12], for equation
(3). As in [13], the second-order term−(hmhx)x must also be regularized because
it enters the equation in a linearly destabilizing manner. Both regularizations leave
the large-y asymptotics unchanged, fε(y) ∼ y , gε(y) ∼ ym, while the small-y
asymptotics are fε(y) ∼ y4, and gε(y) is at least as degenerate as fε(y). This is
the same regularization that is used to prove the existence of nonnegative periodic
weak solutions for the subcritical case (m < n+ 2) of our conjecture [13].

We first prove a priori bounds for smooth periodic solutions of the approxi-
mate problem:

Lemma 1. (A priori H1 bound of approximate solutions) Let hε be a smooth
periodic solution of the approximate problem (6) on [−a,a] withm ≥ 3. Then there
is a constant Ca that depends onm and a such that, on the interval [0, Tmε) with

Tmε := 1
Ca(2m− 1)

min
{
1,
∥∥hε0

∥∥1−2m
H1

}
,

the solution satisfies the bound

∥∥hε(·, t)∥∥2
H1 ≤ y(t) <∞,(7)

where dy/dt = Ca(y3/2 + y(2m+1)/2) and y(0) = ‖hε0‖2
H1 . The solution also

satisfies the bound

∥∥hε(·, t)∥∥2
H1 ≤

∥∥hε0
∥∥2
H1eA(t),(8)

where

A(t) := C
∫ t

0

∥∥hε(·, τ)∥∥L∞ + ∥∥hε(·, τ)∥∥2m−1
L∞ dτ.

The a-dependence of Ca is Ca = C(c∞ + 1/a)2m−1.

Remark. The proof of Lemma 1 holds for m > 1. However, for 1 < m < 3
there is a uniform upper bound on ‖hε(·, t)‖H1 [13]. For this reason, we state
the lemma and its consequences only for m ≥ 3. Also, we note that Ca remains
bounded as a→∞.
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Proof. The H1 norm satisfies

d
dt

(
1
2

∫ a
−a
hε2
x(x, t)dx +

1
2

∫ a
−a
hε2(x, t)dx

)

= −
∫ a
−a
fε(hε(x, t))

(
hεxxx(x, t)

−fε(hε(x, t))− gε(hε(x, t))
2fε(hε(x, t))

hεx(x, t)
)2

dx

+
∫ a
−a

(fε(hε(x, t))+ gε(hε(x, t)))2
4fε(hε(x, t))

hε2
x(x, t)dx

≤
∥∥∥∥∥ (fε(hε(·, t))+ gε(hε(·, t)))24fε(hε(·, t))

∥∥∥∥∥
L∞

∫ a
−a
hε2
x(x, t)dx

≤ C
(∥∥hε(·, t)∥∥L∞ + ∥∥hε(·, t)∥∥2m−1

L∞
)∥∥hε∥∥2

H1(9)

≤ C
(
ca
∥∥hε(·, t)∥∥3

H1 + c2m−1
a

∥∥hε(·, t)∥∥2m+1
H1

)
(10)

≤ Cc2m−1
a

(∥∥hε(·, t)∥∥3
H1 +

∥∥hε(·, t)∥∥2m+1
H1

)
.

At step (9), we use the fact that

(fε(y)+ gε(y))2
4fε(y)

∼ 1
4
y2m−1 for y � 1

and
(fε(y)+ gε(y))2

4fε(y)
→ 1

4
y + 1

2
ym + 1

4
y2m−1 for y ∈ [0,1]

uniformly in ε. It then follows that there is some constant independent of ε such
that

(fε(y)+ gε(y))2
4fε(y)

≤ C(y +y2m−1).

At step (10), we bounded the L∞ norm with the H1 norm:

‖h‖L∞([−a,a]) ≤ ca‖h‖H1([−a,a]) =
(
c∞ + 1

a

)
‖h‖H1([−a,a]).(11)

We take c∞ ≥ 1 so that ca < c2m−1
a in step (10).

From (10), ‖hε(·, t)‖2
H1 is dominated by the solution of

dy
dt
= Ca(y(t)3/2 +y(t)(2m+1)/2),

y(0) =
∥∥hε0

∥∥2
H1 ,
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where Ca = Cc2m−1
a . If y(0) < 1, then there is some time t0 > 0 at which

y(t0) = 1. If y(0) ≥ 1, then take t0 = 0. For t ≥ t0, y(t) is dominated by z(t),
the solution of

dz
dt
= 2Caz(t)(2m+1)/2,

z(t0) = y(t0) = max
{
1,
∥∥hε0

∥∥2
H1

}
.

Solving for z(t),

∥∥hε(·, t)∥∥2
H1 ≤ y(t) ≤ z(t) = [z(t0)(1−2m)/2 − (2m− 1)Ca(t − t0)]2/(1−2m)

for all

t0 ≤ t < t0 +
1

Ca(2m− 1)
min

{
1,
∥∥hε0

∥∥1−2m
H1

} =: t0 + Tmε.

Specifically, ‖hε(·, t)‖H1 is bounded for all 0 ≤ t < Tmε. The second H1 bound
(8) is obtained by integrating inequality (9) in time. ❐

Lemma 1 provides a priori bounds for hε on the time interval [0, Tmε). Our next
goal is to prove that as ε → 0, the approximate solutions hε converge to a weak
solution of the original problem. Because ‖hε0‖H1 → ‖h0‖H1 as ε → 0, it is clear
that there exists an ε0 such that for ε < ε0, all the approximate solutions will be
defined on the time interval [0, T0], where

T0 := 1
2

1
Ca(2m− 1)

min
{
1,
∥∥h0

∥∥1−2m
H1

}
.(12)

This allows us to define our weak solution on the time interval [0, T0]. Clearly,
the larger the H1 norm of h0, the smaller T0 is.

In order to make the a priori bounds of Lemma 1 independent of ε, we need
to remove the ε-dependence of righthand sides of inequalities (7) and (8). This
ε-dependence appears through the presence of ‖hε0‖H1 ; we remove it by proving

∥∥h0
∥∥2
H1 ≤

∥∥hε0
∥∥2
H1 ≤

(‖h0‖H1 +
√

2εϑ0
)2.

The first inequality is trivial. The second inequality follows from the Schwarz
inequality and the specific a-dependence of δ(ε):

∥∥hε0
∥∥2
H1 =

∥∥h0
∥∥2
H1+2δ

∫ a
−a
h0+2aδ2 ≤ (‖h0‖H1+

√
2εϑ

)2 ≤ (‖h0‖H1+
√

2εϑ0
)2.

We now use the a priori H1 bounds to prove further a priori bounds, also
needed to pass to the ε → 0 limit:
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Proposition 1. (Existence of approximate periodic solutions) Let h0 ≥ 0, h0 ∈
H1([−a,a]), T0 as defined in (12), and m ≥ 3. Then the approximate equation
(6) has a unique positive smooth solution hε on the interval [0, T0]. The approximate
solution is positive with pointwise lower bound

0 < Mε(T0,‖h0‖H1) ≤ hε(x, t) t ∈ [0, T0].

Moreover, for all − 1
2 < s < 1, there are constants C and D independent of ε, depen-

dent on a, m, s, T0, and ‖h0‖H1 such that:

∫ T0

0

∫ a
−a

(
hεs/2+1)2

xx(x, t)dx dt ≤ CT0 +D,(13) ∫ T0

0

∫ a
−a

(
hεs/4+1/2)4

x(x, t)dx dt ≤ CT0 +D,(14)

‖hε(·, T0)‖H1 ≤ Fm(T0,‖h0‖H1) < ∞,(15) ∥∥hε(·, T0)
∥∥2
H1 ≤

∥∥hε0
∥∥2
H1eC

∫ T0
0 ‖hε(·,τ)‖L∞+‖hε(·,τ)‖2m−1

L∞ dτ,(16)

Eε(T0) ≤ Eε(0),(17) ∫ T0

0
Eε(t)dt ≤ Eε(0)T0,(18)

where

Eε(t) := 1
2

∫ a
−a
hε2
x(x, t)dx −

∫ a
−a
G̃ε(hε(x, t))dx

with G̃′′ε (y) = gε(y)/fε(y).
Bounds (15) and (16) will be used to permit us to continue the solution in

time. Bounds (17) and (18) will be used to prove the second-moment inequality.

Sketch of proof. The proof follows the arguments of earlier papers, in partic-
ular [1, 5, 12, 13]. Bernis and Friedman [5] proved the short-time existence of a
unique positive smooth solution for the equation hεt = −(fε(hε)hεxxx)x . Their
methods apply here to prove existence of a unique positive smooth solution for
equation (6) on a time interval [0, σ]. Lemma 1 gives an a priori bound of theH1

norm of the solution hε on the parabolic cylinder QT0 . Therefore, the solutions
are a priori C1/2 in space, with a Hölder constant independent of ε. In Appendix
A, we prove that the H1 bound gives an a priori bound on the L2 norm of the flux
on QT0 . This, combined with an argument found in Bernis and Friedman, shows
the solutions are a priori C1/8 in time, with a Hölder constant independent of ε.

To continue the solution to time T0, one uses this a priori Hölder continuity
and an a priori pointwise lower bound that holds up to time T0. The a priori
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pointwise lower bound on [0, T0] is found as follows. Following [5], defineGε(y)
so that G′′ε (y) = 1/fε(y). Since T0 < Tmε, for all t ≤ T0,

d
dt

∫ a
−a
Gε(hε(x, t))dx

= −
∫ a
−a
hε2
xx(x, t)dx +

∫ a
−a
gε(hε(x, t))
fε(hε(x, t))

hε2
x(x, t)dx

≤ −
∫ a
−a
hε2
xx(x, t)dx +

∥∥∥∥∥gε(hε(·, t))fε(hε(·, t))

∥∥∥∥∥
L∞

∫ a
−a
hε2
x(x, t)dx

≤ −
∫ a
−a
hε2
xx(x, t)dx + c(‖hε0‖H1 ,m,T0).(19)

At step (19), we used the a priori H1 bound (7) to find a uniform bound for
‖hε‖H1 on [0, T0]. Integrating,

(20)
∫ a
−a
Gε(hε(x, t))dx

≤
∫ a
−a
Gε(hε0(x))dx + t c(‖hε0‖H1 ,m,T0) ≤ Ct +D,

and

(21)
∫ T0

0

∫ a
−a
hε2
xx(x, t)dx dt

≤
∫ a
−a
Gε(hε0(x))dx + T0C(‖hε0‖H1 ,m,T0) ≤ CT0 +D.

Because hε0 converges strongly to h0 in H1, the constants C and D are indepen-
dent of ε. Because δ(ε) < ε1/2 in (6), there is a uniform-in-ε bound on

∫
Gε(hε0),

and the constant D is finite. Bound (21) is the bound (13) for s = 0.
As in [5], this uniform bound on

∫
Gε(hε), combined with solutions being

C1/2 in space and C1/8 in time, implies an a priori pointwise lower bound for hε
for all t ≤ T0. One can now continue the solution up to time T0, finishing the
existence part of the proof.

We now prove the approximate solution satisfies the bounds (13) and (14).
Following [10], we define Gsε where Gsε

′′(y) = ys/fε(y). The nonlinear energy
satisfies
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d
dt

∫ a
−a
Gsε(hε(x, t))dx(22)

= −s(1− s)
3

∫ a
−a
hεs−2(x, t)hε4

x(x, t)dx

−
∫ a
−a
hεs(x, t)hε2

xx(x, t)dx

+
∫ a
−a
hεs(x, t)

gε(hε(x, t))
fε(hε(x, t))

hε2
x(x, t)dx

≤ −s(1− s)
3

∫ a
−a
hεs−2(x, t)hε4

x(x, t)dx

−
∫ a
−a
hεs(x, t)hε2

xx(x, t)dx

+ C
∥∥hε(·, t)∥∥sL∞(1+ ∥∥hε(·, t)∥∥m−1

L∞
) ∫ a
−a
hε2
x(x, t)dx.

If 0 < s < 1, then

∫ T0

0

∫ a
−a
hεs−2(x, t)hε4

x(x, t)dx dt and
∫ T0

0

∫ a
−a
hεs(x, t)hε2

xx(x, t)dx dt

are bounded above by

c
∫ a
−a
Gsε(hε0(x))dx + T0c(‖hε0‖H1 ,m,T0) ≤ CT0 +D.

The constant D is finite and independent of ε, since δ(ε) < ε2/5 in (6), making∫
Gsε(hε0) finite and bounded independent of ε. Also, C is independent of ε.

We obtain the bounds for − 1
2 < s < 0 as follows. First, note that

1− s
3

∫ a
−a
hεs−2hε4

x dx =
∫ a
−a
hεs−1hε2

xhεxx dx

≤
√∫ a

−a
hεs−2hε2

x dx

√∫ a
−a
hεshε2

xx dx,

hence for s < 1,

∫ a
−a
hεs−2(x, t)hε4

x(x, t)dx ≤
9

(1− s)2
∫ a
−a
hεs(x, t)hε2

xx(x, t)dx.(23)



1338 A. L. BERTOZZI & M. C. PUGH

Using the identity (22), for s < 0

d
dt

∫ a
−a
Gsε(hε(x, t))dx ≤

(
s(s − 1)

3
9

(s − 1)2
− 1

)∫ a
−a
hεs(x, t)hε2

xx(x, t)dx

+
∫ a
−a
hεs(x, t)

gε(hε(x, t))
fε(hε(x, t))

hε2
x(x, t)dx

= 2s + 1
s − 1

∫ a
−a
hεs(x, t)hε2

xx(x, t)dx

+
∫ a
−a
hεs(x, t)

gε(hε(x, t))
fε(hε(x, t))

hε2
x(x, t)dx.

Proceeding as before, for − 1
2 < s < 0

∫ T0

0

∫ a
−a
hεs(x, t)hε2

xx(x, t)dx dt ≤ CT0 +D,

where C and D are independent of ε. The bound (23) then gives an upper bound
independent of ε for

∫ T0

0

∫ a
−a
hεs−2(x, t)hε4

x(x, t)dx dt ≤ CT0 +D.

This bound also holds for the s = 0 case, by combining the bound (21) with (23).
Because hε is smooth, the bounds (13) and (14) follow immediately.

We finish by proving bounds (15-18). Bounds (15) and (16) follow immedi-
ately from Lemma 1. Bounds (17) and (18) follow from identity

(24)
d
dt
Eε(t) = −

∫ a
−a
fε(hε(x, t))

[
hεxxx(x, t)

+ gε(hε(x, t))
fε(hε(x, t))

hεx(x, t)
]2

dx ≤ 0.

We use this identity in Appendix A to prove the flux is in L2(QT0). ❐

The entropies
∫
Gε(hε) and

∫
Gsε(hε) are by now standard in the literature

[1, 5, 11, 12, 13] and the energy Eε(t) is natural as well [13, 16, 22, 34]. In this
sense, Proposition 1 is standard. The only new aspect is choosing δ(ε) to ensure
the a priori bounds depend on the interval size only through ‖h0‖H1(−a,a). For
compactly supported initial data, we will later remove this a-dependence since
‖h0‖H1(−a,a) = ‖h0‖H1(R) for sufficiently large intervals. This will also allow us
to take the a priori bounds (13-18) independent of a.
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3.2.1. The ε → 0 limit. We now prove that the approximate solutions of Proposi-
tion 1 have a subsequence that converges to a nonnegative periodic weak solution
in the sense of distributions:

−
∫ T0

0

∫ a
−a
h(x, t)ϕt(x, t)dx dt +

∫ a
−a
h(x, T0)ϕ(x, T0)dx(25)

−
∫ a
−a
h(x,0)ϕ(x,0)dx

=
∫ T0

0

∫ a
−a
ϕxxx(x, t)h(x, t)hx(x, t)dx dt

− 1
m+ 1

∫ T0

0

∫ a
−a
ϕxx(x, t)hm+1(x, t)dx dt

+ 3
2

∫ T0

0

∫ a
−a
ϕxx(x, t)h2

x(x, t)dx dt.

Theorem 1. (Existence of nonnegative periodic solutions) Let h0 ≥ 0, h0 ∈
H1([−a,a]), and T0 be as defined in (12). Let hε be the approximate solutions of
Proposition 1 on the time interval [0, T0]. Then there exists a subsequence of {hε},
which converges pointwise uniformly on

QT0 = [−a,a]× [0, T0]

and weakly in

L2(0, T0;H2([−a,a]))∩ L∞(0, T0;H1([−a,a]))

to a nonnegative periodic solution, h, in the sense of distributions (25). Furthermore,
h inherits the bounds (13-18) of Proposition 1.

Proof. By the uniform C1/2,1/8 bound on the approximate solutions, we can
apply the Arzela-Ascoli theorem. Hence, the family {hε} has a subsequence that
converges uniformly on QT0 to a limit h.

Taking s = 0 in bound (13), we have that hε is uniformly bounded in
L2(0, T ;H2([−a,a])). Furthermore dhε/dt is uniformly bounded in
H−1([−a,a]) and therefore hε is uniformly bounded in Lip(0, T ;H−1([−a,a])).
The Lions-Aubin lemma applies and we can refine the subsequence so that in
addition to converging pointwise uniformly to h, it also converges strongly in
L2(0, T ;H1([−a,a])). This then implies hεx converges strongly tohx in L2(QT0).

Each approximate solution satisfies equation (2) in the sense of distributions:
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−
∫ T0

0

∫ a
−a
hε(x, t)ϕt(x, t)dx dt

+
∫ a
−a
hε(x, T0)ϕ(x, T0)dx −

∫ a
−a
hε(x,0)ϕ(x,0)dx

=
∫ T0

0

∫ a
−a
ϕxxx(x, t)fε(hε(x, t))hεx(x, t)dx dt

+ 3
2

∫ T0

0

∫ a
−a
ϕxx(x, t)f ′ε(hε(x, t))hε

2
x(x, t)dx dt

+ 1
2

∫ T0

0

∫ a
−a
ϕx(x, t)f ′′ε (hε(x, t))hε

3
x(x, t)dx dt

−
∫ T0

0

∫ a
−a
ϕxx(x, t)g̃ε(hε(x, t))dx dt,

where g̃′ε(y) = gε(y).
We now prove that, as ε → 0, each of the above terms converges to the ap-

propriate term of equation (25). First, the a priori H1 bound, ‖hε(·, t)‖∞ ≤ M,
and the pointwise uniform convergence of hε → h imply that gε(hε) → hm+1/
(m+ 1) and hence∫ T0

0

∫ a
−a
hε(x, t)ϕt(x, t)dx dt →

∫ T0

0

∫ a
−a
h(x, t)ϕt(x, t)dx dt,∫ a

−a
hε(x, T0)ϕ(x, T0)dx →

∫ a
−a
h(x, T0)ϕ(x, T0)dx,∫ a

−a
hε(x,0)ϕ(x,0)dx →

∫ a
−a
h(x,0)ϕ(x,0)dx,

∫ T0

0

∫ a
−a
ϕxx(x, t)g̃ε(hε(x, t))dx dt

→ 1
m+ 1

∫ T0

0

∫ a
−a
ϕxx(x, t)hm+1(x, t)dx dt.

Refining to a subsequence that converges strongly to hx in L2(QT0) and using
that fε(hε) converges uniformly to h (see appendix of [12]), we have

∫ T0

0

∫ a
−a
ϕxxx(x, t)fε(hε(x, t))hεx(x, t)dx dt

→
∫ T0

0

∫ a
−a
ϕxxx(x, t)h(x, t)hx(x, t)dx dt.

We now prove that
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0

∫ a
−a
ϕxx(x, t)f ′ε(hε(x, t))hε

2
x(x, t)dx dt

→
∫ T0

0

∫ a
−a
ϕxx(x, t)h2

x(x, t)dx dt.

First write∫ T0

0

∫ a
−a
ϕxx(x, t)f ′ε(hε(x, t))hε

2
x(x, t)dx dt

=
∫∫
h>µ

ϕxx(x, t)f ′ε(hε(x, t))hε
2
x(x, t)dx dt

+
∫∫
h≤µ

ϕxx(x, t)f ′ε(hε(x, t))hε
2
x(x, t)dx dt = I1 + I2.

Note that

|I2| ≤ C
∥∥f ′ε(hε)hε(2−s)/2∥∥L2({h<µ})

∥∥(hεs/4+1/2)x
∥∥2
L4(QT0 )

≤ C
∥∥f ′ε(hε)hε(2−s)/2∥∥L2({h<µ})

for any − 1
2 < s < 1. Taking s = − 2

5 , as ε → 0, f ′ε(y)y6/5 converges uniformly to
y6/5 on [0, µ] by [12, Lemma A.5]. Therefore ‖f ′ε(hε)hε6/5‖L2({h<µ}) ≤ Cµ6/5,
and taking µ → 0 yields I2 → 0, as desired.

We now turn to I1, the integral over {h > µ}. By uniform parabolicity,
hεx → hx pointwise uniformly on the set {h > µ} as ε → 0. Also f ′(hε) → 1 on
{h > µ}. It follows that, as ε → 0,

I1 →
∫∫
h>µ

ϕxx(x, t)h2
x(x, t)dx dt.

To take µ → 0, we first introduce the set

P = QT − {{h = 0} ∪ {t = 0}}.

We see that
I1 →

∫∫
P
ϕxx(x, t)h2

x(x, t)dx dt

after taking µ to zero. It remains to prove that∫∫
P
ϕxx(x, t)h2

x(x, t)dx dt =
∫ T0

0

∫ a
−a
ϕxx(x, t)h2

x(x, t)dx dt.

Proving this equality involves a new argument, not used in previous articles on
these equations. First, for 0 < t ≤ T0, we define time-slices of P:

Pt := {x | h(x, t) > 0} ⊂ [−a,a].
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P is a measurable set, hx is jointly measurable in x and t (since hx ∈ L2(QT0)),
and χPϕxxh2

x ∈ L1(QT0), allowing us to use Fubini’s theorem to verify the sec-
ond equality:∫∫

P
ϕxx(x, t)h2

x(x, t)dx dt =
∫∫
QT0

χP(x, t)ϕxx(x, t)h
2
x(x, t)dx dt

=
∫ T0

0

∫ a
−a
χPt (x)ϕxx(x, t)h

2
x(x, t)dx dt.

Here χP is the characteristic function of P ⊂ QT0 and χPt is the characteristic
function of Pt ⊂ [−a,a]. In the above, we used that h0 ∈ H1([−a,a]), making
the integrand finite at t = 0. This allows us to extend the integral from P to
QT − {h = 0}, as desired.

Now, we use the following lemma from Gilbarg & Trudinger [20, page 152]:

Lemma 7.7. Let h ∈ W 1(Ω) (i.e., h has a weak derivative.) Then Dh = 0
almost everywhere on any set where h is constant.

Recalling that h ≥ 0, we apply the lemma to the set where h = 0. Therefore∫ a
−a
χPt (x)ϕxx(x, t)hx(x, t)dx =

∫ a
−a
ϕxx(x, t)hx(x, t)dx.

Integrating in time yields the desired result:∫∫
P
ϕxx(x, t)h2

x(x, t)dx dt =
∫ T0

0

∫ a
−a
χPt (x)ϕxx(x, t)h

2
x(x, t)dx dt

=
∫ T0

0

∫ a
−a
ϕxx(x, t)h2

x(x, t)dx dt.

Finally, we show that
∫∫
ϕxf ′′ε (hε)hε

3
x converges to zero as ε → 0. This step

is special to the case f(h) = h in (1). First,

I =
∫∫
ϕx(x, t)f ′′ε (hε(x, t))hε

3
x(x, t)dx dt

=
(

12
5

)3 ∫∫
ϕx(x, t)f ′′ε (hε(x, t))hε

7/4(x, t)(hε5/12)3x(x, t)dx dt.

Thus |I| is bounded by(
12
5

)3 ∥∥f ′′ε (hε)hε7/4∥∥
L∞
∥∥(hε5/12)x

∥∥3
L4

∥∥ϕx∥∥L4 .

In Appendix B, we prove that ‖f ′′ε (hε)hε7/4‖ ≤ Cε1/4 for some constant C.
Again taking s = − 1

3 in (14), ‖(hε5/12)x‖L4 is uniformly bounded. Because ϕ is
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a smooth test function, ‖ϕx‖L4 is bounded. It follows that
∫∫
ϕxf ′′ε (hε)hε

3
x → 0

as ε → 0.
This proves that h satisfies the PDE in the sense of distributions (5).
For a fixed − 1

2 < s < 0, one can take a further refinement of the subsequence
{hε} to ensure that the limiting function h inherits the bounds (13-14) for that
value of s. A final refinement of the subsequence ensures the limiting function
also inherits the bound (15). Then, this bound and uniform convergence of hε
guarantees the remaining bounds (16-18). ❐

3.3. Finite speed of propagation for periodic nonnegative weak solu-
tions. Following Bernis [3], we say that a solution has finite speed of propagation
if it satisfies the following.

Definition 1. Let h : [−a,a]×[0, T0]→ R be a function such that h(·,0) =
h0 in (−a,a) with h0 = 0 in some nonempty open subset ω = (b − r0, b + r0)
of (−a,a). The solution has finite speed of propagation if for each such subset
ω, there exists a time T∗ > 0 and two continuous functions on (0, T∗) such that
b−(t) < b+(t), b−(0) = b−r0, b+(0) = b+r0, and h(·, t) ≡ 0 in (b−(t), b+(t))
for all t ∈ (0, T∗).

For each initially “dry” regionω there will be a time T∗ for which the region
must persist (although it may shrink). As one would expect, the time T∗ is such
that the smaller the initial diameter, 2r0, the shorter the guaranteed time of per-
sistence T∗. For our purposes, we are interested in the diameter of the support,
as opposed to internal dry regions. We define the leftmost and rightmost contact
lines as follows:

Definition 2. For each t ∈ [0, T0], we define

ζL(t) =
inf{x ∈ supp{h(·, t)} | x ≥ −a}, if the set is nonempty,

−a otherwise.

We similarly define

ζR(t) =
sup{x ∈ supp{h(·, t)} | x ≤ a}, if the set is nonempty,

a otherwise.

We prove the following proposition for finite speed of propagation:

Proposition 2. Assume h0 is nonnegative, h0 ∈ H1(R), and supp{h0} ⊂
(−a0, a0), where a0 < a. Then the solution h of Theorem 1 has finite speed of
propagation as defined above. Furthermore, let s ∈ (− 1

2 ,1), s ≠ 0. Then there exists
a diameter a∗ = a∗(s,ϕ1,m,h0, a0, T0) such that, if the domain (−a,a) is chosen
with a ≥ a∗, then

−a < ζL(T), ζR(T) < a, for all T ∈ [0, T0].
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The diameter ax depends on a fixed test function, ϕ1, which we describe below. Fur-
thermore,

ζR(T)− ζR(0) ≤ A0Tα
(∫ T

0

∫ a
ζR(0)

(h(s+2)/2)2xx dx dt
)β
,

where A0 is a positive constant depending only on s,m, h0, T0, and ϕ1 and

α = 1+ s
5+ 4s

, β = 1
5+ 4s

.

The leftmost contact line satisfies an analogous bound.

We present the proof in Appendix C. The proof follows directly from the
methods of Bernis [3]. The proof uses local energy methods. This involves intro-
ducing a cut-off function to localize the energy and then controlling the evolution
of this localized energy. We take the cut-off function, ξ = ϕ4

r , where

ϕr(x) = rϕ1

(
x
r

)
, r ≤ a, ϕ1 ≥ 0,(26)

supp{ϕ1} = (−1,1), ϕ1 ∈ Cc(R)∩ C2((−1,1)).

We now prove an analogue of Lemma 4.5 in [3]. This is the key lemma in
proving the finite speed of propagation. It is here that we control the extra terms
that arise from the second-order term in the evolution equation (Bernis considered
ht = −(f (h)hxxx)x .)

Lemma 2. Let ξ be as in (26) and assume − 1
2 < s < 1, s ≠ 0. Then there exist

constants C, A1, and A2 dependent on s, ϕ1, h0, T0, and m, independent of a and
ε, such that for all T ≤ T0

(27)
1

s(s + 1)

∫ a
−a
ϕ4
rh
s+1(x, T)dx +A1

∫ T
0

∫ a
−a
ϕ4
r (h

(s+2)/2)2xx dx dt

≤ eCs(s+1)T 1
s(s + 1)

∫ a
−a
ϕ4
rh
s+1
0 (x)dx +A2

∫ T
0

∫ r
−r
hs+2 dxdt.

In fact, the lemma does not need that supp{ϕr} = (−r , r). The proof applies
for any ϕr that satisfies (26) with supp{ϕr} ⊂ (−a,a). The only change is that
the upper bound in Lemma 2 would have an integral over QT ∩ supp{ϕr}.

The proof uses the following local calculus inequalities [3].

Lemma. Let s ∈ R, s ≠ 1, and let v and ξ be real-valued functions on
[−a,a] such that v ∈ H2(−a,a), v > 0, ξ ∈ C1([−a,a]), and ξ ≥ 0. Assume
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that v(−a) = v(a), vx(−a) = vx(a), and ξ(−a) = ξ(a). Then

∫ a
−a
ξ(x)vs−2(x)v4

x(x)dx ≤
9

(1− s)2
∫ a
−a
ξ(x)vs(x)v2

xx(x)dx

+ 2
1− s

∫ a
−a
ξ′(x)vs−1(x)v3

x(x)dx.

Lemma. Under the above hypotheses, if in addition s ≤ 0, then

∫ a
−a
ξ(x)vs(x)v2

xx(x)dx +
s(1− s)

3

∫ a
−a
ξ(x)vs−2(x)v4

x(x)dx

≥ 2s + 1
1− s

∫ a
−a
ξ(x)vs(x)v2

xx(x)dx +
2
3
s
∫ a
−a
ξ′(x)vs−1(x)v3

x(x)dx.

Proof of Lemma 2. We consider a localized energy:2

d
dt

∫ a
−a
ξ(x)Gsε(hε(x, t))dx

= −
∫ a
−a
ξ′(x)Gsε

′(hε(x, t))f ′ε(hε(x, t))hεx(x, t)hεxx(x, t)dx

− 2
∫ a
−a
ξ′(x)hεs(x, t)hεx(x, t)hεxx(x, t)dx

+ s(s − 1)
3

∫ a
−a
ξ(x)hεs−2(x, t)hε4

x(x, t)dx

+ s
3

∫ a
−a
ξ′(x)hεs−1(x, t)hε3

x(x, t)dx

−
∫ a
−a
ξ′′(x)Gsε

′(hε(x, t))fε(hε(x, t))hεxx(x, t)dx

−
∫ a
−a
ξ(x)hεs(x, t)hε2

xx(x, t)dx

+
∫ a
−a
ξ(x)hεs(x, t)

gε(hε(x, t))
fε(hε(x, t))

hε2
x(x, t)dx

+
∫ a
−a
ξ′(x)Gsε

′(hε(x, t))gε(hε(x, t))hεx(x, t)dx.

2The second-to-last term above differs from the second-to-last term in inequality (3.19) in an earlier
article of ours [13]: that article has a misprint.
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Using the definitions of gε, fε, and Gsε, one can find a constant C, depending only
on s, such that

|Gsε′(y)fε(y)| ≤ Cy1+s ,
∣∣∣Gsε′(y)f ′ε(y)∣∣∣ ≤ Cys,(28)

|Gsε′(y)gε(y)| ≤ Cys+1(1+ym−1),

∣∣∣∣∣gε(y)fε(y)

∣∣∣∣∣ ≤ C(1+ym−1).(29)

As in Bernis [3], one uses the bounds (28)-(29) and calculus inequalities to
find for any t ≤ T0

d
dt

∫ a
−a
ξ(x)Gsε(hε(x, t))dx + c1

∫ a
−a
ξ(x)hεs(x, t)hε2

xx(x, t)dx(30)

+ c2

∫ a
−a
ξ(x)hεs−2(x, t)hε4

x(x, t)dx

≤ C
[∫ a
−a

∣∣ξ′′(x)hεs+1(x, t)hεxx(x, t)
∣∣dx

+
∫ a
−a

∣∣ξ′(x)hεs−1(x, t)hε3
x(x, t)

∣∣dx
+
∫ a
−a

∣∣ξ′(x)hεs(x, t)hεx(x, t)hεxx(x, t)∣∣dx
+
∫ a
−a

∣∣ξ′(x)hεs+1(x, t)(1+ hεm−1(x, t))hεx(x, t)
∣∣dx

+
∫ a
−a

∣∣ξ(x)hεs(x, t)(1+ hεm−1(x, t))hε2
x(x, t)

∣∣dx].
The constants c1, c2, and C depend on s only.

From (26), there are constants a1 and a2 depending only on ϕ1 such that

|ξ′(x)| ≤ a1ϕ3
r (x), |ξ′′(x)| ≤ a2ϕ2

r (x).

We now bound each of the terms on the right-hand side of inequality (30). For
example, the third term can be bounded as follows:

∫ a
−a
|ξ′(x)hεs(x, t)hεx(x, t)hεxx(x, t)|dx

≤ a1

∫ a
−a
ϕ3
r (x)hε

s(x, t)|hεx(x, t)hεxx(x, t)|dx

≤ a1

√∫ a
−a
ϕ4
rhεshε2

xx dx
4

√∫ a
−a
ϕ4
rhεs−2hε4

x dx
4

√∫ r
−r
hεs+2 dx

≤ δ
∫ a
−a
ϕ4
rhε

shε2
xx dx + δ

∫ a
−a
ϕ4
rhε

s−2hε4
x dx + Cδ

∫ r
−r
hεs+2 dx.
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In the second step, we used the Schwarz inequality twice and the fact that
supp{ϕr} = (−r , r). In the third step, we used the Young inequality twice. As in
Bernis [3], the first and second terms can be bounded similarly. We now turn to
the fourth and fifth terms; the terms that arise from the second-order term in the
evolution equation. The fourth term is bounded by

a1

∫ a
−a
ϕ3
rhε

s+1(1+ hεm−1)|hεx|dx(31)

≤ C(m,h0, T0)
∫ a
−a
ϕ3
rhε

s+1|hεx|dx

≤ C(m,h0, T0)
(∫ a

−a
ϕ4
rhε

s−2hε4
x dx

)1/4(∫ a
−a
ϕ8/3
r hεs+2 dx

)3/4
(32)

≤ δ
∫ a
−a
ϕ4
rhε

s−2hε4
x dx + C(δ,m,h0, T0)

∫ a
−a
ϕ8/3
r hε

s+2 dx(33)

≤ δ
∫ a
−a
ϕ4
rhε

s−2hε4
x dx(34)

+ C(δ,m,h0, T0)
(∫ a

−a
ϕ4
rhε

s+1 dx
)2/3(∫ r

−r
hεs+4 dx

)1/3

≤ δ
∫ a
−a
ϕ4
rhε

s−2hε4
x dx + C(δ,m,h0, T0)

∫ a
−a
ϕ4
rhε

s+1 dx(35)

+ C(δ,m,h0, T0)
∫ r
−r
hεs+2 dx.

At step (31), we used m > 1 and the a priori bound on ‖hε‖∞ of Lemma 1. At
step (32), we used Hölder’s inequality with p = 4 and q = 4

3 . At step (33), we
used Young’s inequality. At step (34) we used Hölder’s inequality with p = 3/2
and q = 3. At step (35) we used Young’s inequality and the a priori bound on
‖hε‖∞.

The fifth term is bounded by

∫ a
−a
ϕ4
rhε

s(1+ hεm−1)hε2
x dx(36)

≤ C(m,h0, T0)
∫ a
−a
ϕ4
rhε

shε2
x dx

≤ C(m,h0, T0)

√∫ a
−a
ϕ4
rhεs−2hε4

x dx

√∫ a
−a
ϕ4
rhεs+2 dx(37)

≤ δ
∫ a
−a
ϕ4
rhε

s−2hε4
x dx + C(δ,m,h0, T0)

∫ a
−a
ϕ4
rhε

s+2 dx(38)

≤ δ
∫ a
−a
ϕ4
rhε

s−2hε4
x dx + C(δ,m,h0, T0)

∫ a
−a
ϕ4
rhε

s+1 dx.(39)



1348 A. L. BERTOZZI & M. C. PUGH

At step (36) we used m > 1 and the a priori bound on ‖hε‖∞. At step (37) we
used Schwarz’s inequality. At step (38) we used Young’s inequality. At step (39)
we used the a priori bound on ‖hε‖∞.

Combining these bounds, and taking δ small, the bound (30) becomes

d
dt

∫ a
−a
ϕ4
r (x)G

s
ε(hε(x, t))dx + c1

∫ a
−a
ϕ4
r (x)hε

s(x, t)hε2
xx(x, t)dx

+ c2

∫ a
−a
ϕ4
r (x)hε

s−2(x, t)hε4
x(x, t)dx

≤ C1

∫ r
−r
hεs+2(x, t)dx + C2

∫ a
−a
ϕ4
r (x)hε

s+1(x, t)dx.

The constants c1, c2, C1, and C2 depend on s, ϕ1,m, h0, and T0 only. Using the
chain rule,

d
dt

∫ a
−a
ϕ4
r (x)Gsε(hε(x, t))dx + c

∫ a
−a
ϕ4
r (x)(hε

(s+2)/2)2xx dx

≤ C
∫ r
−r
hεs+2 dx + C

∫ a
−a
ϕ4
rhε

s+1 dx,

where c and C depend on s, ϕ1,m, h0, and T0 only. We subtract D
∫
ϕ4
rGsε(hε)

from both sides of the inequality, where D is a constant yet to be specified. Inte-
grating,

∫ a
−a
ϕ4
rG

s
ε(hε(x, T2))dx − eD(T2−T1)

∫ a
−a
ϕ4
rG

s
ε(hε(x, T1))dx

≤ −c
∫ T2

T1

∫ a
−a
eD(T2−t)ϕ4

r (hε
(s+2)/2)2xx dx dt + C

∫ T2

T1

∫ r
−r
eD(T2−t)hεs+2 dxdt

+
∫ T2

T1

∫ a
−a
eD(T2−t)ϕ4

r (Chε
s+1 −DGsε(hε))dx dt.

We now pass to the limit in ε,

1
s(s + 1)

∫ a
−a
ϕ4
rh
s+1(x, T2)dx − eD(T2−T1) 1

s(s + 1)

∫ a
−a
ϕ4
rh
s+1(x, T1)dx

≤ −c
∫ T2

T1

∫ a
−a
eD(T2−t)ϕ4

r (h
(s+2)/2)2xx dx dt + C

∫ T2

T1

∫ r
−r
eD(T2−t)hs+2 dx dt

+
∫ T2

T1

∫ a
−a
eD(T2−t)ϕ4

r

(
C −D 1

s(s + 1)

)
hs+1 dxdt.
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Taking D = Cs(s + 1),

1
s(s + 1)

∫ a
−a
ϕ4
rh
s+1(x, T2)dx−eCs(s+1)(T2−T1) 1

s(s + 1)

∫ a
−a
ϕ4
rh
s+1(x, T1)dx

≤ −c
∫ T2

T1

∫ a
−a
eCs(s+1)(T2−t)ϕ4

r (h
(s+2)/2)2xx dx dt

+ C
∫ T2

T1

∫ r
−r
eCs(s+1)(T2−t)hs+2 dxdt.

The sign of the exponents can be either positive or negative. If − 1
2 < s < 0, then

1
s(s + 1)

∫ a
−a
ϕ4
rh
s+1(x, T2)dx−eCs(s+1)(T2−T1) 1

s(s + 1)

∫ a
−a
ϕ4
rh
s+1(x, T1)dx

≤ −ceCs(s+1)T0

∫ T2

T1

∫ a
−a
ϕ4
r (h

(s+2)/2)2xx dx dt + C
∫ T2

T1

∫ r
−r
hs+2 dxdt.

If 0 < s < 1, then

1
s(s + 1)

∫ a
−a
ϕ4
rh
s+1(x, T2)dx−eCs(s+1)(T2−T1) 1

s(s + 1)

∫ a
−a
ϕ4
rh
s+1(x, T1)dx

≤ −c
∫ T2

T1

∫ a
−a
ϕ4
r (h(s+2)/2)2xx dx dt + CeCs(s+1)T0

∫ T2

T1

∫ r
−r
hs+2 dxdt.

In both cases,

1
s(s + 1)

∫ a
−a
ϕ4
rhs+1(x, T2)dx +A1

∫ T2

T1

∫ a
−a
ϕ4
r (h(s+2)/2)2xx dx dt

≤ eCs(s+1)(T2−T1) 1
s(s + 1)

∫ a
−a
ϕ4
rhs+1(x, T1)dx +A2

∫ T2

T1

∫ r
−r
hs+2 dx dt,

where A1 and A2 depend on s, ϕ1, m, h0, and T0 only. Taking T1 = 0 and
T2 = T finishes the proof. ❐

Given Lemma 2, the proof of Proposition 2 follows the methods of Bernis [3].
For completeness, we present the proof in Appendix C.

3.4. Compactly supported weak solutions on the line.

Theorem 2. (Nonnegative compactly supported weak solutions on the line) Let
h0 ≥ 0, h0 compactly supported, and h0 ∈ H1(R). Let m ≥ 3. The exponent m
and ‖h0‖H1(R) determine a time of existence:

T0 := 1
4

1
C∞(2m− 1)

min
{
1,
∥∥h0

∥∥1−2m
H1(R)

}
,(40)



1350 A. L. BERTOZZI & M. C. PUGH

where C∞ = Cc2m−1∞ and C and c∞ are defined in Lemma 1 and its proof. They are
independent of ‖h0‖H1 .

Then there exists a nonnegative weak solution in the sense of distributions (5).
Moreover, for all − 1

2 < s < 1, there are constants C and D determined by m, s, T0,
and ‖h0‖H1 such that:

∫ T0

0

∫∞
−∞
(hs/2+1)2xx(x, t)dx dt ≤ CT0 +D,∫ T0

0

∫∞
−∞
(hs/4+1/2)4x(x, t)dx dt ≤ CT0 +D,

‖h(·, T0)‖H1 ≤ Fm(T0,‖h0‖H1) <∞,(41) ∥∥h(·, T0)
∥∥2
H1 ≤

∥∥h0
∥∥2
H1eC

∫ T0
0 ‖h(·,s)‖L∞+‖h(·,s)‖2m−1

L∞ ds,(42)

E(T0) ≤ E(0),(43) ∫ T0

0
E(t)dt ≤ E(0)T0,(44)

where

E(t) := 1
2

∫∞
−∞
h2
x(x, t)dx −

1
m(m+ 1)

∫∞
−∞
hm+1(x, t)dx.

Furthermore, the solution satisfies the second moment inequality

∫∞
−∞
x2h(x, T0)dx ≤

∫∞
−∞
x2h0(x)dx + 6T0E(0).(45)

Proof. Given the initial data h0, definition (12) gives a time of existence for a
nonnegative periodic weak solution

T̃0(a) = 1
2

1
Ca(2m− 1)

min
{
1,
∥∥h0

∥∥1−2m
H1(−a,a)

}
.

This time depends on the H1(−a,a) norm of the initial data and on the interval
size; we have made this dependence explicit above.

First, since h0 is compactly supported, we choose the interval sufficiently large
to contain its support: supp{h0} ⊂ (−a,a). Then

‖h0‖H1(−a,a) = ‖h0‖H1(R) ⇒ T̃0(a) =
1
2

1
Ca(2m− 1)

min
{
1,
∥∥h0

∥∥1−2m
H1(R)

}
.
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By definition, Ca = C(c∞ + 1/a)2m−1, therefore 1/Ca increases to 1/C∞ as a →
∞. This allows us to choose the interval larger still so that 1/Ca > 1/(2C∞). For
such an interval, the periodic nonnegative weak solution exists up to time T0, as
desired, because T̃0(a) > T0.

Using the finite speed of propagation, we now choose the interval larger yet so
that at time T0 the periodic nonnegative weak solution has not reached ends of the
interval. We can do this because from Proposition 2, there is a maximum speed
of propagation V , where V is determined by the initial data and T0. Since both
V and T0 are independent of the size of the interval [−a,a], we can use them to
choose the interval large enough: diam(supp{h0})+VT0 < a−δ for some δ > 0.
From Theorem 1, there is a solution up to time T0 and from Proposition 2 the
solution is supported in [−a + δ,a − δ] for all times t ∈ [0, T0]. The solution
h satisfies the evolution equation in the sense of distributions (5) where the space
integrals are over [−a,a], rather than the line. However, since the solution is
supported in [−a + δ,a − δ] at all times, the periodic solution can be extended
to be identically zero for |x| > a and thus is a solution on the line. The bounds
(41-44) follow immediately.

It remains to prove the second moment inequality (45). Let ϕ be a smooth
test function such that

ϕ(x, t) =


x2 x ∈ [−a+ δ,a− δ]

0 x ∉
[
−a+ δ

2
, a− δ

2

]
.

Using ϕ in the definition of weak solution, and recalling that at all times the
solution is supported in [−a+ δ,a− δ],∫∞

−∞
x2h(x, T0)dx −

∫∞
−∞
x2h0(x)dx

= 3
∫ T0

0

∫∞
−∞
h2
x(x, t)dx dt −

2
m+ 1

∫ T0

0

∫∞
−∞
hm+1(x, t)dx dt

= 6
∫ T0

0
E(t)dt − 2(m− 3)

m(m+ 1)

∫ T0

0

∫∞
−∞
hm+1(x, t)dx dt

≤ 6
∫ T0

0
E(t)dt ≤ 6T0E(0),

sincem ≥ 3. The last step used bound (44). ❐

Up to this point in the article, we have considered the critical (m = 3) and
supercritical (m > 3) cases of equation (2). We now turn to the subcritical case
(1 ≤ m < 3) and present the analogue of Theorem 2. Its proof is very similar in
spirit to the proof of Theorem 2, for this reason we give only a coarse sketch of its
proof. Proposition 3 and Theorem 3 demonstrate that our blow-up conjecture is
sharp for coefficients f(y) = y and g(y) = ym.
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Proposition 3. (Nonnegative compactly supported weak solutions on the line: the
subcritical case) Let h0 ≥ 0, h0 compactly supported, h0 ∈ H1(R), and 1 ≤m < 3.
Given T0 < ∞, there exists a nonnegative compactly supported weak solution in the
sense of distributions (5). Moreover, for all − 1

2 < s < 1, there are constants C and
D determined bym, s, and ‖h0‖H1 , and constants c1 and c2 determined by m only,
such that: ∫ T0

0

∫∞
−∞
(hs/2+1)2xx(x, t)dx dt ≤ CT0 +D,∫ T0

0

∫∞
−∞
(hs/4+1/2)4x(x, t)dx dt ≤ CT0 +D,

1
4
‖h(·, T0)‖H1 ≤ E(0)+ c2

∥∥h0
∥∥(m+3)/(3−m)
L1 + c1 + 1

4
∥∥h0

∥∥2
L1 ,

E(T0) ≤ E(0),∫ T0

0
E(t)dt ≤ E(0)T0,

where

E(t) := 1
2

∫∞
−∞
h2
x(x, t)dx −

1
m(m+ 1)

∫∞
−∞
hm+1(x, t)dx.

Proof. Let 1 ≤ m < 3. The first step is to find a priori bounds that are the
analogue of Lemma 1. This is Proposition 2.2 in [13]:

1
4
∣∣h(·, t)∣∣2

H1 ≤ E(h0)+ c2
∣∣h0

∣∣(m+3)/(3−m)
L1 + c1 +

1
4
∣∣h0

∣∣2
L1 <∞

at all times t. The proof in [13] uses the mean of the solution, rather than the L1

norm. These are the same since the function is nonnegative and the interval of
unit length. The second step is to use the a priori bounds to prove the existence
of smooth positive periodic approximate solutions, the analogue of Proposition 1.
This is Proposition 3.2 in [13]. The third step is to prove that a subsequence of
the approximate solutions converges to a nonnegative periodic weak solution, the
analogue of Theorem 1. This is done in the proof of Theorem 3.4 of [13] for a
different formulation the weak solution. However it is straightforward to mod-
ify the proof of Theorem 1 for the subcritical case. The fourth step is to prove
finite speed of propagation for nonnnegative periodic weak solutions with com-
pact initial data, the analogue of Proposition 2. The statement and proof of the
subcritical analogue of this proposition and the necessary Lemma 2 are essentially
unchanged; the only change is that the various constants do not depend on T0.
The final step is to go from nonnegative periodic weak solutions to nonnegative
weak solutions on the line. This is done as in the proof of Theorem 2. ❐
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4. FINITE-TIME BLOW-UP OF THE COMPACTLY SUPPORTED WEAK
SOLUTION FOR m ≥ 3

The results of Section 3 allow us to continue the solution in time as long as at each
end-time the H1 norm of the solution is finite. In this section, we use this fact,
along with the second-moment inequality (45) to prove

Theorem 3. Let h0 be nonnegative and compactly supported, h0 ∈ H1(R). If

E(0) = 1
2

∫∞
−∞
h0

2
x(x)dx −

1
m(m+ 1)

∫∞
−∞
hm+1

0 (x)dx < 0,

then there is a singular time T∗ < ∞ and a nonnegative weak solution in the sense of
distributions (5) on [0, T∗) such that

lim sup
t↑T∗

‖h(·, t)‖L∞(R) = lim sup
t↑T∗

‖h(·, t)‖H1(R) = ∞.

In this theorem, we prove that the H1 and L∞ norms blow up, although we
do not know that the H1 norm is continuous in time. However, the solution is
C1/2,1/8 and in particular the L∞ norm is continuous in time up to the blow-up
time, and the L∞ and H1 norms are tightly coupled through inequalities (8) and
(11). Also, we note that M(t) = sup0<s<t ‖h(·, s)‖L∞ is an increasing function of
t and limM(t) = ∞ as t → T∗.

Proof. First, we construct a sequence of times T0 < T1 < · · · and extend the
weak solution h from the time interval [0, Ti] to the time interval [0, Ti+1].

By Theorem 2, there is a weak solution h on a time interval [0, T0]. At time
T0, the solution is compactly supported and has finite H1 norm (bounds (41-42)).
Taking it as an initial datum, its H1 norm determines a time interval of existence

T1 − T0 =
1
4

1
C∞(2m− 1)

min
{
1,
∥∥h(·, T0)

∥∥1−2m
H1(R)

}
,

by (40). Applying Theorem 2 to the time interval [T0, T1], we have a weak so-
lution that is compactly supported at all times and that satisfies bounds (41-44),
with the time interval [0, T0] replaced by [0, T1].

Thus, applying the second-moment inequality (45) twice,

∫∞
−∞
x2h(x, T1)dx ≤

∫∞
−∞
x2h(x, T0)dx + 6(T1 − T0)E(T0)

≤
∫∞
−∞
x2h0(x)dx + 6(T1 − T0)E(T0)+ 6T0E(0)

≤
∫∞
−∞
x2h0(x)dx + 6T1E(0).
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The last step used bound (43): E(T0) ≤ E(0).
Continuing the construction inductively, we have a sequence of times T0 <

T1 < · · · < Tn < · · · and a nonnegative weak solution in the sense of distribu-
tions (5) on the time interval [0, T∗), where

T∗ = lim
n→∞Tn.

At each time Tn, the H1 norm of h is finite, satisfying bounds (41-42). Also, at
each time, ∫∞

−∞
x2h(x, Tn)dx ≤

∫∞
−∞
x2h0(x)dx + 6TnE(0).

Since E(0) < 0, if Tn → ∞, then for large times the right-hand side would be
negative: an impossibility. Therefore limn→∞ Tn = T∗ <∞. This implies that

1
4

1
C∞(2m− 1)

min
{
1,
∥∥h(·, Tn)∥∥1−2m

H1(R)
} = Tn+1 − Tn → 0.

That is, the H1 norms at times Tn must blow up. It then follows from bound (42)
that the L∞ norm must also blow up:

lim sup
t↑T∗

‖h(·, t)‖L∞ = lim sup
t↑T∗

‖h(·, t)‖H1 = ∞.

❐

We close by presenting simple initial data for which E(0) < 0. Consider

h0(x) =


λ(1+ cos(λx)) for − π

λ
≤ x ≤ π

λ
,

0 otherwise.

For all values of λ, h0 has mean value 2π ,

1
2

∫ π/2
−π/2

h0
2
x(x)dx =

λ3π
2
, and

1
m(m+ 1)

∫ π/2
−π/2

hm+1
0 (x)dx ∼ λm.

It follows immediately that for m > 3, E(0) < 0 for λ sufficiently large. For
example,

form = 3 E(0) = −11
48
πλ3 < 0 if λ > 0,

form = 4 E(0) = 1
2
πλ3 − 63

80
πλ4 < 0 if λ >

40
63
.
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5. CONCLUSIONS

In this paper we prove the existence of a particular weak solution of

ht = −(hnhxxx)x − (hmhx)x,

withm ≥ 3 and n = 1. The solution is nonnegative, is compactly supported, and
has a finite-time singularity of the form lim sup‖h(·, t)‖L∞ = ∞ and
lim sup‖h(·, t)‖H1 = ∞ as t → T∗. In [13], we proved that solutions are globally
bounded wheneverm < n+2. Thus, the results in this paper prove our conjecture
that singularities can occur only whenm ≥ n+ 2 for the specific case n = 1.

To be precise, in [13] we considered the initial value problem on a periodic
domain, while in this paper we consider the initial value problem on the line.
However, in both cases compactly supported initial data are shown to yield com-
pactly supported solutions. Hence the two initial value problems coincide for
short times or large intervals in space.

The finite-time singularity proof relies on an identity involving the second
moment of the solution,

∫
x2hdx. This identity implies that certain initial data

cannot yield solutions that exist past a time T∗. A separate argument then implies
that the lim-sup of the L∞ and H1 norms must become infinite in finite time.
While our blow-up conjecture is stated for general equations of the form

ht = −(f (h)hxxx)x − (g(h)hx)x,

the second-moment identity is special to the coefficient f(y) = y and does not
immediately generalize to other coefficients. In fact, we used a second-moment
inequality that followed from the identity. It may be possible to prove such an
inequality directly for other supercritical pairs of coefficients f and g. Numerical
simulations suggest that the blow-up conjecture is sharp for other coefficients f
and g.

For f(y) = yn and g(y) = ym, the conjecture refers to m = n + 2 as the
critical case and tom > n+ 2 as the supercritical case. For n = 1, the finite-time
singularity proof states that if the initial data initially has negative energy

1
2

∫
h2
x(x)dx −

1
m(m+ 1)

∫
hm+1(x)dx < 0,

then it yields a solution that becomes singular in finite time. For the criticalm = 3
case, this requires that the initial mass of the solution be greater than some value
Mc (as proved in [13]). However, for the supercritical m > 3 case one can find
initial data with arbitrarily small mass that has negative energy.

Numerical simulations [8] show that, for the critical case, there is a continuous
family of linearly stable similarity solutions describing blow-up. The blow-up
profile appears to be determined by the mass of the initial data. This is to be
contrasted with the supercritical case, where simulations find a discrete family of
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similarity solutions only one of which is linearly stable. Simulations of the initial
value problem find that this profile is universally selected. That solution shows a
blow-up with zero mass.

Finally, we note that the scaling arguments that led to the blow-up conjecture
for the 1-d equation (1) can be applied [13] to the 2-d equation

ht = −∇ · (f (h)∇∆h)−∇ · (g(h)∇h).
For f(y) = yn and g(y) = ym, the conjecture is that if m < n + 1, then
finite-time blow-up is impossible, while if m ≥ n + 1, then finite-time blow-up
is possible. The existence theory for the 2-d equation with g ≡ 0 has been well-
developed [36, 37], however the 2-d equation with g ≠ 0 has yet to be addressed.

APPENDIX A. L2 BOUND OF THE FLUX

The evolution equation is of the form

hεt + (fε(hε)hεxxx + gε(hε)hεx)x = 0.

We now prove that the flux is a priori bounded in L2(QT0) with a bound indepen-
dent of ε:∫ T0

0

∫ a
−a

∣∣fε(hε(x, t))hεxxx(x, t)+ gε(hε(x, t))hεx(x, t)∣∣2 dxdt ≤ A.

The upper bound A depends on ‖h0‖H1 , on the interval size a, and on the expo-
nentm:∫ T0

0

∫ a
−a

∣∣fε(hε(x, t))hεxxx(x, t)+ gε(hε(x, t))hεx(x, t)∣∣2 dxdt

≤ ‖fε(hε)‖L∞(QT0 )

∫ T0

0

∫ a
−a
fε(hε(x, t))

[
hεxxx(x, t)

+ gε(hε(x, t))
fε(hε(x, t))

hεx(x, t)
]2

dx dt

≤ ‖hε‖L∞(QT0 )

∫ T0

0

∫ a
−a
fε(hε(x, t))

[
hεxxx(x, t)(46)

+ gε(hε(x, t))
fε(hε(x, t))

hεx(x, t)
]2

dx dt

≤ C
∫ T0

0

∫ a
−a
fε(hε(x, t))

[
hεxxx(x, t)(47)

+ gε(hε(x, t))
fε(hε(x, t))

hεx(x, t)
]2

dx dt

≤ C
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At step (46) we used the bound

fε(y) =
y5

εy +y4 ≤ y.

At step (47) we used the energy identity (24)

∫ T0

0

∫ a
−a
fε(hε(x, t))

[
hεxxx(x, t)+

gε(hε(x, t))
fε(hε(x, t))

hεx(x, t)
]2

dx dt

≤ Eε(0)−Eε(T0).

Recall that

Eε(T0) = 1
2

∫ a
−a
hε2
x(x, T0)dx −

∫ a
−a
Gε(hε(x, T0))dx.

The first integral is bounded using the H1 control of Lemma 1, and the second
integral is bounded by using (20) at time t = T0. Combining these upper bounds,
we find the desired constant A.

APPENDIX B. UNIFORM CONVERGENCE OF f ′′ε (y)y7/4 TO ZERO

Lemma 3. For

fε(y) =
y5

εy +y4 ,

there is a constant C such that

y ≥ 0⇒ |f ′′ε (y)y7/4| ≤ Cε1/4.

Proof. We define

Fε(y) := f ′′ε (y)y7/4 = 6y15/4 2ε −y3

(ε +y3)3
.

Its first derivative is:

F ′ε(y) =
9
2
εy11/4 10ε2 − 23εy3 + 3y6

(ε +y3)4
.

Fε has two critical points in (0,∞):

y3
± = ε

23±
√

409
6

.
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Evaluating F ′′ε at the critical points, we find y− is a local maximum and y+ is a
local minimum. For fixed ε, Fε(y) goes to zero as y →∞, is positive on [0, 3

√
2ε),

and is negative on ( 3
√

2ε,∞), therefore y± are global minima and maxima. Eval-
uating at hε at y± we find

max
y∈[0,∞)

|Fε(y)| ≤ Cε1/4.

❐

APPENDIX C. PROOF OF FINITE SPEED OF PROPAGATION

For completeness, we present the proof of finite speed of propagation. What
follows is, in essence, Bernis’s argument for the equation ht = −(hnhxxx)x with
0 < n < 2 [3].

Proof of Proposition 2. We prove finite speed of propagation in two steps. We
first prove finite speed of propagation for short times. The methods in this first
part will apply to any initially dry region ω, proving finite speed of propagation
as defined in Section 3.3. However, we only present the argument for the dry
regions (−a,−a0) and (a0, a) where the initial data is supported in (−a0, a0)
and the solution is periodic on the interval (−a,a). We then prove that, by
taking a sufficiently large domain (−a,a), the short-time result for the dry regions
(−a,−a0) and (a0, a) holds up to the time T0 of the a prioriH1 bound of Lemma
1. This then gives the desired control on the diameter of the support of the weak
solution.

First stage. Given compactly supported initial data h0, find a0 so that
supp{h0} ⊂ (−a0, a0). For a such that a0 < a, we prove there is a short time
T∗ > 0 such that −a < −3a/4 − a0/4 < ζL(t) and ζR(t) < a0/4 + 3a/4 < a
for all t ≤ T∗(a). We present the proof for the right interface ζR(t). The proofs
for the left interface and for other dry regions ω are essentially identical.

Define xm = (a0 + a)/2 and translate xm to the origin, making h0 ≡ 0 on
(−r0, r0), where r0 = (a− a0)/2. Take

ϕ1(x) = (1− x2)+,

ϕr (x) = 1
r
(r 2 − x2)+, for all r ≤ r0.

Lemma 2 applies for such test functions, hence for all T ≤ T0

1
s(s + 1)

∫ r
−r

1
r 4 (r

2 − x2)4hs+1(x, T)dx

+ A1

∫ T
0

∫ r
−r

1
r 4 (r

2 − x2)4(h(s+2)/2)2xx(x, t)dx dt

≤ A2

∫ T
0

∫ r
−r
hs+2(x, t)dx dt.
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Since
(r − |x|)+ ≤ϕr(x) ≤ 2(r − |x|)+,

this becomes

∫ r
−r
(r − |x|)4h(x, T)s+1 dx +A1

∫ T
0

∫ r
−r
(r − |x|)4(h(s+2)/2(x, t))2xx dx dt

≤ A2

∫ T
0

∫ r
−r
hs+2(x, t)dx dt.

Introducing

w = h(s+2)/2, q = 2− 2
s + 2

∈
(

2
3
,
4
3

)
,

the inequality is

∫ r
−r
(r − |x|)4wq(x, T)dx +A1

∫ T
0

∫ r
−r
(r − |x|)4(x)w2

xx(x, t)dx dt

≤ A2

∫ T
0

∫ r
−r
w2(x, t)dx dt.

Taking the supremum over time, for any T ≤ T0 we have

sup
0≤t≤T

∫ r
−r
(r − |x|)4wq(x, t)dx +A1

∫ T
0

∫ r
−r
(r − |x|)4(x)w2

xx(x, t)dx dt

≤ A2

∫ T
0

∫ r
−r
w2(x, t)dx dt.

We introduce the notation

Es(r , T) :=
∫ T

0

∫ r
−r
(r − |x|)sw2

xx(x, t)dx dt, and

F(r , T) := sup
0≤t≤T

∫ r
−r
(r − |x|)4wq(x, t)dx.

Hence the inequality is

F(r , T)+A1E4(r , T) ≤ A2

∫ T
0

∫ r
−r
w2(x, t)dx dt.(48)

Bernis [3] proves the following interpolation inequality:
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Lemma. Let 0 < q < 2 and 0 < r < ∞. Then there exists a constant K1
depending only on q such that

(49) K1

∫ r
−r
w2(x, t)dx

≤
(∫ r
−r
w2
xx(x, t)dx

)d (∫ r
−r
(r − |x|)4|w(x, t)|q dx

)(2(1−d))/q
+ r−2ν

(∫ r
−r
(r − |x|)4|w(x, t)|q dx

)2/q

,

where

d = 10− q
10+ 3q

and ν = 10− q
2q

.

In fact, one can prove this interpolation inequality for any moment on the
right-hand side of (49). The fourth moment is chosen so that the exponents
worked cleanly in the proof of Lemma 2.

Integrating inequality (49) in time, and using the Hölder inequality with p =
1/d, we find

∫ T
0

∫ r
−r
w2(x, t)dx dt ≤ T 1−dEd0 (r , T)F

(2(1−d))/q(r , T)+ Tr−2νF2/q(r , T).

Therefore for any T ≤ T0 inequality (48) becomes

(50) F(r , T)+A1E4(r , T) ≤ A2T 1−dEd0 (r , T)F
(2(1−d))/q(r , T)

+ A2Tr−2νF2/q(r , T).

For any r ≤ r0 and T ≤ T0,

F(r , T) ≤ F(r0, T0)⇒ F2/q(r , T) ≤ F(r , T)F2/q−1(r0, T0) =: M(r0, T0)F(r , T).

Choose T∗ such that

A2T∗M(r0, T0)
(
r0

2

)−2ν
≤ 1

2
.(51)

Then for r0/2 ≤ r ≤ r0 and T ≤ T∗, we have

A2Tr−2νF2/q(r , T) ≤ F
2
.
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The lower bound on r is needed since the exponent −2ν in (51) is negative. Thus
for T ≤ T∗ and r0/2 ≤ r ≤ r0, inequality (50) becomes

F(r , T)+A1E4(r , T) ≤ A2T 1−dEd0 (r , T)F
(2(1−d))/q(r , T)+ 1

2
F(r , T).

Applying Young’s inequality with p = q/(2(1−d)) to the first term on the right-
hand side, for T ≤ T0 and r0/2 ≤ r ≤ r0,

E4(r , T) ≤ KηEϑ0 (r , T), where Kη := CTηrµ0(52)

and

η = q(1− d)
q − 2(1− d) = 4

s + 1
4s + 5

, ϑ = qd
q − 2(1− d) =

4s + 9
4s + 5

.

The constant C depends on s, ϕ1, m, h0, and T0. Inequality (52) is a differ-
ential inequality because (d4/dr 4)E4(r , T) = 4!E0(r , T). For such differential
inequalities, Bernis [3] proved:

Lemma. Assume the differential inequality (52) holds for r0/2 ≤ r ≤ r0.
Define

r1(T) = r0 − ϑ + 3
ϑ − 1

Kη/4(E0(r0, T))(ϑ−1)/4.

If r0/2 ≤ r1(T) ≤ r0, then E0(r , T) = 0 for all r ∈ [0, r1(T)].

To apply the lemma, we need to ensure that r1(T) ≥ r0/2 for all T ≤ T∗,
that is

ϑ + 3
ϑ − 1

CTη/4(E0(r0, T))(ϑ−1)/4 ≤ r0

2
.

The length r0 is fixed. The function T → E0(r0, T) is nondecreasing with E0(r0,0)
= 0, and both exponents η/4 and (ϑ− 1)/4 are positive. As a result, the inequal-
ity holds, choosing T∗ smaller if need be. By the same logic, r1(T∗) ≤ r1(T) for
T ≤ T∗. It follows that E0(r , T) = 0 for all r ≤ r1(T∗) and T ≤ T∗. Translating
back to the original coordinates, this implies ζR(T) ≤ (3a0 + a)/4 < a for all
T ≤ T∗, as desired. A similar argument proves −a < ζL(T) for all T ≤ T∗.

Second Stage.
We now prove that, by taking the interval (−a,a) sufficiently large, −a <

ζL(t) and ζR(t) < a for all t ≤ T0, where T0 is the time from the a priori H1

bound of Lemma 1.
Again, we present the argument for the right interface ζR(t). The argument

for the left interface is essentially identical. Recall that the initial data was sup-
ported on (−a0, a0), xm = (a + a0)/2, r0 = (a − a0)/2, and xm has been
translated to the origin. Following Bernis, we define

T̂ = sup{t ∈ (0,∞) | ∃δ =: δ(t) such that h ≡ 0 on (−δ,δ)× (0, t)}.
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From the first stage, T∗ ≤ T̂ . We now prove that by choosing a sufficiently large,
T̂ ≥ T0.

Fix T ≤ T̂ . By definition, ζR(T) ≤ −δ(T) < 0. We use δ(T) to define a test
function ϕr . Take ϕ1(x) = (x + 1)+ϑ(x), where ϑ ∈ C∞(R) and

ϑ =


1 for x ≤ 0,

0 for x ≥ δ(T)
r0

.

Recalling ϕr(x) = rϕ1(x/r), by construction ϕr(x) = (x + r) on (−r ,0).
Also, since r ≤ r0, the support of ϕ1 is contained in (−r , δ(T)).

Taking ϕr in (27), we have

1
s(s + 1)

∫ 0

−r
ϕ4
rh
s+1(x, T)dx +A1

∫ T
0

∫ 0

−r
ϕ4
r (h

(s+2)/2)2xx(x, t)dx dt

≤ A2

∫ T
0

∫ r
−r
hs+2(x, t)dx dt.

Here, we used the fact that by construction h(x, t) = 0 for all x ∈ (0, r ), t ∈
(0, T). Again, we introduce w and q, yielding

(53)
1

s(s + 1)

∫ 0

−r
ϕ4
rwq(x, T)dx +A1

∫ T
0

∫ 0

−r
ϕ4
rw2

xx dx dt

≤ A2

∫ T
0

∫ r
−r
w2(x, t)dx dt.

For any time t ≤ T , the inequality (53) holds since w ≡ 0 on (0, r ) × (0, T).
Since ϕr(x) = (x + r) on (−r ,0), we have

1
s(s + 1)

∫ 0

−r
(x + r)4wq(x, t)dx +A1

∫ t
0

∫ 0

−r
(x + r)4w2

xx(x, t)dx dt

≤ A2

∫ t
0

∫ 0

−r
w2(x, t)dx dt.

Taking the supremum over t,

sup
0≤t≤T

1
s(s + 1)

∫ 0

−r
(x + r)4wq(x, t)dx +A1

∫ T
0

∫ 0

−r
(x + r)4w2

xx(x, t)dx dt

≤ A2

∫ T
0

∫ 0

−r
w2(x, t)dx dt.
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Let z = −r and introduce

F̂(z, T) = sup
0≤t≤T

∫ 0

z
(x − z)4wq(x, t)dx,

and

Ês(z, T) =
∫ T

0

∫ 0

z
(x − z)sw2

xx(x, t)dx dt.

Then

F̂(z, T)+A1Ê4(z, T) ≤ A2

∫ T
0

∫ 0

z
w2(x, t)dx dt.

Bernis [3] proves the following interpolation inequality:

Lemma. Let 0 < q < 2 and −∞ < z < b ≤ ∞. Assume that either b = ∞ or
v(b) = v′(b) = 0. Then

K2

∫ b
z
v2(x)dx ≤

(∫ b
z
v2
xx(x)dx

)d(∫ b
z
(x − z)4vq(x)dx

)2(1−d)/q

K2 depends on q only.
By construction, w ≡ 0 in a neighborhood of x = 0 for all times 0 ≤ t ≤ T ,

hence the lemma applies with b = 0. This leads to

K2

∫ T
0

∫ 0

z
w2(x, t)dx dt ≤ F̂(z, T)2(1−d)/qT 1−dÊ0(z, T)d,

hence
F̂(z, T)+A1Ê4(z, T) ≤ A3F̂(z, T)2(1−d)/qT 1−dÊ0(z, T)d,

where A3 depends on s,ϕ1,m, h0, and T0 only. Again, we use Young’s inequality
with p = q/(2(1− d)) to cancel F̂(z, T) from the left-hand side, yielding

Ê4(z, T) ≤ CTηÊ0(z, T)ϑ = KηÊ0(z, T)ϑ, η = 4q
2+ 3q

, ϑ = 10− q
2+ 3q

.

We note that η > 0 and ϑ > 1. For such differential inequalities, Bernis [3]
proved:

Lemma. Let K > 0, η ∈ R, ϑ > 1, and

Ê4(z, T) ≤ CKηÊ0(z, T)ϑ
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for z0 ≤ z ≤ 0. Define

z1(T) = z0 + ϑ + 3
ϑ − 1

Kη/4Ê0(z0, T)(ϑ−1)/4.

If z1(T) < 0, then Ê0(z, T) ≡ 0 on [z1(T),0).
Now

z1(T) = z0 +
ϑ + 3
ϑ − 1

CTη/4Ê0(z0, T)(ϑ−1)/4

≤ z0 + ϑ + 3
ϑ − 1

CTη/40 Ê0(z0, T0)(ϑ−1)/4

≤ z0 +
ϑ + 3
ϑ − 1

CTη/40

(∫ T0

0

∫ a
−a
w2
xx(x, t)dx dt

)(ϑ−1)/4

≤ z0 +
ϑ + 3
ϑ − 1

CTη/40 D(s,m,h0, T0)(ϑ−1)/4.

We want z1(T) ≤ 0; this will be true for all 0 ≤ T ≤ t(z0) where

t(z0)η/4 =
ϑ − 1
ϑ + 3

−z0

CD(s,m,h0, T0)(ϑ−1)/4 .

In the last step, we used the bound inherited from (13) with s = 0.
Since η > 0, this shows that as z0 → 0, t(z0) → 0, as expected. To ensure

t(z0) ≥ T0, we take z0 sufficiently negative. Since z0 = −r0 = −(a− a0)/2, this
corresponds to taking a sufficiently large. This then guarantees

ζr (T) ≤ z1(t)+ a+ a0

2
≤ a+ a0

2
≤ a

for all T ≤ T0, finishing the proof. ❐
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