EXCEL WORKSHOP II: INTERMEDIATE EXCEL

With Applications from Reserving

INDEX(array, row_num, [column_num])

	Α	В	С	D	Е	F	G
1	A1	B1	C1	D1		Formula	Output
2	A2	B2	C2	D2		=INDEX(\$A\$1:\$D\$4,2,3)	C2
3	А3	В3	C3	D3		=INDEX(\$A\$1:\$D\$4,4,1)	A4
4	A4	B4	C4	D4			
г							

Returns the value of array in the position by row_num and [column_num]

MATCH(lookup_value, lookup_array, [match_type])

	Α	В	С	D
1	Name		Formula	Output
2	Joe Bruin		=MATCH("Joe Bruin",\$A\$2:\$A\$4,0)	1
3	John Doe		=MATCH("Jane Doe",\$A\$2:\$A\$4,0)	3
4	Jane Doe		=MATCH("Johnny",\$A\$2:\$A\$4,0)	#N/A
_				

- Similar to VLOOKUP, searches for lookup_value in a one-dimensional lookup_array
- Returns the index of the value
- [match_type]
 - 1 (DEFAULT): finds largest value <=
 lookup_value (lookup_array must be sorted ascending)
 - 0: finds first value = lookup_value
 - -1: finds smallest value >= lookup_value (lookup_array must be sorted descending)

INDEX and MATCH can be combined to create a more powerful, error-resistant VLOOKUP

- VLOOKUP requires us to count how many columns over the return value is found
- VLOOKUP can only search for lookup_value in the first column of table_array
- If we insert a column, VLOOKUP will either return the wrong column's value or break completely
- INDEX MATCH allows us to look up across both rows and columns, whereas VLOOKUP and HLOOKUP only allow one dimension

Example: VLOOKUP vs. INDEX MATCH

- VLOOKUP is essentially a special case of INDEX MATCH:
 - VLOOKUP(lookup_value, table_array, col_index_num, FALSE)
 is the same as
 - INDEX(table_array, MATCH(lookup_value, lookup_array, 0), col_index_num)
- If we wanted INDEX MATCH to do the same thing as VLOOKUP, *lookup_array* would simply be the first column of *table_array*.
- We can see INDEX MATCH gives much more freedom:
 - We can select any lookup_array we want
 - We can even replace col_index_num with another MATCH statement!

OFFSET(reference, rows, cols, [height], [width])

	Α	В	С	D	Е	F	G
1	A1	B1	C1	D1		Formula	Output
2	A2	B2	C2	D2		=OFFSET(\$A\$1,2,1)	В3
3	А3	В3	C3	D3		=OFFSET(\$A\$1,1,3)	D2
4	A4	B4	C4	D4		=OFFSET(\$A\$1,2,0)	A3
5						=OFFSET(\$B\$2,-1,0)	B1
6						=OFFSET(\$C\$3,1,-2)	A4
_							

 Returns a reference to a range a specified number of rows and cols away from an "anchor" cell called reference.

- Useful tool for quickly visualizing a lot of data without having to go through the trouble of making a chart
- For example, summarizing data in each row and each column:

	Α	В	С	D	Е
1	7	9	4	7	
2	6	8	10	7	
3	9	9	5	4	
4	9	2	4	6	
5	1	7	1	4	/
6					
_					

Conditional Formatting

 Another quick way to format cells and visualize the data within

	Α	В	С	D
1	7	9	4	7
2	6	8	10	7
3	9	9	5	4
4	9	2	4	6
5	1	7	1	4
6				
7	7	9	4	7
8	6	8	10	7
9	9	9	5	4
10	9	2	4	6
11	1	7	1	4
12				

SUMPRODUCT(array1, [array2], [array3], ...)

	Α	В	С	D	E	F
1	Value (1)	Weight (2)	Product (1) x (2)		Formula	Output
2	58	-0.15	-8.7		=SUMPRODUCT(A2:A8,B2:B8)	67.3
3	8	-0.05	-0.4			
4	75	0.1	7.5			
5	16	0.2	3.2			
6	32	0.25	8			
7	78	0.3	23.4			
8	98	0.35	34.3			
9		Sum:	67.3			
10						

 Multiplies the corresponding values in the arrays (all of which are the same dimension), then adds them together

- https://support.office.com/enus/article/load-the-solver-add-in-inexcel-612926fc-d53b-46b4-872ce24772f078ca
- A more powerful version of GoalSeek that can optimize (min/max) with constraints

APPENDIX

Background on the problem and mathematical justification

Background

- You are a reserving actuary for Bruin Auto Liability Insurance, LLC, a Los Angeles based company insuring personal automobile casualty losses in Southern California.
- BAL's reserving practice is quite limited, and you have been asked to create a basic model of loss development to evaluate the state of the company's reserves.

Background

- It is January 1st, 2019. The reserving team in the actuarial department has set aside a pure IBNR reserve of \$7M to pay for losses occurring before 2019 reported in 2019.
- It is your task to determine whether this reserve is too low, appropriate, or too high. If the current reserve is not representative of what BAL expects to pay out, suggest a new reserve level.
- During your analysis, you may ignore claims occurring in 2019, as these trends will be analyzed by a different team.
- If there are significant differences in claim development by county, report this to management as well.

Background

- You have also been presented with an excerpt of the company's income statement for 2018. Analyze the effects changing reserves will have on the company's financials (assuming an 85% loss ratio), and suggest a target expense ratio to maintain the overall profit margin.
- If this expense ratio is not feasible, what rate of return must BAL receive on its investments to maintain the overall profit margin, assuming a reasonable expense ratio?

Development Triangles: The Idea

For simplicity, assume this is 0.

Report	2015	2016	2017	2018	2019
2015	149	171	55	Ш	0
2016	0	184	182	66	??
2017	0	0	195	209	??
2018	0	0	0	218	??

- Key idea: Not all accidents that occur in a year are reported in that year.
- For instance, only \$149 of losses occurring in 2015 were reported in 2015.
 - \$171 was reported in 2016, \$55 in 2017, and
 \$11 was reported in 2018.
- We want to estimate, for instance, how much we will pay for losses from 2016.

Development Triangles: Using lags instead of years

Lag AY		2	3	4
2015	149	171	55	П
2016	184	182	66	
2017	195	209		
2018	218			

- It doesn't matter to us in what year we pay.
- Rather, we care about how many years after the loss we pay. This allows us to combine data meaningfully.
- \$171 of losses from 2015 were reported after 1 year, but before the end of 2 years (i.e., 2016).
 - This is \$182 for the 2016 2-year lag and \$209 for the 2017 2-year lag.

Development Triangles: Cumulative paid amounts

Lag AY		2	3	4
2015	149	320	375	386
2016	184	366	432	
2017	195	404		
2018	218			

- Next, we convert our amounts to cumulative amounts.
- This allows us to see the proportional increase over lags.

Development Triangles: Loss Development Factors

Lag	ı	2	3	4
2015	149 <u>× 2</u>	15 → 320 — × I	.17 × 1	.03 386
2016	184 <u>× 1</u>	.99 × I	.18 432	
2017	195 <u>× 2</u>	.07 404		
2018	218			

Development Triangles: Loss Development Factors

Lag	I – 2	2 - 3	3 - 4
2015	2.15	1.17	1.03
2016	1.99	1.18	
2017	2.07		

- These multiplicative factors are called loss development factors.
- From this, we can take weighted average, simple average, etc. to determine what factor we want to pick.

Development Triangles: Loss Development Factors

Lag AY	I – 2	2 - 3	3 - 4
2015	2.15	1.17	1.03
2016	1.99	1.18	
2017	2.07		
Simple Average	2.07	1.18	1.03

- For simplicity, suppose we use the simple average.
- This means between the first and second year, we can expect the cumulative paid amount to be multiplied by 2.07.

Development Triangles: Filling in our triangle

Lag		2	3	4
2015	149	320	375	386
2016	184	366	432 × I	.03 445
2017	195	404 × I	.18 × 1	.03 489
2018	218 × 2	.07 → 451 × I	.18 <u>× 1</u>	.03 546

Development Triangles: Cumulative Development Factors

Lag	I – 2	2 - 3	3 - 4
Simple Average	2.07	1.18	1.03
CDF	2.5 l (2.07 x 1.2 l)	1.21 (1.18 x 1.03)	1.03

 Instead of calculating each cell, we can jump straight to the end with cumulative development factors.

Development Triangles: Cumulative Development Factors

Lag		2	3	4
2015	149	320	375	386
2016	184	366	432 <u>× I</u>	.03 445
2017	195	404	x 1.21	489
2018	218	x 2	.51	546

Development Triangles: Cumulative Development Factors

Lag AY	1	2	3	4
2015	149	320	375	386
2016	184	366	432	445
2017	195	404		489
2018	218			546

- The final column (in red) indicates how much we expect to pay, in total, from losses occurring in each of the accident years.
- Our IBNR reserve is what we expect to pay less what we already paid.

