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1 Graph Theory Warmup

In this worksheet, a graph will be an ordered pair (V,E), where V is a finite set we call the vertices,
and E is a set of unordered pairs of vertices, which we call the edges. If v ∈ V , then we can define
its degree in a given graph G, written degG(v), to be the number of edges that connect v to other
vertices.

Problem 1 (The Handshake Lemma). Let G = (V,E) be a graph. Find a simpler formula for∑
v∈V degG(v). Show that the number of vertices with odd degree must be even.

2 Sperner’s Lemma

Let T be a graph formed by taking the triangle with vertices R,G,B, and triangulating it, that is,
breaking it up into many small triangular pieces, like so:

G B

R

Figure 1: A sample triangulation

Now color every vertex of T red, green, or blue, subject to the following rules: Color vertex R
red, G green, B blue, and every vertex on the side of the outer triangle connecting R and G either
red or green, every vertex on the side connecting R and B either red or blue, and every vertex on
the side connecting G and B either green or blue. The interior vertices can be colored with any of
the 3 colors. This is called a Sperner coloring.
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G B

R

Figure 2: A Sperner coloring

The rest of this section is dedicated to proving Sperner’s Lemma:

Lemma 2.1 (Sperner). If T is a triangulation colored with a Sperner coloring, at least one of the
small trianglular faces of T will have its three vertices colored with three different colors.

In order to prove this, we make another graph, T ′, whose vertices are faces of T . All of the faces
inside the triangle RGB will themselves be triangles, but there will be one more face, the outside
face O. Note that each pair of neighboring faces of T meet at an edge of T , whose two vertices are
colored. We connect these two faces, as vertices in T ′, if and only if the two vertices of the edge
where they meet are colored red and green. Faces which are not adjacent are not connected in T ′.

G B

R

O

Figure 3: T ′, with vertices in black and edges dashed

Problem 2. In T ′, show that the degree of O is odd.
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Problem 3. Show that the number of small triangles whose vertices are colored red, green, blue is
odd, and thus greater than 0. This proves Sperner’s Lemma. (Hint: Problem 1)

Problem 4. What should the 1-dimensional version of Sperner’s Lemma look like, or the 3-
dimensional version? Prove your 1D version.

Problem 5. Prove your 3D version of Sperner’s Lemma, and see if you can extend it to arbitrary
dimensions.

3 Bonus Material: Fan’s Lemma and Tucker’s Lemma

In this section, instead of triangulating a triangle, and coloring the vertices of the triangulation with
colors, we will “triangulate” a disk, and label our vertices with integers from {−2,−1, 1, 2}.

To triangulate a disk, distribute vertices along the outer circle, and connect them to vertices inside
the disk with lines, and connect those vertices to each other with lines, so that each component of
the circle is either a triangle, or a “triangle” consisting of two lines and a circular arc. We will call a
triangulation “boundary-symmetric” if the vertices on the outer circle are distributed in a way that
has 180◦ rotational symmetry. A labelling of this triangulation will assign each vertex a nonzero
integer, and we’ll call a labelling of a boundary-symmetric triangulation odd if every pair of vertices
exactly across the circle from each other (each vertex on the circle will belong to such a pair) is
labelled with integers adding to 0.

The subject of this section is Tucker’s Lemma, which says that every odd labelling of a boundary-
symmetric triangulation has a complementary edge: an edge whose vertices add to 0. Here’s a picture
from Wikipedia of the whole setup, with the complementary edge highlighted.

Figure 4: An odd labelling of a boundary-symmetric triangulation with a complementary edge
highlighted.

Assume that we have such a triangulation. These problems will show us how to find a comple-
mentary edge.

Problem 6. Assume that there are no complementary edges on the boundary.
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Show that there are an odd number of edges on the boundary whose labels are 1 and −2 (we
call these decreasing edges), and an odd number of edges on the boundary whose labels are −1 and
+2 (we call these increasing edges).

Problem 7. Show that any (generalized) triangle either has a complementary edge or has an even
number of increasing and an even number of decreasing edges.

Problem 8. Finish the proof of Tucker’s Lemma.

3.1 Fan’s Lemma and Higher Dimensions

Tucker’s lemma extends to higher dimensions. To state the higher-dimensional version, we define a
d-simplex to be a d-dimensional shape with d+ 1 vertices, each of which are connected with edges,
and each 3 of which are connected with a triangular face, and each 4 of which are connected with a
tetrahedral hyperface, and so on. For example, a 0-simplex is a point, a 1-simplex is a line segment,
a 2-simplex is a triangle, and a 3-simplex is a tetrahedron.

Theorem 3.1 (Tucker’s Lemma (all dimensions)). Fix d ∈ N. “Triangulate” the unit ball in Rd

with d-simplices, in such a way that the vertices on the boundary (a d − 1-dimensional sphere) are
symmetrical about the origin. Then if the vertices are labelled with {−n,−n+ 1, . . . ,−1, 1, 2, . . . , n},
such that any two opposite points on the boundary have labels that sum to 0, there must exist a
complementary edge somewhere in the triangulation.

In order to prove this version, we will actually want to prove Fan’s Lemma, a generalization. In
this generalization, we refer to alternating simplices. In a generalized triangulation labelled with
nonnegative integers, a positive alternating d-simplex is a d-simplex whose vertices are labelled with
k1,−k2, k3, . . . for integers k1 < · · · < kd, and a negative alternating d-simplex is a d-simplex whose
vertices are labelled with −k1, k2,−k3, . . . where k1 < · · · < kd. These together form the alternating
d-simplices.

Theorem 3.2 (Fan’s Lemma). Let the unit ball in Rd be triangulated in a boundary-symmetric
way, and label the vertices of the triangulation with nonnegative integers such that there are no
complementary edges, and the labels on any two opposite points on the boundary add to 0. Then
there is an odd number of alternating d-simplices.

Problem 9. Prove Tucker’s Lemma from Fan’s Lemma.

Now we’ll try to prove Fan’s Lemma by induction on the dimension.

Problem 10. Let d = 1. Now a “triangulation” of the unit ball is just a partition of a line segment
into intervals. Explain what Fan’s Lemma means in this context, and prove it.

Problem 11. Let d = 2. Adapt your proof of 2D Tucker’s Lemma to prove Fan’s Lemma.

Problem 12. Assume Fan’s Lemma holds in d dimensions, show it holds in d + 1 dimensions (or
at least try to prove it for d = 3).

Hint: Split the boundary into two hemispheres. The triangulation of each of these can be thought
of as a triangulation of the d-dimensional ball, to which we can apply Fan’s Lemma. One will have
an odd number of positive alternating d-simplices and an even number of negative alternating d-
simplices, the other will have the opposite.

4 Brouwer’s Fixed Point Theorem

First, let’s acquaint ourselves with a particular space, which we will think of as a subset of R3:
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Problem 13. Let ∆ be the set of points (x, y, z) in three-dimensional space where x + y + z = 1,
and x ≥ 0, y ≥ 0, z ≥ 0. Sketch a picture of ∆, and describe its shape.

The Euclidean distance makes ∆ a metric space, meaning that for any two points x, y ∈ ∆, there
is a natural definition of d(x, y), the distance between x and y. We can use this distance to come
up with a formal definition of what it means for a sequence of points in ∆ to have a limit:

Definition 1. Let x0, x1, x2, · · · ∈ ∆. Then x is the limit of x0, x1, . . . when for any positive real
ε > 0, there is some N such that if n > N , then d(xn, x) < ε.

We will need the following fact about ∆, but I won’t prove it here. Consider it a bonus exercise
for later.

Theorem 4.1. The space ∆ is complete:
Let x0, x1, x2, · · · ∈ ∆ be a Cauchy sequence, that is, a sequence such that for every ε > 0, there

is some N such that if m,n > N , then d(xm, xn) < ε. Then x0, x1, x2, . . . has some limit x.

Problem 14. Check that the converse holds: if a sequence has a limit, it must be a Cauchy sequence.

We can also use the definition of limits to formally define what it means for a function to be
continuous. If you look in a topology book, this is actually the definition of a sequentially continuous
function, but that turns out to be the same as continuous in this case.

Definition 2. Let f : ∆→ ∆ be a function. We say that f is continuous when for every sequence
x0, x1, x2, . . . that has a limit x, f(x) is also a limit for f(x0), f(x1), . . . .

(If you already know a formal definition of continuity, and it isn’t this, then here’s an exercise
for later: prove they’re equivalent in any metric space.)

In this section, you will show that Sperner’s Lemma is equivalent to Brouwer’s Fixed Point
Theorem about continuous functions from ∆ → ∆. (Tucker’s Lemma is similarly equivalent to
another famous topological fact, featured in today’s Bonus Material.)

Theorem 4.2. Every continuous function f : ∆→ ∆ has a fixed point.

This is a topological fact, so in fact it is true of any shape topologically similar (homeomorphic)
to ∆, including any flat disk or rectangle, or other roughly 2D shapes like Antarctica, as viewed
from a satellite hovering over the South pole. In that last case, imagine that I take a map of
Antarctica, crumple it up, and drop it somewhere in the frozen wastes on a sled journey. Then this
map represents a function, taking points on campus and drawing them on the map, which itself has
a geographical location. Brouwer’s fixed point theorem says there must be some point on the map
which represents its exact location in the real world.

Problem 15. Prove Sperner’s Lemma from Brouwer’s Fixed Point Theorem.
Hint: let ∆ be the triangle you’ve triangulated. Pick a point to send every red vertex to, pick

a point to send every green vertex to, pick a point to send every blue vertex to, and define the
continuous function very simply on the edges and triangles, according to those constraints. Don’t
worry about a formal proof that your function is continuous. Design the function such that a fixed
point can only come from the interior of a three-color triangle.

In the rest of this section, we will prove Brouwer’s Fixed Point Theorem using Sperner’s Lemma.
In order to talk in more detail about the function f , we generally refer to its coordinate functions,

functions fx, fy, fz : ∆ → [0, 1] such that for any point P ∈ ∆, fx(P ) is the x-coordinate of f(P ),
fy(P ) is the y-coordinate, and fz(P ) is the z-coordinate. It’s a fact that fx, fy, and fz are continuous
if and only if f is.
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Problem 16. Let f : ∆→ ∆ be a continuous function, and fx, fy, fz its coordinate functions. For
P = (x, y, z) ∈ ∆, show that either fx(P ) ≤ x, fy(P ) ≤ y, or fz(P ) ≤ z. Then show that if all three
inequalities are true, that P is a fixed point.

The remainder of the problems are designed to show that there is a point that satisfies all 3
inequalities.

Problem 17. Let T be a triangulation of ∆. Label (1, 0, 0) as R, (0, 1, 0) as G, and (0, 0, 1) as
B. Show that you can color T with a Sperner coloring, where if a vertex P = (x, y, z) is red, then
fx(P ) ≤ x, if it is green, then fy(P ) ≤ y, and if it is blue, then fz(P ) ≤ z. Call a Sperner coloring
with this property a Brouwer coloring. (I don’t think this is standard notation, but I want to call it
something.)

Problem 18. Show that for every n, you can find a triangulation Tn of ∆ where all edges have
side length at most 1

2n times the side length of ∆. Then use this to show that there are points
Rn, Gn, Bn ∈ ∆ such that the distance between any two of them is at most 1

2n , and fx(Rn) is less
than or equal to the x-coordinate of Rn, fy(Gn) is less than or equal to the y-coordinate of Gn, and
fz(Bn) is less than or equal to the z-coordinate of Bn.

Problem 19. Deduce that there is a sequence R1, R2, R3, . . . of points in ∆ with fx(Rn), where
each Rn = (x, y, z) in the sequence satisfies fx(Rn) ≤ x, a sequence G1, G2, G3, . . . where each
Gn = (x, y, z) satisfies fy(Gn) ≤ y, and a sequence B1, B2, B3, . . . where each Bn = (x, y, z) satisfies
fz(Bn) ≤ z, and for each n, the distances between Rn, Gn, Bn are at most 1

2n .
Assume that R1, R2, R3, . . . converges to some point P . Show P is a fixed point of f .

Problem 20. Technically, our sequence R1, R2, R3, . . . may not converge, but we can find an infinite
subsequence of it that does, by skipping some points. If the subsequence Rn1

, Rn2
, Rn3

, . . . converges
to P , where n1 < n2 < . . . , then show that the sequences Rn1 , Rn2 , Rn3 , . . . , Gn1 , Gn2 , Gn3 , . . . ,
Bn1 , Bn2 , Bn3 , . . . still satisfy the requirements of the previous problem, so P is a fixed point.

Problem 21. Show that ∆ is sequentially compact :
Let P1, P2, P3, . . . be any sequence of points in ∆. Find an increasing sequence n1 < n2 < n3 <

. . . that makes Pn1
, Pn2

, Pn3
, . . . a Cauchy sequence, so it converges to some point P . (Hint: Use

triangulations, and ask for more hints if you need them.)

Problem 22. Finish the proof of Brouwer’s Fixed Point Theorem.

Brouwer’s FPT actually holds in higher dimensions, if we replace ∆ with ∆n, the subset of Rn+1

consisting of the points with nonnegative coordinates that sum to 1, or Bn, the unit ball in Rn.

Problem 23. Prove that any function f : ∆n → ∆n has a fixed point.

5 Bonus Material: The Borsuk-Ulam Theorem

Just as Sperner’s Lemma is equivalent to Brouwer’s Fixed Point Theorem, Tucker’s Lemma is a
combinatorial version of the Borsuk-Ulam Theorem:

Theorem 5.1. Let Bn be the unit “ball” in Rn. (For instance, B2 is the 2-dimensional unit disk
in R2.) Let f : Bn → Rn be a continuous function, and assume that for every x on the boundary
“sphere” of Bn, we have f(−x) = −f(x).

There must exist some x ∈ Bn such that f(x) = 0.

Problem 24. Use Borsuk-Ulam to prove Tucker’s Lemma.
Hint: As with the proof of Brouwer’s FPT from Sperner’s Lemma, you want to define the value

of your function f : Bn → Rn on the vertices of your triangulation first. Then describe how you
might extend it to values on the edges and inside the simplices, so that any complementary edge
must have a 0 of f on it?
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Problem 25. Use Tucker’s Lemma to prove Borsuk-Ulam.
Hint: Like in the proof of Brouwer’s FPT from Sperner’s Lemma, draw finer and finer boundary-

symmetric triangulations, and use your continuous function to label them. Then from your sequence
of ever-shorter complementary edges, find some i ∈ {1, . . . , n} and two sequences, one of points
labelled +i and one of labelled −i, that converge to the same point, which will be your 0.

Problem 26. Use Borsuk-Ulam to prove Brouwer’s FPT. In this case, prove that any function
f : Bn → Bn has a fixed point.

Hint: Assume you have a function f : Bn → Bn with no fixed points. For each point x ∈ Bn,
draw a ray from f(x) through x, and extend it towards the boundary of Bn. Let that point be g(x).

(It is also possible to use Fan’s Lemma to prove Sperner’s Lemma, which is the combinatorial
analog of this result.)
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