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1 Cobweb Plots

Let f be a real-valued function such that if 0 ≤ x ≤ 1, then 0 ≤ f(x) ≤ 1. To
draw a cobweb plot of f , first plot the functions y = x and y = f(x). Pick a
starting value x0 ∈ [0, 1]. Start by plotting a line from (x0, 0) to (x0, f(x0)),
then draw a line from (x0, f(x0)) to (f(x0), f(x0)). Keep connecting dots, al-
ternating between vertical lines (x, x) to (x, f(x)) and horizontal lines (x, f(x))
to (f(x), f(x)).

The description’s a bit clunky, but here’s an example:

Figure 1: Cobweb plot for f(x) = x(1− x)(4x2 + x+ 1), with x0 = 0.223

Problem 1. Let f(x) = x(1 − x)(4x2 + x + 1), x0 = 0.223. What does the
cobweb plot tell us about the sequence x0, f(x0), f(f(x0)), . . . ?

Problem 2. Fill out the following cobweb plots with starting point x0 = 1
5 :
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(a) f(x) = x+1
2

(b) f(x) = 1− x

(c) f(x) = 2− 2|x| (d) f(x) = x2

Definition 1.1. We say that a fixed point x0 of a continuous function f : R→ R
is stable if there is some interval (a, b) containing x0 such that if x ∈ (a, b), then
the sequence x, f(x), f(f(x)), . . . converges to x0. Otherwise it is called unstable.

Problem 3. Let f(x) = ax + b be a linear function. For what values of a, b
does f have a fixed point, and when does f have a stable fixed point?

The following challenge problem shows that stable fixed points are the only
situations where the sequence x, f(x), f(f(x)), . . . converges.

Problem 4. Challenge: Let f : R→ R be a continuous function. Prove that
if a sequence x0, x1, x2, . . . satisfying xn+1 = f(xn) converges to a number x∞,
then f(x∞) = x∞.

2 Logistic Maps

In this section, we study some functions called the logistic maps, which pop
up in population modelling, and also have interesting mathematical properties.
(Note: These are different (though related to) the logistic curve, which also
pops up in population modelling problems and in calculus classes. If you’ve
heard of that, you can think of these logistic maps as a discrete-time version
of that continuous-time population model, but this discrete version has much
more personality.)
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2.1 Population Modelling

Let’s model the size of a population. Suppose there is a species of rabbit that
has a fixed generation length. If the rabbits have an infinite supply of food,
then after each generation, each rabbit is replaced with r rabbits of the next
generation.

Problem 5. • Given this infinite supply of food, if we start with x rabbits
at generation 0, how many rabbits do we have at generation t?

• Under what circumstances will the number of rabbits approach a constant
population?

Now assume that the rabbit’s reproductive rate depends on the amount of
available food, and that the amount of available food depends on the number
of rabbits. Assume that their environment has a carrying capacity, a number
of rabbits that would be able to eat all the available food in a given year.
Let’s measure the population not as a natural number, counting the rabbits,
but as a real number, x, which is the fraction of the carrying capacity, so
that x = 0 indicates 0 rabbits, but x = 1 indicates that the population is the
carrying capacity. Now assume that with each successive generation, each rabbit
is replaced with r(1 − x) children, so that as the number of rabbits increases
to the carrying capacity, and the amount of available food decreases to 0, the
reproductive rate shrinks down from r to 0.

Definition 2.1. If there are x rabbits at generation t, then there will be rx(1−x)
rabbits at generation t+1. We call this function the logistic map with parameter
r, and will use the notation

fr(x) = rx(1− x)

Problem 6. • Describe the trends in population if 0 ≤ r < 1.

• Explain what happens in our model if we let x at generation t be greater
than 1 - that is, if we end up with more rabbits than the carrying capacity.

• What population at generation 0 maximizes the population at generation
1?

• We know that our model isn’t necessarily predictive if we ever have x
outside the interval [0, 1]. What values of r guarantee that if we start
with x ∈ [0, 1], it stays in that interval forever?

Problem 7. Draw a cobweb diagram for fr at r = 0.8, 1.6, 3.2, 3.5, with one or
more different starting values of 0 < x < 1.
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(a) r = 0.8 (b) r = 1.6

(c) r = 3.2 (d) r = 3.5

• Of these different values of r, for which does the population approach a
stable fixed point?

• If the population doesn’t approach a stable fixed point, what happens
instead?

Problem 8. What are the fixed points of fr? Are they valid populations? If
fr has a fixed point, when is it stable?

Problem 9. For what values of 0 ≤ r ≤ 4 is 0 a stable fixed point of fr? For
what values is it an unstable fixed point? (You don’t need to prove this fully
rigorously yet, but give some explanation.)

Problem 10. Let f : R→ R be a nonconstant polynomial.

• Show that the fixed points are exactly the zeroes of f(x)− x.

• Optional: Assume that f(x) is not the polynomial x. Show that there
are only countably many values of x such that x, f(x), f(f(x)), . . . ever
exactly reaches a fixed point of f .

• Recall that the finitely many zeroes of f split R into intervals on which
f is positive and intervals on which f is negative. Show that for a fixed
point x0 to be stable, f(x)−x must be positive immediately to the left of
x0 or negative immediately to the right of x0.
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Problem 11. Prove that for 0 ≤ r ≤ 4, 0 is a stable fixed point exactly when
the previous problem says it should be (with the possible exception of r = 1
when something a little bit weird is happening - explain why!). Use your data
to conjecture whether this is true for the other fixed point of fr.

We will find the following theorem about limits useful:

Theorem 2.1. Let a0, a1, a2, . . . be a sequence of numbers, let 0 ≤ r < 1, and
let a∞ be a number. Show that if for all n, |an+1 − a∞| < r|an − a∞|, then
a0, a1, a2, . . . converges to a∞.

Problem 12. Prove Theorem 2.1.

Problem 13. Let f(x) = ax2 + bx + c be a quadratic, and let x0 be a fixed
point of f(x). Show that if |2ax0 + b| < 1, then x0 is stable.

(Hint: Use Theorem 2.1)

Problem 14. Let f(x) = ax2 + bx + c be a quadratic, and let x0 be a fixed
point of f(x). Show that if |2ax0 + b| > 1, then x0 is unstable.

Problem 15. For what values of 0 ≤ r ≤ 4 does fr(x) have a stable fixed
point? Does this agree with your observations?

3 Periodic Points and Chaos

If n > 0 is a natural number, f : R→ R is a function. Then we say that x ∈ R
is a periodic point of f when fn(x) = f(f(. . . (f︸ ︷︷ ︸

n times

(x)) . . . ) = x. We say that x

has period n if n is the least positive number such that this is true.
For instance, under the map f(x) = −x, every point is periodic, and every

point has period 2 except for 0 which has period 1. A point of period 1 is the
same as a fixed point.

Problem 16. From your cobweb plot data on the logistic map, what are some
values of r that have periodic points that are not fixed points? What periods
do they have? Conjecture what periods are possible for periodic points of fr
with 0 ≤ r ≤ 4. You may appreciate the following spreadsheet:

https://docs.google.com/spreadsheets/d/1dut5fZqMHgsUlmykaylETnBG7hBYPsDSf1Npw_

G1GWE/edit?usp=sharing

Problem 17. Show that if fr has a point of period 2, then it has 2 points of
period 2, and they sum to 1 + 1

r .

Problem 18. Check out the following gif, which animates the behavior of
logistic maps over time. Does this match your previous answers as to which
values of r had fixed points, or points of a certain period?

https://en.wikipedia.org/wiki/Logistic_map#/media/File:Logistic_

Map_Animation.gif
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3.1 Intermediate Value Theorem and Chaos1

Recall the Intermediate Value Theorem:

Theorem 3.1 (Intermediate Value Theorem). Let f : [a, b] → R be a
continuous real-valued function defined on an interval [a, b] ⊂ R. Moreover,
suppose that f(a) < 0 < f(b) or f(a) > 0 > f(b). Then there exists c ∈ [a, b]
such that f(c) = 0.

Let f be a continuous function such that if x ∈ [0, 1], then f(x) ∈ [0, 1], such
as fr for 0 ≤ r ≤ 4.

Problem 19. Using the intermediate value theorem or Brouwer’s Fixed Point
Theorem, show that f has a fixed point in [0, 1].

Definition 3.1. If f has a periodic point of period n in [0, 1] for all n, we call
f chaotic.

We’ve seen logistic maps fr with points of periods 1, 2, 4, and maybe others,
but something special happens when there is a point of period 3:

Theorem 3.2. If f has a point x ∈ [0, 1] of period 3, then f is chaotic.

To prove this, we will want the following notation:

Definition 3.2. • Let I be an interval. Then let f(I) be the set of all
points f(x) where x ∈ I.

• Let I, J be closed intervals. Say that I → J whenever f(I) ⊇ J .

This theorem is the tool we will use to prove Theorem 3.2. It lets us find
periodic points x0 such that the points in the sequence x0, f(x0), f(f(x0)), . . .
follows a predictable path:

Theorem 3.3 (Itinerary Lemma). Let I0, . . . , In−1 be closed intervals, and
assume that I0 → I1 → . . . In−1 → I0. Then there is a point x0 ∈ I0 such that
fn(x0) = x0 and for all k = 0, . . . , n− 1, fk(x0) ∈ Ik.

We will prove this theorem later, using the intermediate value theorem.

Problem 20. Say we find intervals I0 → I1 → · · · → In−1 → I0 such that for
all k = 1, . . . , n− 1, Ik does not intersect I0. Show that f has a periodic point
x0 ∈ I0 of period n exactly. (You may use the Itinerary Lemma.)

Problem 21. Let 3 < n, and assume that f has a point with period 3 in [0, 1].
We will show that f has a periodic point of period n.

1For more about this, check out Padraic Bartlett’s notes from Mathcamp 2014: https:

//web.math.ucsb.edu/~padraic/mathcamp_2014/mathcamp_2014.html
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• Show that there exist points 0 ≤ x0 < x1 < x2 ≤ 1 such that either
f(x0) = x1, f(x1) = x2, and f(x2) = x0, or f(x0) = x2, f(x2) = x1, and
f(x1) = x0. For the rest of the proof, we will assume that f(x0) = x1,
f(x1) = x2, and f(x2) = x0.

• Let I = [x0, x1] and J = [x1, x2]. Show (with the intermediate value
theorem) that I → J , J → I, and J → J .

• Conclude that if we let I0 = I, and for k = 1, . . . , n− 1, let Ik = J , then
I0 → I1 → · · · → In−1 → I0. Using the Itinerary Lemma, prove that f
has a point of period n in I.

• Explain how to make this proof work if instead of f(x0) = x1, f(x1) = x2,
and f(x2) = x0, we have f(x0) = x2, f(x2) = x1, and f(x1) = x0.

Problem 22. Assume that f has a point of period 3 in [0, 1]. Show it has a
point of period 2.

All that remains is to prove the Itinerary Lemma!

Problem 23. Use the intermediate value theorem (and a graph, if you’d like)
to show that if I → J , then there is some closed subinterval I∗ ⊆ J such that
f(I) = J .

Problem 24. Prove the Itinerary Lemma. Let I0, . . . , In−1 be our closed in-
tervals such that I0 → I1 → . . . In−1 → I0.

• Find an interval I∗n−1 ⊆ In−1 such that f(In−1) = I0.

• Find an interval I∗k for each k = 0, . . . , n−2 such that for each k, I∗k ⊆ Ik,
and also f(I∗0 ) = I∗1 , f(I∗1 ) = I∗2 , . . . , f(I∗n−2) = I∗n−1.

• Prove that fn(I∗0 ) = I0.

• Show that fn has a fixed point x0 in I∗0 .

• Show that for all k = 0, . . . , n− 1, fk(x0) ∈ Ik.

4 Complex Numbers and the Mandelbrot Set

4.1 Complex Review

Definition 4.1. • Recall that the complex numbers C can all be expressed
as a+ bi, where a, b ∈ R and i =

√
−1.

• If a, b ∈ R, let a+ bi = a−bi. We call this the complex conjugate of a+bi.

• If a, b ∈ R, let |a+ bi| =
√
a2 + b2. We call this the magnitude of a+ bi.

Problem 25. Check that |a+bi|2 = (a+bi)(a+ bi), and that |(a+bi)(c+di)| =
|a+ bi||c+ di|.
Theorem 4.1. The function d(x, y) = |x − y| is a metric on C. In particular,
the triangle inequality holds, so if x, y, z ∈ C, then |x− y|+ |y − z| ≥ |x− z|.
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4.2 Bounded Sequences

Definition 4.2. Let z0, z1, z2, . . . be a sequence of complex numbers. Say that
this sequence is bounded if and only if there is some real number M such that
for all n ∈ N, |zn| ≤M .

Problem 26. Determine which of the following sequences of complex numbers
are bounded:

• 0, 1, 2, 3, . . .

• 1, 12 ,
1
3 , . . .

• z0, z1, z2, . . . where zn = cos(n) + i sin(n).

• 1
12 ,

1
12 + 1

22 ,
1
12 + 1

22 + 1
32 , . . .

• 1
1 ,

1
1 + 1

2 ,
1
1 + 1

2 + 1
3 , . . .

Problem 27. Let c ∈ R be positive, and let z0, z1, . . . be a sequence of complex
numbers. Assume that |z0| > c, and that there is some real number d such that
for all n, |zn+1| − c > (|zn| − c) + d.

• Prove by induction that for all n, |zn| ≥ c+ dn.

• Prove that z0, z1, z2, . . . is unbounded.

Problem 28. Let c ∈ R be positive, and let z0, z1, . . . be a sequence of complex
numbers. Assume that |z0| > c, and for all n, |zn+1| − c ≥ 2(|zn| − c).

• Prove by induction that for all n, |zn| ≥ c+ 2n(|z0| − c).

• Prove that z0, z1, z2, . . . is unbounded.

4.3 Basics of the Mandelbrot Set

Let c be a complex number. Define the function fc : C→ C by fc(z) = z2 + c.

Problem 29. Define the sequence z0(c), z1(c), z2(c), . . . by letting z0(c) = 0,
and then once zn(c) is defined, define zn+1(c) = fc(zn(c)).

Determine whether the sequence z0(c), z1(c), z2(c), . . . is bounded for the
following choices of c:

c = 0, 1,−1, i,−i, 1

4

Definition 4.3. We define the Mandelbrot set to be the set of all complex
numbers c such that the sequence z0(c), z1(c), . . . is bounded.

Problem 30. We will show that the Mandelbrot set is contained in the disk of
radius 2 centered at the origin.

• Let c, z ∈ C be such that |z| > 2. Then show that |fc(z)|−|c| ≥ 2(|z|−|c|).
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• Show that if for some n, |zn(c)| > 2 and |zn(c)| > |c|, then the sequence
zn(c), zn+1(c), zn+2(c), . . . is unbounded.

• Conclude that if for some n, |zn(c)| > 2 and |zn(c)| > |c|, then c is not in
the Mandelbrot set.

• Finally, show that if |c| > 2, then c is not in the Mandelbrot set, and
conclude that the Mandelbrot set is contained in the disk of radius 2
centered at the origin.

Problem 31. Show that c is in the Mandelbrot set if and only if |zn(c)| ≤ 2
for all n.

Problem 32. Show that if c is in the Mandelbrot set, then c̄ is in the Man-
delbrot set. Conclude that the Mandelbrot set is symmetric around the real
line.

4.4 Mandelbrot set and Logistic Maps

The Mandelbrot set has a deep connection with logistic maps, that will allow
us to understand the intersection of the Mandelbrot set with the real line.

Problem 33. Let r be a real number.

• Find real numbers a, b, and c such that (ax+ b)2 + c = afr(x) + b.

• Assume r 6= 0. Conclude that for x0 ∈ R, x0 is a periodic point of fr if
and only if ax0 + b is a periodic point of x2 + c.

• Using the connection to the logistic map, prove that the interval [−2, 1/4]
on the real line is contained in the Mandelbrot set.

Problem 34. (Challenge) Stable fixed points can be defined for functions
f : C→ C, in essentially the same way they were defined over the reals.

• Show that if r is complex, then fr(z) = rz(1− z) defined on the complex
numbers has a stable fixed point whenever |r| < 1.

• Show that if |r| < 1 and c = r
2

(
1− r

2

)
, then the map z2 + c has a stable

fixed point. In fact, c is in the Mandelbrot set.

• Any complex r with |r| = 1 can be expressed as cos θ + i sin θ for some
real θ. Find a parametric equation for the set of all c ∈ C such that
c = r

2

(
1− r

2

)
for some r with |r| = 1. Graph this curve, and use it to

identify the part of the Mandelbrot set that consists of c such that you
know (based on part (a)) that z2 + c has a stable fixed point. (In fact,
these will be all the values of c such that z2 + c has a stable fixed point.)
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5 Video

To find out more about these topics, Youtube has many great videos about the
logistic map, the Mandelbrot set, and the connections between the two.

Here is one of my favorites, on the logistic map, which touches on the Man-
delbrot set: https://www.youtube.com/watch?v=ovJcsL7vyrk
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