
Cryptography and Finite Fields

Aaron Anderson

November 15, 2020

1 Fermat’s Little Theorem

Let’s start with a basic fact:

Theorem 1.1 (Bézout’s Identity) If a, b ∈ Z, then there exist c, d ∈ Z such
that ac+ bd = gcd(a, b), where gcd(a, b) is the greatest common divisor of a and
b.

Problem 1 Say that a is invertible mod m when there exists some b such that
ab ≡ 1 mod m.

• Show that if p is prime, then every 1 ≤ a < p is invertible mod p.

• Show that if a is relatively prime to m (that is, gcd(a,m) = 1), then a is
invertible mod m.

Problem 2 Let p be a prime, and 1 ≤ a < p.

• What is the set {a mod p, 2a mod p, 3a mod p, . . . , (p− 1)a mod p}?

• Comparing (p − 1)! mod p with a(2a)(3a) . . . ((p − 1)a) mod p, can you
calculate ap−1 mod p? The result you should get is called Fermat’s Little
Theorem. Don’t confuse it with Fermat’s Last Theorem; Fermat actually
managed to prove this one!

1.1 Euler’s Totient Function

For n ∈ N, let ϕ(n) be the number of numbers 1 ≤ a ≤ n such that a is relatively
prime to n. ϕ is called Euler’s Totient Function.

Problem 3

• If p is prime, calculate ϕ(p).

• If p, q are distinct primes, calculate ϕ(pq).

1

Problem 4 Prove that ∑
d|n

ϕ(d) = n

In the sum, d should range over the factors of n. For instance,∑
d|6

ϕ(d) = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(6) = 6

(Hint: consider the list of fractions 1
n ,

2
n , . . . ,

n
n . When all fractions are

expressed in reduced terms, how many have denominator d?)

Problem 5 Let m ∈ N. Let Um be the set of numbers between 1 and m that
are relatively prime to m. (|Um| = ϕ(m) by definition.) Fix a ∈ Um.

• What is the set {au : u ∈ Um}?

• Comparing
∏

u∈Um
u mod m with

∏
u∈Um

au mod m, can you calculate

aϕ(m) mod m? This result is known as the Fermat-Euler Theorem, be-
cause it is a better version of Fermat’s Little Theorem, proven by Euler.

1.2 Primitive Roots

Let 1 ≤ a < m. Then we say that a is a primitive root mod m when for every
b that is invertible mod m, there is some n such that an ≡ b mod m.

Problem 6

• Find a primitive root mod 13.

• Show that there is no primitive root mod 8.

1.3 Discrete Logarithm

Let 1 ≤ b < m, and assume that b is invertible mod m. Then we define a
function logb mod m : {a : 1 ≤ a < m and a is invertible mod m} → N so that
logb mod m a is always the smallest positive number such that alogb mod m a ≡ b
mod m.

Problem 7 Calculate log2 mod 17 9.

2 Diffie-Hellman

In this section, we will start working with cryptography. Imagine two friends,
Alice and Bob, who want to share messages, but can only communicate over a
public channel. Their enemy Eve can sometimes eavesdrop on their communi-
cations, and they’d like to keep their messages secret.

2

Problem 8 Say that Alice and Bob can meet in person once, flip a coin n
times, and write down the sequence of n coinflips, as 0s and 1s, before they have
to leave.

• Explain how when they are apart again, they can share an n-bit secret
message.

• If Eve eavesdrops on their communication channel, and attempts to guess
their message, with what probability does she get it right?

• This cryptographic system is called a one-time pad system, because it
stops being as secure after the first use. Explain how if Alice and Bob
try to use the same sequence of coinflips as a keyword repeatedly, to send
many n-bit messages, Eve might be able to break the code eventually.

Problem 9 Other forms of cryptography revolve around finding a computa-
tional process which can be performed quickly, but cannot be reversed quickly.
Suppose that Alice, Bob, and Eve have the same type of computer, and that
this type of computer can perform 230 ≈ 109 basic computational steps per
second, where for instance, multiplying two 1024-bit numbers counts as a step,
or modding one 1024-bit number by another counts as a step.

Let p be a prime number whose binary representation is 1024 bits long, and
let 1 ≤ g < p be a primitive root mod p. Let a be randomly selected such that
1 ≤ a < p.

• If Alice tries to calculate ga mod p by computing g1 mod p, multiplying
by g, then modding to calculate g2 mod p, and then repeatedly multiply-
ing by g and then modding until she gets all the way to ga mod p, how
long will this take on average?

• Prove that Alice can actually calculate ga mod p in less than a second.

Problem 10 Suppose that Alice and Bob can’t actually meet in person.
There’s still a way they can send a secret message, called the Diffie-Hellman
system. They choose a prime number p, and a number 1 ≤ g < p, and an-
nounce both of these numbers publicly. Then Alice picks a random number
1 ≤ a < p, and Bob picks a random number 1 ≤ b < p. Then Alice sends Bob
ga mod p, and Bob sends Alice gb mod p.

• Prove that each of them can calculate gab mod p.

• Describe how they can use gab to send a secret message of about 1024 bits
in length.

• Suppose Eve learns ga mod p and gb mod p. Say she then tries to calcu-
late gab mod p by calculating b, and tries to solve for b by calculating g1

mod p, g2 mod p, . . . until she finds gb mod p. On average, how many
steps will this take? How long will it take Eve to decode the secret mes-
sage? Is the message actually secret?

3

• Why do Alice and Bob want to pick g to be a primitive root?

Problem 11 The Diffie-Hellman system, and all similar systems, are not in-
fallible. Say that Eve can not only eavesdrop their communications, but can
intercept a message from Alice to Bob, or from Bob to Alice, read it, and replace
it with her own message. If Alice and Bob try to use the Diffie-Hellman system
to send a message, how can Eve decipher it?

2.1 The Future

There actually are efficient algorithms for calculating discrete logarithms, but
unfortunately for Eve, they have drawbacks. Most of them can only calculate
logb mod m given assumptions on m, and Alice and Bob can easily avoid picking
those m. There are a few algorithms that can calculate any discrete logarithm
efficiently, but all the ones we’ve discovered so far will only run on a quantum
computer, which hasn’t yet been invented. (There is no proof that you need
a quantum computer to efficiently calculate discrete logarithms in general, but
nearly every expert thinks this is true. If you prove it, you would have proven
P 6= NP , and you could collect a $1, 000, 000 prize.)

Problem 12 Briefly explain how Eve could break Diffie-Hellman with access
to a quantum computer or an efficient algorithm for calculating discrete loga-
rithms.

3 The Euclidean Algorithm

So far, we have taken Bézout’s identity as a black box. However, it would be
useful to be able to use it for computations. For instance, if x is invertible mod
n, then x has an inverse mod n, a number x−1 such that x · x−1 ≡ 1 mod n.
We used Bézout’s identity to show that such a number exists, but how can we
calculate it?

Problem 13 Verify that if x is invertible mod n, there is a unique x−1 such
that x · x−1 ≡ 1 mod n.

Problem 14 Let’s start by efficiently calculating gcd(a, b) for 0 < a < b,
according to the Euclidean algorithm:

1. Find q, r such that b = qa + r, where 0 ≤ r < a.

2. If r = 0, return a as our answer.

3. If r > 0, then repeat this process starting at at step 2, replacing a and b
with r and a.

4

• Prove that at the end of step 3 in each repetition, (b−a) and a are always
positive integers.

• Prove that this process eventually terminates (that is, returns an answer
in step 2).

• Prove that if b = qa + r, then gcd(r, a) = gcd(a, b).

• Prove that the final answer is actually gcd(a, b).

• How many steps does this process take? If a, b are each 1024 bits long,
will this take a practical amount of computer time for Alice, Bob, or Eve?

• What do we do if a, b ∈ Z, but we don’t assume 0 < a < b?

Problem 15 If 0 < a < b, then we can also use the Euclidean algorithm to
calculate c, d such that ac + bd = gcd(a, b).

• If b = qa + r where 0 ≤ r < a, and we have numbers s, t such that
qs + rt = gcd(a, b), then find numbers c, d such that ac + bd = gcd(a, b).

• Use your previous answer and the Euclidean algorithm to describe an
algorithm for finding c, d such that ac + bd = gcd(a, b). How many steps
will it take?

Problem 16 Now that you have an algorithm that proves Bézout’s identity,
describe how you would efficiently compute x−1 mod n.

4 RSA

Now let’s examine the RSA system, which will also allow Alice and Bob to
communicate without meeting in person, but has a slightly different structure.
Instead of using cryptography to agree on a shared secret (gab mod p in Diffie-
Hellman), they can directly encrypt and decrypt messages.

Let’s say that Bob wants to be able to receive messages from Alice. First,
Bob finds two large prime numbers, p and q, which he keeps secret. Bob publicly
announces their product n = pq. Then he picks a random number 1 < e <
n − p − q − 1, checks that it is coprime to n − p − q − 1, and also publicly
announces e. The pair (n, e) is known as Bob’s public key.

Then, whenever Alice wants to send a message to Bob, she just encodes her
message as a binary number 0 ≤ m < n, calculates me mod n, and sends it to
Bob.

Problem 17

• How can Bob efficiently calculate m from me mod n? (Hint: use your
algorithm for computing inverses)

• How long would it take Eve to calculate m by brute force?

5

Problem 18 Now say that Alice gets a message from Bob, and wants to check
that the message is actually from Bob. Say that Bob has posted (n, e) on his
website, and that she knows for sure that he actually posted it. If Bob sends
her the message m, encoded as a binary number less than n, then he also sends
her a signature, f(m), for a carefully chosen function f .

• How can he choose f such that Alice can calculate f(m)e ≡ m mod n?

• How confident should Alice be that Bob actually sent the message?

4.1 The Future

There are also efficient algorithms for factoring numbers, but these also have
only been invented so far for quantum computers.

Problem 19 Briefly explain how Eve could break RSA with access to a quan-
tum computer or an efficient algorithm for factoring numbers. (Note that even
without efficient factoring, RSA still has potential security issues, for instance,
if your computer’s “random“ number generator isn’t actually random enough,
there will be detectable patterns.)

5 Existence of primitive roots

Earlier, we defined primitive roots, and found an example, but why do we know
that Alice and Bob can find a suitable primitive root g to go with their prime
p in the Diffie-Hellman system?

First, let’s see this theorem.

Theorem 5.1 Let q be a polynomial of degree d, with integer coefficients, and
let p be a prime. Assume that q(x) 6= 0 for some x ∈ Z. Then q(x) has at most
d zeroes in {0, 1, . . . , p− 1}.

This hopefully should make sense by analogy to the real or complex numbers,
where a nonzero polynomial of degree d always has at most d zeroes.

Problem 20 If x is an integer and n a positive natural number, then we say
the order of x mod n is the smallest positive natural number k such that xk ≡ 1
mod n, or ∞ if there are no positive numbers such that xk ≡ 1 mod n.

• Show that the order of x mod n is∞ if and only if x is not invertible mod
n.

• Show that xk ≡ 1 mod n if and only if the order of x mod n divides k.

• If x is a primitive root mod n, what is the order of x?

• Is the converse to the last part true? That is, if x has the right order, is
it guaranteed to be a primitive root mod n?

6

Problem 21 We will show that there exists a primitive root mod p for every
prime p. In fact, we will show that there are ϕ(p− 1) of them!

Let f(n) be the number of elements of {0, 1, . . . , p− 1} with order n mod p.

• Show that there are exactly p−1 zeroes (mod p) of xp−1−1 in {0, 1, . . . , p−
1}.

• Let n | p−1. Then show that xp−1−1 = (xn−1)q(x) for some polynomial
q(x).

• Again, let n | p−1. Show that there are exactly n elements x ∈ {0, 1, . . . , p−
1} such that the order of x divides n.

• Show that
∑

d|n f(n) = n.

• Prove by induction that if n | p− 1, then f(n) = ϕ(n).

• Conclude that primitive roots mod p exist.

6 Challenge option 1: Fields

A field is a set F with addition, subtraction, multiplication, and inverse opera-
tions and special elements 0 and 1 such that the following properties hold:

Addition and subtraction properties:

• Associativity: For all a, b, c ∈ F, (a + b) + c = a + (b + c)

• Commutativity: For all a, b ∈ F, a + b = b + a

• Identity: For all a ∈ F, a + 0 = a

• Inverse: For all a, b ∈ F, a + (b− a) = b

Multiplication and inverse properties:

• Associativity: For all a, b, c ∈ F, (a ∗ b) ∗ c = a ∗ (b ∗ c)

• Commutativity: For all a, b ∈ F, a ∗ b = b ∗ a

• Identity: For all a ∈ F, a ∗ 1 = a

• Inverse: For all a ∈ F, if a 6= 0, then a ∗ a−1 = 1.

Distributivity: For all a, b, c ∈ F, a ∗ (b + c) = a ∗ b + a ∗ c.

Problem 22 Which of N,Z,Q,R,C are fields?

Problem 23 We will now define a field Zp for each prime p. Let Zp =
{0, 1, . . . , p − 1}. It already comes with 0 and 1, and we can define +,−, ∗,−1
by addition, subtraction, multiplication and inverse mod p.

Verify that the axioms are satisfied.

7

Problem 24 For all positive n ∈ N, we can define +,−, ∗ on {0, 1, . . . , n− 1}
by addition, subtraction, and multiplication mod n, like in the previous problem.
Can we define an inverse operation that makes this set a field?

Problem 25 Let F be a field, and let p(x) be a nonzero polynomial of degree
d with coefficients in F.

• Let r ∈ F be such that p(r) = 0 (evaluated using the addition and multi-
plication of F). Show that there exists a polynomial q(x) with coefficients
in F such that p(x) = (x− r)q(x), and that the degree of q(x) is less than
the degree of p(x).

• Show by induction that p(x) has at most d zeroes.

• Prove Theorem 5.1.

Problem 26 Let F be a field. If there exists a positive integer n such that
1 + 1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0, then we call the smallest such number the characteristic of

F. Otherwise, we say that the characteristic of F is 0.

• Find the characteristics of Q,R,C, and Zp for all primes p.

• Show that the characteristic of F is either 0 or a prime.

Problem 27 Taking inspiration from Fermat’s Little Theorem and the Fermat-
Euler Theorem, show that if F is a finite field, then for all a ∈ F, a|F| = a.

Problem 28 If F is a finite field, show that it has a primitive root, defined as
some a ∈ F such that for every b ∈ F, either b = 0 or there is some n ∈ F such
that an = b.

7 Challenge option 2: Computer implementa-
tion

Grab your favorite programming language (I recommend python), and try to
implement some of the algorithms discussed in this worksheet. The following
is a recommended order, with some sample numbers that should work fine (if
you’re not using python, remember to use 64-bit integers).

Problem 29

• Implement the Euclidean algorithm using recursion.

• Implement the algorithm for Bézout’s identity.

8

Problem 30 Implement fast exponentiation of ab mod n. (In python, this is
already implemented as pow(a,b,n), so you can check your work, or use it to
skip this problem.)

Problem 31 Implement a miniature Diffie-Hellman. Use prime p = 4294967291,
and g = 2. First test that 2 is in fact a primitive root mod p. (You’ll want to
know that p− 1 factors as 2 ∗ 5 ∗ 19 ∗ 22605091, and then you’ll want to check
that for any three of those prime factors p1, p2, p3, 2p1p2p3 6≡ 1 mod p.)

You won’t really be able to encode any substantial amount of text with a
number less than 4294967291, so just encode numbers.

Another number option is p = 2147483647, g = 7.

Problem 32 Implement a miniature RSA with p = 4294967291, q = 2147483647,
and e = 65537 (why do we know that e will be relatively prime to ϕ(pq)?).

9

