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1 Useful Patterns and Formulas
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Figure 1: Selected elements of a frieze pattern of order n

Problem 8

(a) Say for now that n = 8.
In the above picture, say the diagonal is filled in, that is, f1, . . . , f5 are fixed. If we assume this

can be extended to some frieze pattern, is the rest of the frieze pattern determined uniquely? Can
you find formulas for a1, . . . , a5 in terms of f1, . . . , f5?

(b) In that same picture, say that a1, . . . , a5 are fixed. Is the rest of the frieze pattern deter-
mined uniquely? Can you find formulas for f1, . . . , f5 in terms of a1, . . . , a5?

Problem 9 Assume n ≥ 4. Defining a1, . . . , an as above, prove that arar−1 > 1.

Problem 10 We define the period of a frieze pattern to be the least positive integer p such that
each row repeats every p numbers. In particular, in a pattern of period p, ak = ak+p. The period of
a frieze pattern of order n has period p dividing n, and you should assume this for now, but we will
not prove it yet.

(a) Determine the period of each frieze pattern in Figure 2.

(b) In Section 2.1, we saw that all frieze patterns of order 5 have either period 5 or period 1.
Verify that in the examples from part (a), the period divides the order of the frieze pattern.

∗Adapted by Aaron Anderson from Conway and Coxeter
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Problem 11 Show that for n = 3, 4, the period of a frieze pattern of order n is actually strictly
less than n. Later, once we know how to construct many frieze patterns of integers, we will show
that for n ≥ 5, there is always at least one frieze pattern (of integers) of order and period exactly n.

Problem 12 As we’ve shown, the second row of a frieze pattern of order n can be expressed in
the form a1, a2, . . . , an, a1, a2, . . . , an, . . . . Let the following rows be given by b1, b2, . . . , c1, c2, . . . ,
and so on. If the repeating sequence a1, a2, . . . , an is replaced with 1, a1 + 1, a2, . . . , an−1, an + 1, as
in the following diagram, this frieze pattern can be turned into a frieze pattern of order n + 1, by
inserting new diagonals, as shown in the diagrams below. Solve for the ?s in that frieze pattern, and
describe the changes to the overall frieze pattern. We call this new frieze pattern an expansion of
the original.
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Figure 2: The first 4 rows of the original frieze pattern
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Figure 3: The first 4 rows of the expansion

2 Now with Integers: Quiddity Cycles

We now have several examples of unimodular frieze patterns of numbers, and you may have noticed
that several consist entirely of positive natural numbers. We’d like to focus on these now.

We’ve already observed that in a frieze pattern of order n with only positive numbers, a sequence
of n consecutive elements of the second row (immediately below the top row of 1s) determines the
whole pattern uniquely. Conway and Coxeter call these numbers, a1, . . . , an, which we know repeat
to form the entire second row, a Quiddity1 cycle whenever the frieze pattern consists only of positive
integers.

Problem 13

(a) Does every quiddity cycle include at least one 1?

(b) Show that every frieze pattern of integers is an expansion of another frieze pattern of
integers.

(c) If a1, . . . , an+1 is a quiddity cycle coming from the second row of frieze pattern A, and A
is the expansion of frieze pattern B which has quiddity cycle b1, . . . , bn, solve for b1, . . . , bn in terms
of a1, . . . , an+1 and vice versa. We call a1, . . . , an+1 the expansion of b1, . . . , bn.

1Quiddity means something like “essence,” this sequence is the essence of the frieze pattern.
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Problem 14 Starting with the quiddity cycle 1, 1, 1 of order 3, repeatedly calculate the expansion
of that cycle a few times to create some possible quiddity cycles of orders 4 and 5. How many
different quiddity cycles can you and the people at your table find? (We consider two quiddity
cycles the same if they are mirror images of one another, or if the infinite sequence they make when
repeated is the same. For instance, 1, 2, 3, 1, 2, 3 is basically the same as 2, 3, 1, 2, 3, 1 or 3, 2, 1, 3, 2, 1.)

2.1 Triangulated Polygons

A triangulated n-gon is an n-gon which has been partitioned into triangles by drawing n− 2 nonin-
tersecting diagonals.

Problem 15

(a) Draw and count all triangulations of a triangle, a square, and a pentagon (up to rotations
and reflections). Do the numbers of triangulations this bear any similarity to your answers from
Problem 14?

(b) Can you find a correspondence between the quiddity cycles of order n and the triangulations
of n-gons?

Problem 16 Part 1 of this worksheet contained lots of integer frieze patterns, and their second
rows (and second-to-last rows) are all quiddity cycles. What triangulations of polygons do they
correspond to?

Problem 17 Using triangulated polygons, verify that for n ≥ 5, there is a frieze pattern of order
and period exactly n.

Problem 18 Show that a frieze pattern of integers has a vertical reflection line if and only if
the quiddity cycle in its second row corresponds to a triangulation of a polygon with a reflection
symmetry.

3 Challenge Problems

Problem 19 We will now extend the formulas for Problem 8 from that frieze pattern of order 8 to
a frieze pattern of order n. For any index i, let gi be the entry immediately above and to the right
of fi, and use the notation g−1 = −1 and f−1 = g0 = 0, and f0 = 1. Similarly let fn−1 = gn = 0
and fn = gn+1 = −1. Note that assigning these values would satisfy the unimodular rule.

(a) Define (r, s) = frgs − fsgr. Prove the following identities:

(r, r) = 0

(r, s) + (s, r) = 0

(r, s)(t, u) + (r, t)(u, s) + (r, u)(s, t) = 0

(−1, s) = fs, (0, s) = gs
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(b) Show that the following frieze pattern is unimodular:

(−1, 1)
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(0, 2)
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(−1, 3)

(1, 2)
(1, 3)

(0, 3)
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. . .

(2, 3)
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(1, 4)
(1, 5)

. . .

(3, 4)
(3, 5)

(2, 5)
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. . .

(4, 5)
(4, 6)

(3, 6)
(4, 7)

. . .

(c) Use part (b) to write an equation for as in terms of f1, . . . , fn−2.

(d) Find a recurrence relation for f1, . . . , fn−2 given a1, . . . , an. If you know the word deter-
minant, use it to find a closed-form expression for fs given a1, . . . , an.

(e: EXTRA CHALLENGE) Using the identities that we have for the expression (r, s),
prove that (r, s) = (r + n, s + n), and thus that an order n frieze pattern is periodic with period
dividing n.

Problem 20

(a) For which n does there exist a frieze pattern of order n that only contains Fibonacci
numbers?

(b) If a frieze pattern of integers does not consist only of Fibonacci numbers, must it contain
a 4?

Problem 21 What equation relates a0, a1, . . . , an−3, where a0 = f1?
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