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Abstract. We introduce a new method, involving infinite games and
Borel determinacy, which we use to answer several well-known questions
in Borel combinatorics.

1. Introduction

A Borel graph on a standard Borel space X is a symmetric irreflexive
relation G on X that is Borel as a subset of X ×X. We call elements of X
vertices, and if x, y ∈ X and x G y then we say that x and y are neighbors,
or are adjacent. The degree of a vertex is its number of neighbors, and
a graph is said to have degree ≤ n if each of its vertices has degree ≤ n.
A graph is said to be regular if all of its vertices have the same number of
neighbors, and is n-regular if this number is n.

Graph coloring is a typical problem studied in the field of Borel com-
binatorics, where a Borel coloring of a Borel graph G on X is a Borel
function c : X → Y from the vertices of G to a standard Borel space Y such
that if x G y, then c(x) 6= c(y). The Borel chromatic number χB(G)
of G is the least cardinality of a standard Borel space Y such that G has a
Borel coloring with codomain Y . The first systematic study of Borel chro-
matic numbers was done by Kechris, Solecki, and Todorcevic [16]. Since
then, fruitful connections have been found between the study of Borel chro-
matic numbers and other areas of mathematics such as ergodic theory and
dynamics [3, 4], and dichotomies in descriptive set theory [23].

IfG is a Borel graph, then it is clear that χ(G) ≤ χB(G), where χ(G) is the
usual chromatic number of G. However, χ(G) and χB(G) may differ quite
wildly. For instance, Kechris, Solecki, and Todorcevic [16] show the existence
of an acyclic Borel graph G0 (so χ(G0) = 2) for which χB(G0) = 2ℵ0 .
Nevertheless, in some respects the Borel chromatic number of a graph is
quite similar to the usual chromatic number. For example, we have the
following analogue of an obvious classical fact:
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Theorem 1.1 (Kechris, Solecki, and Todorcevic [16]). If G is a Borel graph
of degree ≤ n, then χB(G) ≤ n+ 1.

We will be interested in Borel graphs that arise from free Borel actions
of countable marked groups. Recall that a marked group is a group with
a specified set of generators. We assume throughout this paper that the set
of generators of a group does not include the identity. Let Γ be a countable
discrete group, and X be a standard Borel space. We endow the space XΓ

of functions from Γ to X with the usual product Borel structure (arising
from the product topology) so that XΓ is also a standard Borel space. The
left shift action of Γ on XΓ is defined by α · y(β) = y(α−1β) for y ∈ XΓ

and α, β ∈ Γ. The free part of this action, denoted Free(XΓ), is the set
of y ∈ XΓ such that γ · y 6= y for all nonidentity γ ∈ Γ. Now we define
G(Γ, X) to be the Borel graph on Free(XΓ) where for x, y ∈ Free(XΓ), we
have x G(Γ, X) y if there is a generator γ ∈ Γ such that γ ·x = y or γ ·y = x.
Hence, each connected component of G(Γ, X) is an isomorphic copy of the
Cayley graph of Γ. We will only be interested in G(Γ, X) when Γ is finitely
generated; an easy Baire category argument shows that if Γ has infinitely
many generators, then χB(G(Γ, 2)) = 2ℵ0 (see [16]).

If Γ is a marked countable group, then G(Γ,N) attains the maximum
Borel chromatic number of all graphs generated by a free Borel action of
Γ. That is, suppose we have any free Borel action of Γ on a standard
Borel space X, to which we associate the Borel graph GXΓ on X where
x GXΓ y if there is a generator γ of Γ such that γ · x = y or γ · y = x.
Then χB(GXΓ ) ≤ χB(G(Γ,N)). This is trivial when Γ is finite. When Γ
is infinite, it follows from [15, Theorem 5.4]; since the action of Γ on X
is free, the function constructed there will an injective equivariant function
from X into Free(NΓ). Recall that if Γ acts on the spaces X and Y , then a
function f : X → Y is said to be equivariant if for all γ ∈ Γ we have that
γ · f(x) = f(γ · x).

Our first result is a theorem describing how the Borel chromatic number
of G(Γ,N) behaves with respect to free products (see 3.1). We stipulate that
if Γ and ∆ are marked groups, then their free product Γ ∗∆ is the marked
group generated by the union of the generators of Γ and ∆.

Theorem 1.2. If Γ and ∆ are finitely generated marked groups, then

χB(G(Γ ∗∆,N)) ≥ χB(G(Γ,N)) + χB(G(∆,N))− 1

It has been an open question what Borel chromatic numbers can be at-
tained by an n-regular acyclic Borel graph, and whether the upper bound
given by Theorem 1.1 is optimal for such graphs. Several prior results exist
along these lines. For 2-regular acyclic graphs, we have that χB(G(Z, 2)) =
3 by [16]. More recently, Conley and Kechris [3] have shown that for

the free group on n generators, χB(G(Fn, 2)) ≥ n+2
√
n−1

2
√
n−1

, and Lyons and

Nazarov [20] have pointed out that results of Frieze and Luczak [12] imply
that χB(G(Fn, 2)) ≥ n

log 2n for sufficiently large n.
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Using Theorem 1.2, we answer this question and show that for every n
there exists an n-regular acyclic Borel graph with Borel chromatic number
equal to n+ 1. Indeed, if (Z/2Z)∗n is the free product of n copies of Z/2Z,
then χB (G ((Z/2Z)∗n,N)) = n + 1, since Theorem 1.2 gives a tight lower
bound to the upper bound of Theorem 1.1. Similarly, for the free group on
n generators, we have χB(G(Fn,N)) = 2n+ 1.

Further, we can give a complete description of the Borel chromatic num-
bers that can be attained by an n-regular acyclic Borel graph; they are
exactly those allowed by Theorem 1.1 (see 3.3):

Theorem 1.3. For every n ≥ 1 and every m ∈ {2, . . . , n + 1}, there is a
n-regular acyclic Borel graph G with χB(G) = m.

In the theorem above, G may be chosen to arise from a free Borel action
of (Z/2Z)∗n.

Our results above involve graphs of the form G(Γ,N). Answering a ques-
tion originally posed in an early version of this paper, Seward and Tucker-
Drob [24] have shown that for all marked groups Γ, and all n ≥ 2, we have
χB(G(Γ,N)) = χB(G(Γ, n)). Hence, our results apply to graphs of the form
G(Γ, 2) as well.

Next, we turn to Borel edge colorings. Let G be a Borel graph on a
standard Borel space X. If x, y ∈ X then we say the set {x, y} is an edge of
G if x G y. The line graph Ǧ of G is the graph whose vertices are the edges
of G, and where distinct {x, y} and {z, w} are adjacent if {x, y}∩{z, w} 6= ∅.
A Borel edge coloring of G is defined to be a Borel coloring of Ǧ. The
Borel edge chromatic number of a Borel graph G, denoted χ′B(G), is
the Borel chromatic number of its line graph.

It is a classical theorem of Vizing (see e.g. [9, Theorem 5.3.2]) that every
n-regular graph has an edge coloring with n + 1 colors. Kechris, Solecki
and Todorcevic have asked if the analogous fact is true for n-regular Borel
graphs [16, page 15]. More recently, this question has attracted some interest
from the study of graph limits [11] [14, Remark 3.8]. We show that this
question has a negative answer, and we calculate exactly what Borel edge
chromatic numbers can be attained by an n-regular Borel graph. Note that
if G is an n-regular Borel graph, then since Ǧ is 2n− 2 regular, we see that
χB(Ǧ) ≤ 2n − 1 by Theorem 1.1. We show that this obvious upper bound
can be achieved, even using acyclic and Borel bipartite graphs (see 3.10).
Recall that a Borel bipartite graph is a Borel graph G on X for which
there is a partition of X into two Borel sets A and B such that if x G y,
then either x ∈ A and y ∈ B, or x ∈ B and y ∈ A.

Theorem 1.4. For every n ≥ 1 and every m ∈ {n, . . . , 2n− 1}, there is an
n-regular acyclic Borel bipartite graph G such that χ′B(G) = m.

A Borel perfect matching of a Borel graph G is a Borel subset M of
the edges of G such that every vertex of G is incident to exactly one edge of
M . In his 1993 problem list, Miller asked whether there is a Borel analogue
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of Hall’s theorem for matchings [22, 15.10]. Laczkovich [19] showed the
existence of a 2-regular Borel bipartite graph with no Borel perfect matching,
and this result was extended to give examples of n-regular Borel bipartite
graphs with no Borel perfect matchings by Conley and Kechris [3] when n
is even. However, the case for odd n > 1 had remained open. We obtain
the following (see 3.8):

Theorem 1.5. For every n > 1, there exists an n-regular acyclic Borel
bipartite graph with no Borel perfect matching.

Some positive results on measurable matchings have recently been ob-
tained by Lyons and Nazarov [20]. Among their results, they show that the
graph we use to prove the case n = 3 in Theorem 1.5 has a Borel matching
modulo a null set with respect to a natural measure. Further work on match-
ings in the measurable context has been done by Csoka and Lippner [8]. The
measurable analogue of Theorem 1.5 for odd n remains open.

Both Theorems 1.4 and 1.5 are corollaries of the following result on Borel
disjoint complete sections (see 3.7). Suppose X is a standard Borel space,
and E is an equivalence relation on X. Then a complete section for E is
a set A ⊆ X that meets every equivalence class of E. Now suppose that F
is also an equivalence relation on X. Then say that E and F have Borel
disjoint complete sections if there exist disjoint Borel sets A,B ⊆ X
such that A is a complete section for E and B is a complete section for F .

Theorem 1.6. Let Γ and ∆ be countable groups. Let EΓ be the equivalence
relation on Free(NΓ∗∆) where x EΓ y if there exists a γ ∈ Γ such that
γ · x = y. Define E∆ analogously. Then EΓ and E∆ do not have Borel
disjoint complete sections.

Theorems 1.2-1.6 above all follow from a single lemma which we prove in
Section 2. Unusually for the subject, this lemma is proved using a direct
application of Borel determinacy. Borel determinacy is the theorem, due to
Martin [21], that there is a winning strategy for one of the players in every
infinite two-player game of perfect information with a Borel payoff set. We
will use the determinacy of a class of games for constructing functions from
free products of countable groups to N. Thus, we are also interested in
differences between the results proved using our new technique, and what
can be shown using more standard tools such as measure theory and Baire
category, which have been a mainstay of proofs in Borel combinatorics.

Here, Theorem 1.6 provides a nice contrast because it is not true in the
context of measure or category, except for the single case where Γ = ∆ =
Z/2Z. Indeed, we have the following more general theorem (see 4.5). Recall
that a countable Borel equivalence relation on a standard Borel space
X is an equivalence relation on X that is Borel as a subset of X ×X and
whose equivalence classes are countable. EΓ and E∆ in Theorem 1.6 are
examples of countable Borel equivalence relations.



A DETERMINACY APPROACH TO BOREL COMBINATORICS 5

Theorem 1.7. Suppose E and F are countable Borel equivalence relations
on a standard Borel space X such that every equivalence class of E has
cardinality ≥ 3 and every equivalence class of F has cardinality ≥ 2. Then
E and F have Borel disjoint complete sections modulo a null set or meager
set with respect to any Borel probability measure on X or Polish topology
realizing the standard Borel structure of X.

As we will see, the idea of disjoint complete sections turns out to be sur-
prisingly robust, as evidenced by a large number of equivalent formulations
which we give in Theorems 4.5 and 4.7 later in the paper. Using the exis-
tence of disjoint complete sections in the context of measure and category,
we also show the following, which contrasts nicely with Theorem 1.4, and
demonstrates that it can not be proved using measure-theoretic or Baire
category techniques (see 4.8):

Theorem 1.8. Suppose G is a 3-regular Borel bipartite graph on X. Then
G has a Borel edge coloring with 4 colors modulo a null set or meager set with
respect to any Borel probability measure on X or Polish topology realizing
the standard Borel structure of X.

Finally, in recent joint work with Clinton Conley and Robin Tucker-
Drob[7], we have shown that for every n ≥ 3 and every Borel graph G
of degree ≤ n on a standard Borel space X, if G does not contain a com-
plete graph on n+ 1 vertices, then there is a µ-measurable n-coloring of G
with respect to any Borel probability measure µ on X and a Baire measur-
able n-coloring of G with respect to every compatible Polish topology on
X. Hence, Theorem 1.3 can not be proved using pure measure theoretic or
Baire category arguments, except in the exceptional case n = 2.

1.1. Notation and conventions. Our basic reference for descriptive set
theory is [17]. Throughout we will use X, Y , and Z to denote standard
Borel spaces, x, y, and z for elements of such spaces, and A, B, and C for
subsets of standard Borel spaces (which will generally be Borel). Given a
subset A of a standard Borel space, we let Ac denote its complement.

We will use E and F for countable Borel equivalence relations, and G and
H for Borel graphs. We will use f , g, and h to denote functions between
standard Borel spaces, and c for Borel colorings. Γ and ∆ will be used to
denote countable groups, and α, β, γ, and δ will be their elements. We will
use e for the identity of a group. By countable group, we will always mean
countable discrete group.

If E is a countable Borel equivalence relation on a standard Borel space
X, then A ⊆ X is said to be E-invariant if x ∈ A and x E y implies y ∈ A.
If B is a subset of X, then we will often consider the largest E-invariant
subset of B. Precisely, this is the set A of x ∈ X such that for all y ∈ X
where y E x, we have y ∈ B.

1.2. Acknowledgments. Section 4 of this paper is taken from the author’s
thesis, which was written under the excellent direction of Ted Slaman. The
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2. The main lemma

Let Γ and ∆ be disjoint countable groups, and let Γ ∗ ∆ be their free
product. Each nonidentity element of Γ ∗ ∆ can be uniquely written as
a finite product of either the form γi0δi1γi2δi3 . . . or δi0γi1δi2γi3 . . ., where
γi ∈ Γ and δi ∈ ∆ are nonidentity elements for all i. Words of the former
form we call Γ-words, and words of the latter form we call ∆-words. Our
proof will use games for building an element y ∈ NΓ∗∆ where player I defines
y on Γ-words and player II defines y on ∆-words.

The following simple observation will let us combine winning strategies
in these games in a useful way. Let WΓ and W∆ be the sets of Γ-words and
∆-words respectively. Then for distinct γ, γ′ ∈ Γ we have that γW∆ and
γ′W∆ are disjoint, and the analogous fact is true when the roles of Γ and ∆
are switched.

We now proceed to our main lemma. Note that both Γ and ∆ act on
Free(NΓ∗∆) by restricting the left shift action of Γ ∗∆ to these subgroups.

Lemma 2.1. [Main Lemma] Let Γ,∆ be countable groups. If A ⊆ Free(NΓ∗∆)
is any Borel set, then at least one of the following holds:

(1) There is a continuous injective function f : Free(NΓ)→ Free(NΓ∗∆)
that is equivariant with respect to the left shift action of Γ on these
spaces and such that ran(f) ⊆ A.

(2) There is an continuous injective function f : Free(N∆)→ Free(NΓ∗∆)
that is equivariant with respect to the left shift action of ∆ on these
spaces and such that ran(f) ⊆ Free(NΓ∗∆) \A.

Proof. The main difficulty in our proof is arranging that our games produce
elements of Free(NΓ∗∆), and not merely elements of NΓ∗∆. To begin, we
make a definition that will get us halfway there. Let Y be the largest
invariant set of y ∈ NΓ∗∆ such that for all nonidentity γ ∈ Γ and δ ∈ ∆, we
have γ · y 6= y, and δ · y 6= y. That is, Y is the set of x ∈ NΓ∗∆ such that for
all α ∈ Γ ∗∆, if y = α−1 · x, then y has the property above. Note that Y
contains Free(NΓ∗∆).

Next, we give a definition that we will use to organize the turn on which
y(α) is defined in our game for each α ∈ Γ∗∆. Fix injective listings γ0, γ1, . . .
and δ0, δ1, . . . of all the nonidentity elements of Γ and ∆ respectively. We
define the turn function t : Γ ∗∆ → N as follows. First, define t(e) = −1.
Then, for each nonidentity element α ∈ Γ ∗ ∆, there is a unique sequence
i0, i1 . . . im such that α = γi0δi1γi2 . . . or α = δi0γi1δi2 . . .. We define t(α)
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to be the least n such that the associated sequence i0, i1, . . . im for α has
ij + j ≤ n for all j ≤ m. The key property of this definition is that if i ≤ n,
and α is a ∆-word or the identity, then t(γiα) ≤ n if and only if t(α) < n.
Of course, this remains true when the roles of Γ and ∆ are switched.

Now given a Borel set B ⊆ Y , and k ∈ N we define the following game GBk
for producing a y ∈ NΓ∗∆ such that y(e) = k. Player I goes first, and the
players alternate defining y on finitely many nonidentity elements of Γ ∗∆
as follows. On the nth turn of the game for n ≥ 0, player I must define y(α)
on all Γ-words α with t(α) = n, and then player II must respond by defining
y(α) on all ∆-words α with t(α) = n. We give an illustration of how the
game is played:

I II
y(γ0)

y(δ0)
y(γ1)
y(γ0δ0)
y(γ1δ0)

...

All that remains is to define the winning condition of the game. First, if
the y that is produced is in Y , then Player II wins the game if and only if y
is in B. If y /∈ Y then there must be some α such that there is a nonidentity
γ ∈ Γ such that γα−1 · y = α−1 · y, or there is a nonidentity δ ∈ ∆ such that
δα−1 · y = α−1 · y. In the former case, say (α,Γ) witnesses y /∈ Y , and in the
latter say (α,∆) witnesses y /∈ Y . Say α witnesses y /∈ Y if either (α,Γ) or
(α,∆) witnesses y /∈ Y . Now if (e,Γ) witnesses y /∈ Y , then player I loses.
Otherwise, if (e,∆) witnesses y /∈ Y then player II loses. Finally, if neither
of the above happens, then player I wins if and only if there is a ∆-word α
witnessing y /∈ Y such that for all Γ-words β with t(β) ≤ t(α), we have that
β does not witness y /∈ Y . This finishes the definition of our game.

Next, we associate to our set A ⊆ Free(NΓ∗∆) a set BA that we will use in
the play of our game. Let EΓ be the equivalence relation on Y where x EΓ y
if there is a γ ∈ Γ such that γ · x = y. Define E∆ similarly. By Lemma 2.3
which we defer till later, we can find a Borel subset C of Y \ Free(NΓ∗∆)
such that C meets every E∆-class on Y \ Free(NΓ∗∆) and its complement
Cc meets every EΓ-class on Y \ Free(NΓ∗∆). Let BA = A ∪ C. Our use of
C here will be important at the end of the proof to ensure that we create a
function into Free(NΓ∗∆) and not merely into Y .

By Borel determinacy, either player I or player II has a winning strategy

in GBA
k for each k ∈ N. So by the pigeon-hole principle, either player I

wins GBA
k for infinitely many k or player II wins GBA

k for infinitely many
k. Assume the latter case holds, and let S be the set of k such that player

II wins GBA
k . An analogous argument will work in the case that player I

wins for infinitely many k. Since there is a continuous injective equivariant
function from Free(NΓ) to Free(SΓ), it will suffice to define a continuous



8 ANDREW S. MARKS

injection f : Free(SΓ)→ Free(NΓ∗∆) that is equivariant with respect to the
left shift action of Γ on these spaces and such that ran(f) ⊆ A. Fix winning

strategies in each game GBA
k for k ∈ S.

We will define f so that for all x ∈ Free(NΓ) and all γ ∈ Γ, we have
f(x)(γ) = x(γ), and so that for all x, f(x) will be a winning outcome of

player II’s winning strategy in the game GBA

x(e).

We proceed as follows. Fix an x in Free(NΓ). For each γ ∈ Γ we will play

an instance of the game GBA

x(γ−1)
whose outcome will be γ · f(x). We play

these games for all γ ∈ Γ simultaneously. The moves for player II in these
games will be made by the winning strategies that we have fixed. We will
specify how to move for player I in these games to satisfy our requirement
that f is equivariant and f(x)(γ) = x(γ).

So for each γ ∈ Γ, we are playing an instance of the game GBA

x(γ−1)
to

define a y ∈ NΓ∗∆ equal to γ · f(x). To begin, we have γ · f(x)(e) = x(γ−1)
by the definition of the game.

Inductively, suppose γ · f(x)(α) is defined for all γ ∈ Γ and all α with
t(α) < n. We need to make the nth move for player I in all our games.
Suppose β is a Γ-word with t(β) = n so we can write β = γiα where
i ≤ n and t(α) < n. For all γ ∈ Γ, we now define (γ · f(x))(γiα) =
(γ−1
i · (γ · f(x)))(α) = (γ−1

i γ · f(x))(α), which has already been defined in

the game associated to γ−1
i γ by assumption. Hence we can make the nth

move for player I in all our games using this information. To finish the nth
turn, the winning strategies for player II in these games respond with their
nth moves, defining γ · f(x)(δiα) for all i ≤ n and all α such that α = e or
α is a ∆-word with t(α) < n.

Based on our definition, it is clear that f is injective, continuous, Γ-
equivariant, and that f(x) is an outcome of player II’s winning strategy in

GBA

x(e). All that remains is to show ran(f) ⊆ A.

First, we argue that for all x ∈ Free(NΓ), we have f(x) ∈ Y . Now
since x ∈ Free(NΓ) and f(x)(e) = x(e), we see that (e,Γ) can not witness
f(x) /∈ Y . Further, since f(x) is a winning outcome of a strategy for player
II, (e,∆) can not witness f(x) /∈ Y . Now we can prove inductively that
α does not witness f(x) /∈ Y for all x ∈ Free(NΓ) and all α ∈ Γ ∗ ∆ with
t(α) = n. For each n we do the case of Γ-words first, and then the case of
∆-words. Suppose α is a Γ-word with t(α) = n, so α = γβ for some γ ∈ Γ
and β with t(β) < t(α). Since α−1 · f(x) = β−1γ−1 · f(x) = β−1 · f(γ−1 · x)
and β does not witness f(γ−1 ·x) /∈ Y by our induction hypothesis, we must
have that α does not witness f(x) /∈ Y . Now suppose α is a ∆-word with
t(α) = n. We may assume no Γ-word β with t(β) ≤ n witnesses f(x) /∈ Y .
Hence, we see that player II must ensure α does not witness α · f(x) /∈ Y
otherwise they lose the game GBA

x(e) used to define f(x).
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For all x, since f(x) ∈ Y , we have f(x) ∈ BA, since f(x) is a winning

outcome for player II in some GBA

x(e). Finally, we claim that f(x) ∈ A for all

x. This is because ran(f) and A are Γ-invariant, BA = A ∪ C, and C does
not contain any nonempty Γ-invariant sets by definition. �

To finish establishing Lemma 2.1, we must prove Lemma 2.3 which was
used to define the set C above. We will prove a version for countably many
equivalence relations instead of merely two, since we will use this more
general version in a later paper.

We begin by recalling a useful tool for organizing constructions in Borel
combinatorics. Let X be a standard Borel space. We let [X]<∞ denote
the standard Borel space of finite subsets of X. If E is a countable Borel
equivalence relation, we let [E]<∞ be the Borel subset of [X]<∞ consisting
of the S ∈ [X]<∞ such that S is a subset of some equivalence class of E.
If Y is a Borel subset of [X]<∞, then the intersection graph on Y is the
graph G where R G S for distinct R,S ∈ Y if R ∩ S 6= ∅.

Lemma 2.2 ([18, Lemma 7.3] [6, Proposition 2]). Suppose E is a countable
Borel equivalence relation and let G be the intersection graph on [E]<∞.
Then G has a Borel N-coloring.

We will often use this lemma in the following way. Suppose E is a count-
able Borel equivalence relation and A is a Borel subset of [E]<∞ containing
at least one subset of every E-class. Then there is a Borel set B ⊆ A such
that elements of B are pairwise disjoint, and B meets every E-class. To see
this, pick some Borel N-coloring of the intersection graph of [E]<∞ using
Lemma 2.2, and then let B be the set of R ∈ A that are assigned the least
color of all elements of A from the same E-class.

We need a couple more definitions. Suppose that I ∈ {1, 2, . . . ,∞} and
{Ei}i<I are finitely many or countably many equivalence relations on X.
Then the Ei are said to be non-independent if there exists a sequence
x0, x1, . . . , xn of distinct elements of X, and i0, i1, . . . in ∈ N with n ≥ 2
such that ij 6= ij+1 for j < n, in 6= i0, and x0 Ei0 x1 Ei1 x2 . . . xn Ein x0.
We say this pair of sequences x0, . . . , xn and i0, . . . , in witnesses the non-
independence of the Ei. The Ei are said to be independent if they are
not non-independent. The join of the Ei, denoted

∨
i<I Ei, is the smallest

equivalence relation containing all the Ei. Precisely, x and y are
∨
i<I Ei-

related if there is a sequence x0, x1, . . . xn of elements in X such that x = x0,
y = xn, and for all j < n, we have xj Ei xj+1 for some i < I. Finally, we
say that the Ei are everywhere non-independent if for every

∨
i<I Ei

equivalence class A ⊆ X, the restrictions of the Ei to A are not independent.

Lemma 2.3. Suppose that I ∈ {1, 2, . . . ,∞} and {Ei}i<I are countable
Borel equivalence relations on a standard Borel space X that are everywhere
non-independent. Then there exists a Borel partition {Ai}i<I of X such that
for all i < I, Ai

c meets every Ei-class.
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Proof. Using Lemma 2.2, let C ⊆ [
∨
i<I Ei]

<∞ be a Borel set containing at
least one subset of each equivalence class of

∨
i<I Ei such that the elements of

C are pairwise disjoint and each set {x0, x1, . . . , xn} ∈ C can be assigned an
order x0, x1, . . . , xn and an associated sequence i0, . . . , in of natural numbers
such that these sequences witness the failure of the independence of the Ei.
Fix a Borel way of assigning such an order and associated i0, . . . , in to each
element of C. Define disjoint sets {Ai,0}i<I by setting x ∈ Ai,0 if there is an
element {x0, . . . , xn} of C with associated sequence i0, . . . , in and a j ≤ n
such that x = xj and i = ij . Note that for all i < I and for all x ∈ Ai,0,
there is a y ∈ [x]Ei and j 6= i such that y ∈ Aj,0.

Let k0, k1, . . . be a sequence containing each number less than I infinitely
many times. Given {Ai,n}i<I we construct disjoint sets {Ai,n+1}i<I , where
Ai,n+1 ⊇ Ai,n as follows. Let Bi,n+1 be the set of x such that x ∈ [Akn,n]Ei

and for all j < i, x /∈ [Akn,n]Ej . Then let Ai,n+1 = Ai,n∪ (Bi,n+1 \∪j 6=iAj,n).
The sets Ai,n are Borel, since every Ei is generated by the Borel action of a
countable group by the Feldman-Moore theorem [18, Theorem 1.3].

It is easy to prove by induction that for all x ∈ Ai,n, there is a y ∈ [x]Ei

and a j 6= i such that y ∈ Aj,n. Let Ai = ∪nAi,n, which are disjoint and
partition the space. �

3. Applications to Borel chromatic numbers and matchings

We now show how our main lemma can be applied to prove the theorems
discussed in the introduction. Recall that if G and H are Borel graphs on the
standard Borel spaces X and Y respectively, then a Borel homomorphism
from G to H is a Borel function f : X → Y such that x G y implies
f(x) H f(y). It is clear that if there is a Borel homomorphism f from G to
H, then χB(G) ≤ χB(H); if c is a Borel coloring of H, then c ◦ f is a Borel
coloring of G.

Theorem 3.1. If Γ and ∆ are finitely generated marked groups, then

χB(G(Γ ∗∆,N)) ≥ χB(G(Γ,N)) + χB(G(∆,N))− 1

Proof. Suppose χB(G(Γ,N)) = n + 1 and χB(G(∆,N)) = m + 1 so that
G(Γ,N) has no Borel n-coloring and G(∆,N) has no Borel m-coloring. Now
suppose c : Free(NΓ∗∆)→ {0, 1, . . . , (n+m−1)} was a Borel n+m-coloring
of G(Γ ∗ ∆,N) and let A be the set of x such that c(x) < n. If f is the
continuous equivariant function produced by Lemma 2.1, then c ◦ f gives
either a Borel n-coloring of G(Γ,N) or a Borel m-coloring of G(∆,N), both
of which are contradictions. �

Let C be the class of finitely generated marked groups Γ such that G(Γ,N)
is n-regular, and χB(G(Γ,N)) = n + 1, so that the upper bound on the
Borel chromatic number of G(Γ,N) given by Theorem 1.1 is sharp. Brooks’s
theorem in finite graph theory (see e.g. [9, Theorem 5.2.4]) implies that the
finite groups included in C are exactly those whose Cayley graphs are odd
cycles or complete graphs on n vertices. The only prior results giving infinite
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groups in C are from [16] where we have that Z and Z/2Z∗Z/2Z are in C when
equipped with their usual generators. Conley and Kechris [3, Theorem 0.10]
have shown that these are the only two groups with finitely many ends that
are in C. Theorem 3.1 implies that C is closed under free products; if G(Γ,N)
is n-regular and G(∆,N) is m-regular, then G(Γ ∗ ∆,N) is n + m-regular.
For example, χB(G((Z/2Z)∗n,N)) = n + 1, and χB(G(Fn,N)) = 2n + 1 for
all n.

Next, we will show that the Borel chromatic number of an n-regular
acyclic Borel graph can take any of the possible values between 2 and n+ 1
allowed by Theorem 1.1.

We begin with an easy lemma.

Lemma 3.2. Suppose G and H are acyclic Borel graphs on the standard
Borel spaces X and Y , where χB(G) ≥ 2. Suppose also f : X → Y is
an injective Borel homomorphism from G to H such that ∀x, y ∈ X, if
x and y are in different connected components of G, then f(x) and f(y)
are in different connected components of H. Then if A = [ran(f)]H is the
saturation of the range of f under the connectedness relation of H, then
χB(G) = χB(H � A).

Proof. χB(G) ≤ χB(H � A) since there is a Borel homomorphism from G to
H � A. It remains to show that χB(H � A) ≤ χB(G). Suppose c : X → Z
is a Borel coloring of G. Fix two colors z0 and z1 ∈ Z. Now we construct
a Borel coloring c′ : A → Z of H � A as follows. If y ∈ ran(f), then let
c′(y) = c(f−1(y)). Otherwise, there is a unique path in H of shortest length
l from y to an element y′ ∈ ran(f). If c(f−1(y′)) = z0, then let c(y) = z1 if
l is odd and c(y) = z0 if l is even. If c(f−1(y′)) 6= z0, then let c(y) = z0 if l
is odd and c(y) = z1 if l is even. �

We are ready to proceed.

Theorem 3.3. For every n ≥ 1 and every m ∈ {2, . . . , n + 1}, there is a
n-regular acyclic Borel graph G with χB(G) = m.

Proof. We have shown that for every k ≥ 2 we have χB(G((Z/2Z)∗k,N)) =

k + 1. Given m ∈ {2, . . . , n + 1}, canonically identify (Z/2Z)∗(m−1) with a

subgroup of (Z/2Z)∗n. Now let f : Free(N(Z/2Z)∗(m−1)
)→ Free(N(Z/2Z)∗n) be

the function where

f(x)(γ) =

{
x(γ) if γ ∈ (Z/2Z)∗(m−1)

0 otherwise.

We finish by applying Lemma 3.2 with G = G((Z/2Z)∗(m−1),N), H =
G((Z/2Z)∗n,N) and f as above to obtain a Borel set A saturated under the
connectedness relation of H so H � A is n-regular and χB(H � A) = m. �

The only case we know of where Theorem 3.1 gives a sharp lower bound
for the chromatic number of G(Γ ∗∆,N) is when Γ and ∆ are in the class
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C we have discussed above. However, it is open whether the lower bound of
Theorem 3.1 can ever be exceeded.

Question 3.4. Are there finitely generated marked groups Γ and ∆ such
that χB(G(Γ ∗∆,N)) > χB(G(Γ,N)) + χB(G(∆,N))− 1?

Now there is another obvious upper bound on the Borel chromatic number
of G(Γ ∗∆,N) which is better in some cases than that of Theorem 1.1:

Proposition 3.5. If Γ and ∆ are finitely generated marked groups, then
χB(G(Γ ∗∆,N)) ≤ χB(G(Γ,N))χB(G(∆,N))

Proof. We can decompose G(Γ ∗ ∆, X) as the disjoint union of two Borel
graphs GΓ and G∆ given by the edges corresponding to generators of Γ and
∆ respectively. Since GΓ and G∆ are induced by free actions of Γ and ∆,
their Borel chromatic numbers are less than or equal to χB(G(Γ,N)) and
χB(G(∆,N)) and hence we can use pairs of these colors to color G(Γ ∗∆,N).

�

It is likewise open whether this upper bound can ever be achieved.

Question 3.6. Are there nontrivial finitely generated marked groups Γ and
∆ such that χB(G(Γ ∗∆,N)) = χB(G(Γ,N))χB(G(∆,N))?

A positive answer to this question would also give a positive answer to
Question 3.4. It seems natural to believe Question 3.6 has a positive answer
in cases where G(Γ ∗∆,N) is n-regular and χB(G(Γ,N))χB(G(∆,N)) ≤ n,
so that the bound of Proposition 3.5 is better than that of Theorem 1.1.
For example, if m > 2 is even, and we generate Z/mZ by a single element,
then G(Z/mZ ∗Z/mZ,N) is 4-regular and has Borel chromatic number ≤ 4
by Proposition 3.5. Likewise, Zn is another source of such examples, since
G(Zn,N) is a 2n-regular Borel graph with χB(G(Zn,N)) ≤ 4 by [13].

Next, we turn to matchings and edge colorings. We begin with the fol-
lowing theorem on disjoint complete sections.

Theorem 3.7. Let Γ and ∆ be countable groups. Let EΓ be the equivalence
relation on Free(NΓ∗∆) where x EΓ y if there exists a γ ∈ Γ such that
γ · x = y. Define E∆ analogously. Then EΓ and E∆ do not have Borel
disjoint complete sections.

Proof. Let A be any Borel subset of Free(NΓ∗∆). Then the range of the
f produced by Lemma 2.1 is either an EΓ-invariant set contained in A, or
an E∆-invariant set contained in the complement of A. Hence, A cannot
simultaneously meet every E∆ class and have its complement meet every
EΓ-class. �

We now use this fact to obtain a couple of results on matchings and edge
colorings of Borel bipartite graphs.

Theorem 3.8. For every n > 1, there exists an n-regular acyclic Borel
bipartite graph with no Borel perfect matching.
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Proof. Let Γ = ∆ = Z/nZ in Theorem 3.7. Let Y ⊆ [Free(NΓ∗∆)]n be the
standard Borel space consisting of the equivalence classes of EΓ and E∆.
Let G be the intersection graph on Y . This is an n-regular acyclic Borel
bipartite graph. If M ⊆ Y × Y was a Borel perfect matching for G, then
setting

A = {x ∈ NΓ∗∆ : ∃(R,S) ∈M such that {x} = R ∩ S},
we see that A and the complement of A would be Borel disjoint complete
sections for EΓ and E∆, contradicting Theorem 3.7. �

The graph used above was suggested as a candidate for a graph with no
perfect matching by Conley and Kechris [3]. Lyons and Nazarov [20] have
shown that in the case n = 3, this graph has a measurable matching with
respect to a natural measure.

Theorem 3.9. For every n, there exists an n-regular acyclic Borel bipartite
graph with no Borel edge coloring with 2n− 2 colors.

Proof. We use the same graph as in Theorem 3.8. Suppose for a contradic-
tion that it had a Borel edge coloring with 2n− 2 colors. By the pigeonhole
principle, each vertex of G must be incident to at least one edge assigned an
even color, and at least one edge assigned an odd color. Let A be the set of
points x in Free(NΓ∗∆) such that {x} = R∩S where R is an equivalence class
of EΓ, S is an equivalence class of E∆, and the edge (R,S) in G is colored
with an even color. Then A is a complete section for EΓ, and the complement
of A is a complete section for E∆, contradicting Theorem 3.7. �

Now we can give an exact characterization of the possible Borel edge
chromatic numbers of n-regular acyclic Borel bipartite graphs.

Theorem 3.10. For every n ≥ 1 and every m ∈ {n, . . . , 2n − 1}, there is
an n-regular acyclic Borel bipartite graph G such that χ′B(G) = m.

Proof. Let G be an n-regular acyclic Borel graph on X with χ′(G) ≥ 2n− 1
by Theorem 3.9. Let m be an element of {n, . . . , 2n− 1}. There is an edge
coloring of G using 2n− 1 colors by Theorem 1.1 and our discussion in the
introduction before Theorem 1.4. Let G′ ⊆ G be the set of edges colored
using one of the first m colors. Then clearly the graph G′ on X has a Borel
edge coloring with m colors. It cannot have a Borel edge coloring with m−1
colors as this would give an edge coloring of G with 2n− 2 colors. Now let
Y be an uncountable standard Borel space, and let H be an extension of G′

to an n-regular Borel bipartite graph H on X tY such that each connected
component of H \G′ has at most one point in X. Then χ′B(H) = m. �

In the theorems we have proved above, we have mostly worked on spaces
of the form Free(NΓ). As we described in the introduction, this is quite
natural since the graph G(Γ,N) achieves the maximal chromatic number of
all Borel graphs generated by free actions of Γ. However, it is interesting to
ask what happens when we change our base space to be finite. For example,
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it is an open question whether there is a dichotomy characterizing when a
pair of countable Borel equivalence relations admits Borel disjoint complete
sections, and here we would like to know whether Theorem 3.7 remains true
when we change N to be some finite k. As we will see, this is the case when
k = 3, but it is open for k = 2. Likewise, we would like to compute the
Borel chromatic number of graphs of the form G(Γ, k) for k ≥ 2. Clearly, if
k ≤ m are both at least 2, then χB(G(Γ, k)) ≤ χB(G(Γ,m)) ≤ χB(G(Γ,N)).
It is open whether these chromatic numbers can ever be different1 :

Question 3.11. Does there exist a finitely generated marked group Γ such
that χB(G(Γ,N)) 6= χB(G(Γ, 2))?

Certainly, there are no obvious tools to show such chromatic numbers
can be different. One approach to showing that these chromatic numbers
are always the same would be to show the existence of a Borel homomor-
phism from G(Γ,N) to G(Γ, 2). To do this it would be sufficient to find an
equivariant Borel function from Free(NΓ) to Free(2Γ). We note that such a
function could not be injective in the case when Γ is sofic (which includes
all the examples of groups we have discussed). This follows from results of
Bowen on sofic entropy, as pointed out by Thomas [25, Theorem 6.11].

In the measurable context, when (X,µ) is a standard probability space, we
can say a bit more about the µΓ-measurable chromatic number of graphs of
the form G(Γ, X), as X and µ vary. Recall from [3] that the µ-measurable
chromatic number of a Borel graph G on a standard probability space
(X,µ) is the least cardinality of a Polish space Y such that there is a µ-
measurable coloring c : X → Y of G. Now given Borel actions a and b of Γ
on the Borel probability spaces (X,µ) and (Y, ν) respectively, a factor map
from a to b is a µ-measurable equivariant function f : X → Y such that the
pushforward of µ under f is ν. Bowen [1, Theorem 1.1] has shown that if Γ
contains a nonabelian free subgroup, then given any nontrivial probability
measures µ and ν on the standard Borel spaces X and Y , there is a factor
map from the left shift action of Γ on (XΓ, µΓ) to the left shift action of
Γ on (Y Γ, νΓ). Hence, the µΓ-measurable chromatic number of G(Γ, X) is
equal to the νΓ-measurable chromatic number of G(Γ, Y ) for all such (X,µ)
and (Y, ν). For some more results of this type for nonamenable groups in
general, see [2].

We now return to the pure Borel context, and end this section by noting
that we have the following variant of Lemma 2.1 for finite base spaces.
This lemma can be proved using a nearly identical argument to that of
Lemma 2.1 except changing the application of the pigeon-hole principle in
the obvious way. From this, one can derive versions of all of the Theorems
above for finite base spaces. For example, we have χB(G(Γ∗∆,m+n−1)) ≥

1Recently, Seward and Tucker-Drob [24] have answered this question in the negative.
They show that for every countable group Γ, there is an equivariant Borel function from
Free(NΓ) → Free(2Γ).
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χB(G(Γ,m)) + χB(G(∆, n)) − 1, and Theorem 3.7 and its corollaries hold
using 3 instead of N.

Lemma 3.12. Let Γ,∆ be countable groups and m,n ≥ 2 be finite. If
A ⊆ Free((m+n−1)Γ∗∆) is any Borel set, then at least one of the following
holds:

(1) There is an continuous injective function f : Free(nΓ)→ Free((m+
n− 1)Γ∗∆) that is equivariant with respect to the left shift action of
Γ on these spaces and such that ran(f) ⊆ A.

(2) There is an continuous injective function f : Free(m∆)→ Free((m+
n− 1)Γ∗∆) that is equivariant with respect to the left shift action of
∆ on these spaces and such that ran(f) ⊆ Ac.

4. Disjoint complete sections for measure and category

We turn now to the question of whether Theorem 3.7 can be proved using
purely measure theory or Baire category. In the case when Γ = ∆ = Z/2Z,
we can prove Theorem 3.7 using either of these two tools. If the generators
of Γ and ∆ are α and β, then any nontrivial product probability measure
on Free(N(Z/2Z)∗(Z/2Z)) has the property that the map x 7→ αβ ·x is ergodic,
and the two maps x 7→ α · x and x 7→ β · x are both measure preserving.
This is enough to conclude the Theorem 3.7 in this case. We can similarly
give a Baire category argument using generic ergodicity. We will show that
Γ = ∆ = Z/2Z is the only nontrivial pair of Γ and ∆ for which measure or
category can prove Theorem 3.7.

We begin by showing that Borel disjoint complete sections exist in the
measure context for aperiodic countable Borel equivalence relations. Recall
that an equivalence relation is said to be aperiodic if all of its equivalence
classes are infinite.

Lemma 4.1. Let µ be a Borel probability measure on a standard Borel space
X. Then if E and F are aperiodic countable Borel equivalence relations
on X, there exist disjoint Borel sets A and B such that A meets µ-a.e.
equivalence class of E and B meets µ-a.e. equivalence class of F .

Proof. It follows from the marker lemma [18, Lemma 6.7] that we can find
a decreasing sequence C0 ⊇ C1 ⊇ . . . of Borel sets that are each complete
sections for both E and F and such that their intersection

⋂
Ci is empty.

Note that for each n and ε > 0, there is i > n such that

µ([Cn \ Ci]E) > 1− ε and µ([Cn \ Ci]F ) > 1− ε

It follows that we can find a strictly increasing sequence (ik)k such that

µ([
⋃
k≥0

(Ci2k \ Ci2k+1
)]E) = 1 and µ([

⋃
k≥0

(Ci2k+1
\ Ci2k+2

)]F ) = 1

Now set A = ∪k≥0(Ci2k \ Ci2k+1
) and B = ∪k≥0(Ci2k+1

\ Ci2k+2
). �
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Our goal is to extend this result to all pairs of countable Borel equivalence
relations E and F where every E class has at least 2 elements and every
F -class has at least 3 elements. We will do this by reducing it to the case
we have already proved above. More precisely, in Theorem 4.5 we will show
that several types of problems are equivalent in a Borel way to the problem
of finding Borel disjoint complete sections for pairs of such equivalence rela-
tions. That is, to each instance of each type of problem, we will demonstrate
how to construct an instance of each of the other types so that a solution
to these problems can be transformed in a Borel way into a solution of the
original problem. The exact sense in which this is done will be clear in our
proof. Of course, the idea of reductions between combinatorial problems has
a long history. For an example of recent work with a similar effective flavor,
see [10].

We first introduce another combinatorial problem. If G is a graph on X,
an antimatching of G is a function f : X → X such that for all x ∈ X, we
have x G f(x) and f(f(x)) 6= x. A partial antimatching of G is a partial
function f : X → X satisfying these conditions for all x ∈ dom(f).

We have the following lemma constructing antimatchings in the topolog-
ical context, using a result of Conley and Miller on the existence of Borel
matchings in the topological context:

Lemma 4.2. Suppose n ≥ 3 and G is an acyclic Borel bipartite n-regular
graph on a Polish space X. Then there exists a Borel antimatching of G
modulo a G-invariant meager set.

Proof. By [5], there exists a Borel perfect matching for G restricted to a
G-invariant meager set C. Let A be one half of a Borel partition of X
witnessing the bipartiteness of G, and let M be the Borel perfect matching
of G � C. Then we can construct a Borel antimatching f for G � C in the
following way: if x ∈ A and {x, y} ∈ M , then set f(x) = y. If x /∈ A, then
choose some neighbor y of x such that {x, y} /∈M and set f(x) = y. �

The following lemma is useful when dealing with Borel antimatchings.

Lemma 4.3. Suppose G is a locally countable Borel graph, and f is a partial
Borel antimatching of G such that ran(f) ⊆ dom(f), and every connected
component of G contains some x ∈ dom(f). Then f can be extended to a
total Borel antimatching f∗ of G.

Proof. Define f∗ as follows. Let f∗(x) = f(x) if x ∈ dom(f). Otherwise,
let f∗(x) = y, for some neighbor y of x such that the distance in G from
y to an element of dom(f) is as small as possible (using Lusin-Novikov
uniformization [17, 18.10, 18.15] to choose such a y when there is more than
one). Then clearly f∗(f∗(x)) 6= x since for any x /∈ dom(f), we have that
f∗(x) is closer to some element of dom(f) than x. �

Throughout this section, we assume that we have a Borel linear order on
all our standard Borel spaces. Thus, when we speak of the least element of



A DETERMINACY APPROACH TO BOREL COMBINATORICS 17

some finite subset of a standard Borel space, we are referring to the least
element with respect to this order. One way of obtaining such a linear
order is via a Borel bijection with a standard Borel space equipped with a
canonical Borel linear ordering, such as the one on R. These linear orderings
are useful when we need to break “ties” in our constructions when we are
faced with some irrelevant choice. In cases where we need to choose one
of finitely many points, we will generally break ties by choosing the least
point according to this ordering. In cases where we need to choose one of
countably many options, we can use uniformization as we have above.

Lemma 4.4. If G is an acyclic locally finite Borel graph of degree ≥ 2,
then there is a partial Borel antimatching f of G such that G � (dom(f))c

is 2-regular.

Proof. Let G be a locally finite Borel graph of degree ≥ 2 on a standard
Borel space X. Using Lemma 2.2, let {Ai}i∈N be a Borel partition of X
such that for all i, for all distinct x, y ∈ Ai, the distance between x and y in
G is greater than 2.

Let k0, k1, . . . be a sequence containing each natural number infinitely
many times. We define a sequence f0 ⊆ f1 ⊆ . . . of partial Borel antimatch-
ings whose union will be the f we desire. These fi will all have the property
that if x ∈ ran(fi) and x /∈ dom(fi), then there exist exactly two neighbors
y of x such that y /∈ dom(fi) or fi(y) 6= x.

Let f0 = ∅. Now we define fi+1 ⊇ fi. For each x ∈ Aki such that
x /∈ dom(fi), do the following: if there exists some neighbor y of x such that
y ∈ dom(fi) and fi(y) 6= x, then use uniformization to choose some such y
and define fi+1(x) = y. If there does not exist any such y and x /∈ ran(fi),
then choose exactly two neighbors y1 and y2 of x and define fi+1(y) = x for
all neighbors y of x that are not equal to y1 or y2.

Let f =
⋃
i∈N fi. Now if x /∈ dom(f), there are exactly two neighbors y

of x such that y /∈ dom(f) or f(y) 6= x. However, if x had a neighbor y such
that f(y) 6= x, then we would have x ∈ dom(f). Hence, both these two y
must not be in dom(f). Thus, G � (dom(f))c is 2-regular. �

We are now ready to proceed.

Theorem 4.5. Suppose n ≥ 3. Then the following statements are all false.
However, the statements are all true modulo a nullset with respect to any
Borel probability measure, and true modulo a meager set with respect to any
compatible Polish topology.

(1) Every pair E and F of countable Borel equivalence relations on a
standard Borel space X such that the E-classes all have cardinality
≥ 3 and the F -classes all have cardinality ≥ 2 admits disjoint Borel
complete sections.

(2) Every pair E and F of independent aperiodic countable Borel equiv-
alence relations admits disjoint Borel complete sections.
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(3) Every locally finite Borel graph G having degree at least 3 has a Borel
antimatching.

(4) Every acyclic Borel bipartite n-regular graph G has a Borel anti-
matching.

Proof. (1) is false by Theorem 3.7. (2) is true in the measure-theoretic
context by Lemma 4.1. (4) is true in the topological context by Lemma 4.2.

We will finish the proof of the theorem by showing (1) ⇒ (2) ⇒ (3) ⇒
(1), and (3) ⇒ (4) ⇒ (2). Further, each of these implications will be done
in a “local” way so that these implications also yield the truth of these
statements in the measure and category contexts. We will discuss this more
in what follows.

(1) ⇒ (2) is obvious.
(2) ⇒ (3). Let X be a standard Borel space. We will begin by proving

the special case where G is a 3-regular acyclic Borel graph on {0, 1} × X
where (0, x) G (1, y) if and only if x = y. For i ∈ {0, 1}, let Fi be the
equivalence relation on X such that x Fi y if and only if (i, x) and (i, y) are
in the same connected component of G � {i} ×X. The Fi are independent
because G is acyclic. Let B ⊆ X be a Borel set such that B is a complete
section for F0 and Bc is a complete section for F1. We can use B to define a
Borel antimatching. The rough idea is to direct elements of {0}×X towards
elements of B and direct elements of {1} ×X away from elements of B.

If x ∈ B, define f((0, x)) = (1, x). Then let z be a point of Bc such
that (1, z) is closest to (1, x) in G � {1} × X (breaking ties as usual), and
define f((1, x)) = (1, y) where (1, y) is the neighbor of (1, x) along the path
from (1, x) to (1, z). Likewise, if x ∈ Bc, define f((1, x)) = (0, x), let z be
a point of B such that (0, z) is closest to (0, x) in G � {0} ×X, and define
f((0, x)) = (0, y) where (0, y) is the neighbor of (0, x) along the path from
(0, x) to (0, z).

Now let G be an arbitrary locally finite Borel graph on X having degree at
least 3. First, we may assume that G is acyclic. To see this, use Lemma 2.2
to obtain a Borel set C of pairwise disjoint cycles that contains at least one
cycle from each connected component of G containing a cycle. Now define
a Borel antimatching f on these connected components as follows. For each
cycle x0, x1, . . . xn = x0 in C, let f(xi) = xi+1 for i < n, and f(xn) = x0.
Now use Lemma 4.3 to extend f to a total Borel antimatching f∗ on these
connected components.

So assume that G is acyclic. By Lemma 4.4, we can find a partial Borel
antimatching of G such that G � (dom(f))c is 2-regular. Let A = (dom(f))c.
Now take a Borel set of edges of G � A that are pairwise disjoint and so that
the set contains at least one edge from each connected component of G � A.
Remove these edges from G to obtain the Borel graph G′ on X. Now using
Lemma 4.4 on G′, we may obtain another set B ⊆ X that is the complement
of a partial Borel antimatching on G′ such that G′ � B is 2-regular. Note
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that G � A and G′ � B do not have any connected components that are
equal.

Now these A and B correspond to places where we have failed to construct
antimatchings. Hence, without loss of generality, we may assume that each
connected component of G meets both A and B. By Lemma 2.2, let C be a
Borel set of pairwise disjoint finite paths in G from elements of A to elements
of B that contains at least one path from every connected component of G.
We may assume that if x0, . . . , xn is a path in C, then x0 is the only point
of this path in A, and xn is the only point of this path in B. (We allow
paths consisting of a single point where A and B intersect). Thus, each pair
of connected components of G � A and G′ � B are connected by at most one
path in C, since G is acyclic.

Let S ⊆ X consist of the connected components of G � A that meet
only finitely many paths in C. Since this set has a Borel transversal, we
can obtain a Borel antimatching of G � S. We can then use Lemma 4.3
to extend this to a Borel antimatching of the connected components of G
that meet S. An identical comment is true for B. Thus, without loss of
generality, we can assume that for each connected component of G � A and
G′ � B, if there is a path in C that meets this connected component, then
there are infinitely many.

Let Y be the collection of starting points of paths in C, and Z be the col-
lection of ending points of paths in C, so there is a canonical Borel bijection
between Y and Z. Note that Y and Z may have nonempty intersection.
Define W = {0} × Y ∪ {1} × Z. Consider the 3-regular Borel graph H on
W , defined by the following three conditions. First, (0, x) H (1, y) if and
only if there is a path in C from x to y. Second, (0, x) H (0, y) if and only if
there is a path from x to y in G � A that does not contain any other element
of Y . Third, (1, x) H (1, y) if and only if there is a path from x to y in
G′ � B that does not contain any other element of Z. H is 3-regular since
connected components of G � A and G′ � B that are met by paths in C are
met by infinitely many such paths.
H is a graph of the type we discussed at the beginning of this proof, and

hence we can find a Borel antimatching of H. Let A∗ ⊆ A be the points
that are in the same connected component of G � A as some element of
Y . Let B∗ ⊆ B be the points that are in the same connected component
of G′ � B as some element of Z. It is clear that we can lift the Borel
antimatching of H to a partial Borel antimatching f of G whose domain is
A∗ ∪ B∗ ∪ {x : ∃p ∈ C(x ∈ p)}, and such that ran(f) ⊆ dom(f). We finish
by applying Lemma 4.3.

Our proof above has shown that (2) ⇒ (3). We now show that assuming
that (2) is true modulo a nullset with respect to every Borel probability
measure implies that (3) is true modulo a nullset with respect to every
Borel probability measure.

Assume G is a locally finite Borel graph on X and µ is a Borel probability
measure on X. Let EG be the connectedness relation for G. We can find
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a Borel probability measure ν which dominates µ and such that ν is EG-
quasi-invariant [18, Section 8]. Now perform the same process as above to
obtain a pair of equivalence relations E and F on some Borel subset Y of X,
such that from Borel disjoint complete sections for E and F , we can define
a Borel antimatching of G.

Now this transformation of disjoint complete sections for E and F into
an antimatching of G is “local” in the sense that inside each connected
component C of G, we have a Borel way of transforming disjoint complete
sections for E � Y ∩C and F � Y ∩C into an antimatching of G � C. Hence,
given disjoint Borel sets A and B such that A meets ν-a.e. E-class and B
meets ν-.a.e. F -class, we can find a Borel antimatching of G restricted to a
Borel ν-conull set, since ν is EG-quasi-invariant.

Throughout the remainder of this proof, the same idea as above can be
used to turn pure Borel implications between our four statements into im-
plications in the measure context, and in the Baire category context. We
leave it to the reader to perform the rest of these transformations.

(3)⇒ (1) Let E and F be countable Borel equivalence relations such that
every E-class has cardinality ≥ 3 and every F class has cardinality ≥ 2.
By [18, Proposition 7.4], there exist Borel equivalence relations E∗ ⊆ E and
F ∗ ⊆ F such that every E∗-class is finite and has cardinality ≥ 3 and every
F ∗-class is finite and has cardinality ≥ 2. Hence, we may assume that all
the equivalence classes of E and F are finite. Let Y tZ be the disjoint union
of the equivalence classes of E and the equivalence classes of F respectively.
Let G be the graph on Y t Z where R and S are adjacent in G if R ∈ Y ,
S ∈ Z, and R ∩ S 6= ∅.

Now let W be an uncountable standard Borel space, and extend G to a
locally finite Borel graph G∗ on Y t Z tW so that every vertex in Y tW
has degree ≥ 3 in G∗, every vertex in Z has degree ≥ 2 in G∗, and such that
R ∈ Y t Z is adjacent to an element of W in G∗ if and only if R ∈ Y and
the degree of R is < 3 in G or R ∈ Z and the degree of R is < 2 in G. Note
that for such R there must be S ∈ Y t Z distinct from R such that R ∩ S
has cardinality ≥ 2.

Now let f be a Borel antimatching of G∗. Of course, G∗ does not have
degree ≥ 3. However, the neighbors of every degree 2 vertex in G∗ all have
degree ≥ 3. Hence, we can contract away vertices of degree 2, find a Borel
antimatching of this graph, and then use it in the obvious way to find a
Borel antimatching of G∗.

Let A0 be the set of x ∈ X such that there exists R ∈ Y such that
f(R) ∈ Z and R ∩ f(R) = {x}. Let A1 be the Borel set of x ∈ X such that
there exists an R ∈ Y and S ∈ Z such that R ∩ S has cardinality ≥ 2, and
x is the least element of R ∩ S. Let A = A0 ∪ A1. Clearly A meets every
equivalence class of E, and Ac meets every equivalence class of F .

(3) ⇒ (4) is obvious.
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(4) ⇒ (2). Suppose we have two independent aperiodic countable Borel
equivalence relations E and F on a standard Borel space X. By [18, Propo-
sition 7.4] we can find E∗ and F ∗, finite Borel subequivalence relations of
E and F whose equivalence classes all have cardinality n. The intersection
graph of their equivalence classes is Borel bipartite and n-regular. From a
Borel antimatching for this graph, we can produce Borel disjoint complete
sections for E and F , as in the proof that (3) ⇒ (1). �

Our final goal will be to prove a theorem about edge colorings for 3-regular
acyclic Borel bipartite graphs in the context of measure and category. This
will follow from several more equivalences extending those of Theorem 4.5
above.

We begin with another definition. Suppose G is a graph on X. A direct-
ing of G is a set D ⊆ G that contains exactly one of (x, y) and (y, x) for
every pair of neighbors x, y ∈ X. A partial directing of G is a subset of
G that contains at most one of (x, y) and (y, x) for every pair of neighbors
x, y ∈ X. Given a partial directing D of a graph G, say that a point x ∈ X
is a source if (x, y) ∈ D for some y, and (y, x) /∈ D for all y. Similarly, say
that a point x ∈ X is a sink if (y, x) ∈ D for some y, and (x, y) /∈ D for all
y. Of course, if f is an antimatching of a graph G and we extend the set
{(x, f(x)) : x ∈ X} to a directing D of G, then this directing will have no
sinks.

Lemma 4.6. Suppose that G is a locally countable Borel graph such that
each vertex of G has degree ≥ 2, and D is a partial Borel directing of G
without sources or sinks. Suppose also that every connected component of G
contains at least one vertex that is incident to an edge of D. Then D can
be extended to a total Borel directing D∗ of G that has no sources or sinks.

Proof. Suppose that x0, x1, . . . , xn is a path in G such that x0 and xn are
both incident to edges already in D. Then we can extend D by adding the
edges from x0, x1, . . . , xn that do not conflict with edges already in D; add
(xi, xi+1) to D unless (xi+1, xi) is already in D. The property that D has
no sources or sinks is preserved when we add paths in this way. Similarly,
given a cycle, we can extend D using this cycle in the analogous way, while
preserving the property that D has no sources or sinks.

Use Lemma 2.2 to partition all the finite paths and cycles of G into
countably many Borel sets {Pi}i∈N such that the elements of each Pi are
pairwise disjoint. Let k0, k1, . . . be a sequence that contains each element
of N infinitely many times. Let D0 = D. Now define Di+1 from Di by
extending Di via all the cycles of Pki , and all the paths of Pki that start and
end at vertices incident to at least one edge in Di. Let D∞ =

⋃
i∈NDi.

Let A be the set of vertices that are incident to at least one edge in D∞.
It is clear that if x0 ∈ A and x0, x1, . . . , xn is a path in G, then xn ∈ A
implies that xi ∈ A for all 0 ≤ i ≤ n.

We finish by extending D∞ to D∗ by directing the remaining edges of
G “away” from D∞. More precisely, let x and y be distinct elements of X
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and suppose that neither (x, y) nor (y, x) are in D∞. Then there must be a
unique path x0, . . . , xn such that x0 is incident to an edge in D∞, and the
path ends with (xn−1, xn) equal to (y, x) or (x, y). Extend D∞ to D∗ by
adding all such (xn−1, xn). �

Theorem 4.7. The fallowing statements are all false in the full Borel con-
text. They are true modulo a nullset with respect to any Borel probability
measure, and true modulo a meager set with respect to any compatible Polish
topology.

(1) Every pair of countable Borel equivalence relations E and F on a
standard Borel space X such that the E-classes all have cardinality
≥ 3 and the F -classes all have cardinality ≥ 2 admits disjoint Borel
complete sections.

(2) For every pair of aperiodic countable Borel equivalence relations E
and F on a standard Borel space X, there exists a Borel set B ⊆ X
such that B and Bc are complete sections for both E and F .

(3) Every 3-regular Borel graph has a directing with no sinks or sources.
(4) Every 3-regular Borel bipartite graph has a Borel edge coloring with

4 colors.

Proof. (1) is false by Theorem 3.7 and true in the measure and category
context by Theorem 4.5. We will use the same type of proof as Theorem 4.5.

(1) ⇒ (2). Since E and F are aperiodic, the argument that (3) ⇒ (1) in
Theorem 4.5 produces subequivalence relations E∗ and F ∗ of E and F with
finite classes, and a Borel set A such that A and Ac are complete sections for
E∗, and Ac is a complete section for F ∗. Hence, A meets every E-class, and
Ac meets every E-class and every F -class in infinitely many places. Thus,
if we run the same argument on the aperiodic equivalence relations E � Ac

and F � Ac with their roles reversed, we obtain a Borel set A′ ⊆ Ac such
that A′ meets every F � Ac-class, and (A′)c meets both every E � Ac-class
and every F � Ac-class. Now let B = A ∪A′.

(2) ⇒ (1) follows from Theorem 4.5.
(2) ⇒ (3). Let G be a 3-regular Borel graph. Using Lemma 4.6, we may

assume that G is acyclic, as in the proof of (2) ⇒ (3) for Theorem 4.5.
We begin by letting Y ⊆ [X]2 be a Borel set of pairwise disjoint edges of

G that contains at least one edge from each connected component of G. We
define two countable Borel equivalence relations E and F on Y as follows:
R and S are related by E if their least points are connected in G \ Y , and
related by F if their greatest points are connected in G \ Y . Here we use
G \ Y to denote the graph G with the edges from Y removed.

We may assume that all the equivalence classes of E and F are infinite;
on the connected components of G\Y that correspond to equivalence classes
of E and F that are finite, and we can apply Lemma 4.6 to get a directing
of the connected components of G containing points corresponding to finite
E-classes or F -classes.
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Now let B ⊆ Y be a Borel set such that both B and Bc are complete
sections for E and F . Let D0 = {(x, y) : {x, y} ∈ B and x is less than y}.
Each connected component of G \ Y contains infinitely many x such that
(x, y) ∈ D0 for some y, and infinitely many y such that (x, y) ∈ D0 for
some x. We will extend D0 to a total Borel directing of G without sinks or
sources.

Consider the set of paths x0, x1, . . . , xn in G \ Y such that there exists y
and z such that both (y, x0) and (xn, z) are in D0. We may use Lemma 2.2 to
partition these paths into countably many Borel sets {Pi}i∈N such that the
elements of each Pi are pairwise disjoint. Now as in the proof of Lemma 4.6,
for each i ∈ N, extend each Di to Di+1 by adding the edges from the paths
of Pi which do not conflict with edges already in Di. Let D∞ =

⋃
i∈NDi.

Then complete D∞ to a total directing D using Lemma 4.6.
(3) ⇒ (1) follows from Theorem 4.5. It is clear that such a directing can

be used to define a Borel antimatching.
(3) ⇒ (4). Suppose that G is a Borel bipartite 3-regular graph whose

bipartiteness is witnessed by the Borel sets A and B. Suppose D is a Borel
directing of G without sinks or sources. We can use D to write G as the
disjoint union of two graphs H0 and H1 in the following way: the edges of
H0 are those directed by D from A to B, and the edges of H1 are those
directed by D from B to A. The vertices in H0 and H1 all have degree 1
or 2. Hence, each connected component of the Hi is finite, a ray (having
exactly one vertex of degree 1), or a line (having no vertices of degree 1).

If all the connected components of H0 and H1 were finite or rays, then
it would be trivial to construct a Borel edge coloring of G with four colors;
we could simply edge color H0 using the colors {0, 1}, edge color H1 using
the colors {2, 3}, and then take the union of these colorings. Our problem
is that in general, we will need to use 3 colors in an edge coloring of an Hi

containing lines.
Let Y ⊆ [X]2 be a Borel set of pairwise disjoint edges from H0 consist-

ing of infinitely many edges from each line in H0. Define the countable
Borel equivalence relations F0 and F1 on Y where S and R are Fi-related if
there exist x ∈ S and y ∈ R that are in the same connected component of
Hi. Clearly every equivalence class of F0 is infinite, however, there may be
equivalence classes of F1 that are finite.

Now take a Borel set C ⊆ Y that is a complete section for F0, so that
Cc meets every infinite equivalence class of F1. We can find such a C by
letting Z be an uncountable standard Borel space and extending F0 and F1

to aperiodic equivalence relations F ∗0 and F ∗1 on Y t Z such that if x ∈ Z
and y ∈ Y , then x��F

∗
0 y and xF ∗1 y only if [y]F1 is finite. Now find disjoint

complete sections for F ∗0 and F ∗1 .
Let H∗0 be the graph H0 but with the edges from C removed, and let H∗1

be the graph H1 but with the edges from C added. Clearly H∗0 has no lines.
Further, all the lines that we have added to H∗1 must contain rays from H1.
This is because the elements of C in a new line in H∗1 must all be F1-related,
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and therefore come from an F1-class that is finite. Hence, we can edge-color
these lines from H∗1 in a Borel way with 2-colors.

If we perform the same process again with H∗1 and H∗0 in lieu of H0

and H1, respectively, then we obtain Borel graphs H∗∗0 and H∗∗1 such that
G = H∗∗0 ∪ H∗∗1 and both H∗∗0 and H∗∗1 have Borel edge colorings with 2
colors.

(4) ⇒ (1). We use Theorem 4.5 again. Let G be a Borel bipartite 3-
regular graph, whose bipartiteness is witnessed by the Borel sets A and B.
Suppose that G has a Borel edge coloring with 4 colors. We can use this
coloring to define a Borel antimatching of G. First, partition the four colors
into the sets {0, 1} and {2, 3}. Notice that each vertex must be incident to
at least one edge of color 0 or 1, and at least one edge of color 2 or 3. Thus,
we can define a Borel antimatching by setting f(x) = y if x ∈ A and y is
the least neighbor of x such that (x, y) is colored 0 or 1, or if x ∈ B and y
is the least neighbor of x such that (x, y) is colored 2 or 3. �

As a consequence of the above lemma, we obtain the following:

Theorem 4.8. Suppose G is a Borel bipartite 3-regular graph on X. Then
G has a Borel edge coloring with 4 colors modulo a null set or meager set with
respect to any Borel probability measure on X or Polish topology realizing
the standard Borel structure of X.

The full measurable analogue of Vizing’s theorem for Borel graphs remains
open.

Question 4.9. Given any n-regular Borel graph G on a standard Borel
probability space (X,µ), must there be a µ-measurable edge coloring of G
with n+ 1 colors?
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