
The e�et of Markov's Priniple on the intuitionisti ontinuum

Joan Rand Moshovakis

Let M be the minimal two-sorted extension of Heyting Arithmeti, with full

indution in the extended language, whih was used e.g. by Kleene [1℄ to formalize

the theory of reursive partial funtions of type 2. In addition to the de�ning equa-

tions for �nitely many primitive reursive funtion onstants, M has the funtion

existene (or \non-hoie") axiom shema

AC

0

! : 8x9!yA(x; y)! 9�8xA(x; �(x));

but no axiom of ountable or dependent hoie. Let T be M + BI

1

+ MP

1

, where

BI

1

is Brouwer's priniple of bar indution in the form

BI

1

: 8�[9x�(�(x)) = 0^8x(�(�(x)) = 0_8sA(�(x)� hsi) ! A(�(x)))℄! A(h i)

and MP

1

is Markov's Priniple in the form

MP

1

: 8�[:8x:�(x) = 0! 9x�(x) = 0℄:

Then T proves:

(i) Every prediate A(x

1

; : : : ; x

n

; �

1

; : : : ; �

m

) without funtion quanti�ers, in-

deed every (lassially or onstrutively) �

1

1

prediate, is lassially deidable with

respet to its number variables; that is,

::8x

1

: : :8x

n

[A(x

1

; : : : ; x

n

; �

1

; : : : ; �

m

) _ :A(x

1

; : : : ; x

n

; �

1

; : : : ; �

m

)℄:

Hene ::9�8x

1

: : :8x

n

[�(hx

0

; : : : ; x

n

i) = 1$ A(x

1

; : : : ; x

n

; �

1

; : : : ; �

m

)℄:

(ii) Every �

0

1

prediate has a reursive harateristi funtion, and the graph

of every reursive funtion is �

0

1

(both lassially and onstrutively).

(iii) The onstrutive arithmetial hierarhy (with or without funtion param-

eters) is proper.

Result (i) for arithmetial prediates is due to Robert Solovay (personal ommu-

niation). A proof of Solovay's result, and proofs of (ii), (iii), and (i) for lassially

�

1

1

prediates, appear in [4℄ along with other hierarhy results in onsistent ex-

tensions of intuitionisti analysis. Observe that in T, every onstrutively �

1

1

prediate is also lassially �

1

1

, sine MP

1

implies

[9�8xR(�(x); z)$ 8�9yQ(�(y); z)℄! [::9�8xR(�(x); z)$ 8�::9yQ(�(y); z)℄

if R(w; z) and Q(v; z) are quanti�er-free. Results (ii) and (iii) use Kleene's normal

form theorem; as an example, we sketh the proof of (iii).

Theorem. T proves �

0

n

6= �

0

n+1

6= �

0

n+1

and �

0

n

6= �

0

n+1

6= �

0

n+1

for n 2 !, so

the onstrutive arithmetial hierarhy (with or without funtion parameters) is

proper.

Proof. Sine �

0

0

= �

0

0

6= �

0

1

by (ii), and �

0

n

[ �

0

n

� �

0

n+1

= �

0

n+1

\ �

0

n+1

, it

will suÆe to show by indution on n that �

0

n+1

6= �

0

n+1

and �

0

n+1

6= �

0

n+1

.

Basis. n = 0. Kleene's normal form theorem, proved in M (f. [1℄), gives

enumerating prediates

R

1

(x; y; �) � 9zT (x; y; �(z)) and P

1

(x; y; �) � 8z:T (x; y; �(z))

1



for �

0

1

(y; �) and �

0

1

(y; �) respetively, where T (x; y; w) is quanti�er-free. M proves

(�)

1

8�8x8y[::R

1

(x; y; �)$ :P

1

(x; y; �)℄;

so T proves that R

1

(x; x; �) is not �

0

1

and P

1

(x; x; �) is not �

0

1

.

Indution Step. By the indution hypothesis with the normal form theorem,

there are prediates

R

n+1

(x; y; �) � 9zC(x; y; z; �) and P

n+1

(x; y; �) � 8zD(x; y; z; �)

whih enumerate (provably in M) �

0

n+1

(y; �) and �

0

n+1

(y; �) respetively, suh

that T proves

(�)

n

8�8x8y8z[::D(x; y; z; �)$ :C(x; y; z; �)℄:

Fix �. By (i), T proves

::9�9�8x8y8z[(�((x; y; z)) = 0$ C(x; y; z; �))^(�((x; y; z)) = 0$ D(x; y; z; �))℄

so ::8x8y8z[D(x; y; z; �)$ :C(x; y; z; �)℄ by (�)

n

, and hene

(�)

n+1

8�8x8y[::R

n+1

(x; y; �)$ :P

n+1

(x; y; �)℄:

Thus R

n+1

(x; x; �) is not �

0

n+1

and P

n+1

(x; x; �) is not �

0

n+1

.

By [3℄, Kleene and Vesley's theory FIM of intuitionisti analysis (a nonlas-

sial extension of M + BI

1

inluding Brouwer's priniple of ontinuous hoie,

from whih the ountable axiom of hoie follows) is onsistent with 8�::GR(�).

Results (i)-(iii) imply that the onsistent extension FIM + MP

1

of T proves

:8�::GR(�). Both T and FIM + MP

1

, like other theories onsidered in [4℄,

satisfy Kleene's reursive instantiation rule: If 9�B(�) is a losed theorem of the

theory, so is 9�[GR(�) ^ B(�)℄ where GR(�) expresses \� is reursive." Thus

Markov's Priniple inreases the lassial (but not the onstrutive) ontent of the

intuitionisti ontinuum.

Kleene's example in [2℄, of a reursive fan in whih every reursive branh

(but not every branh) is �nite, shows that the reursive sequenes are an inad-

equate basis for intuitionisti analysis. Markov's Priniple helps to explain this

fat without implying the onstrutive existene of nonreursive sequenes. From

this point of view, results (i)-(iii) ould be onsidered reasonably strong evidene

for Markov's Priniple.
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