Homework 8

Exercises (1)–(4) deal with the *Cauchy integral formula*. A complex-valued differential form on a complex manifold M is a sum $\omega = \omega_1 + i\omega_2$, where ω_1 and ω_1 are (real) differential form. The wedge product extends in the obvious way, and

$$d\omega := d\omega_1 + id\omega_2, \ \int_M \omega := \int_M \omega_1 + i \int_M \omega_2.$$

Note that Stokes' Theorem is valid for complex-valued forms since it is valid separately for the real part and the complex part. On $\mathbb{C} = \mathbb{R}^2$, let z = x + iy be the complex coordinate and $\overline{z} = x - iy$ be its complex conjugate. Then dz = dx + idy and $d\overline{z} = dx - idy$.

(1) Consider the function $f : \mathbb{C} \to \mathbb{C}$, $z \mapsto f(z)$. Show that $\omega = f(z)dz$ is closed (i.e., $d\omega = 0$) if and only if f(z), viewed as a map f(x, y) from \mathbb{R}^2 to \mathbb{R}^2 , satisfies the Cauchy-Riemann equation

$$\frac{\partial f}{\partial y} = i \frac{\partial f}{\partial x}.$$

(2) Suppose f is a holomorphic function on a domain $\Omega \subset \mathbb{C}$. Prove that if γ_0 and γ_1 are smoothly homotopic curves in Ω , then

$$\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz.$$

Two curves $\gamma_0, \gamma_1 : S^1 \to \Omega$ are said to be *smoothly homotopic* if there exists a smooth map $\Gamma : S^1 \times [0, 1] \to \Omega$ such that $\Gamma(\theta, t) = \gamma_t(\theta)$ for t = 0, 1.

(3) Let C be a circle of radius R > 0 around $a \in \mathbb{C}$. Then prove that

$$\int_C \frac{1}{z-a} dz = 2\pi i$$

(4) Let f(z) be a holomorphic function on Ω, let C ⊂ Ω be a circle of radius R > 0 around a ∈ Ω, and let γ be a smooth closed curve which is homotopic to C inside Ω - {a}. Then prove that

$$\int_{\gamma} \frac{f(z)}{z-a} dz = 2\pi i f(a).$$

(5) Using the version of Stokes' Theorem given in class, prove the classical Stokes' Theorem: Let S be a compact, oriented 2-manifold (i.e., a surface) with boundary in \mathbb{R}^3 and let $F = (F_1, F_2, F_3)$ be a smooth vector field defined on a neighborhood of S. Then:

$$\int_{S} \langle \operatorname{curl} F, n \rangle dA = \int_{\partial S} F_1 dx + F_2 dy + F_3 dz,$$

where n is the unit normal to S which is consistent with the orientation, $\langle \cdot \rangle$ is the standard inner product, dA is the pullback to S of

$$n_1 dy dz + n_2 dz dx + n_3 dx dy,$$

and

$$\operatorname{curl} F = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right).$$

(6) Let M be a manifold. Consider the map

$$\wedge: H^k(M) \times H^l(M) \to H^{k+l}(M), \qquad ([\omega], [\eta]) \mapsto [\omega \wedge \eta].$$

- Prove that ∧ is well-defined on the level of cohomology. Hence H*(M) := ⊕^{dim M}_{i=0} Hⁱ(M) has an ℝ-algebra structure.
 (7) Let T² be the 2-dimensional torus. Compute the map ∧ : H¹(T²) × H¹(T²) → H²(T²), i.e., give a basis {ω₁,..., ω_k} for H¹(T²) and compute ω_i ∧ ω_j for all i, j. In particular, prove that ∧ is surjective.
 (8) Prove, using the previous exercise, that every smooth map f : S² → T² has degree zero.