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Abstract. This paper studies the transport of a mass µ in R
d, d ≥ 2, by a flow field v = −∇K∗µ.

We focus on kernels K = |x|α/α for 2− d ≤ α < 2. For this range we prove the existence for all time
of radially symmetric measure solutions that are monotone decreasing as a function of the radius.
The monotonicity is preserved for all time, in contrast to the case α > 2 where radially symmetric
solutions are known to lose monotonicity. In the case of the Newtonian potential (α = 2 − d) we
show that under the assumption of radial symmetry the equation can be transformed into the inviscid
Burgers equation on a half line. It follows that there exists a unique classical solution for all time
in the case of monotone data, and a solution defined by a choice of a jump condition in the case of
general radially symmetric data. In the case 2− d < α < 2 and at the critical exponent p we exhibit
initial data in Lp for which the solution immediately develops a Dirac mass singularity. This extends
recent work on the local ill-posedness of solutions at the critical exponent.

1. Introduction.

This manuscript considers the problem of dynamic nonlocal aggregation equations
of the form

∂ρ

∂t
− div(ρ∇K ∗ ρ) = 0 (1.1)

in R
d for d ≥ 2. This problem has been a very active area of research in the literature

[6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 26, 27, 33, 31, 35, 36, 38, 40, 41,
43, 44, 45, 46, 53, 54, 59, 60, 61]. These models arise in a number of applications
including aggregation in materials science [35, 36, 55, 56], cooperative control [33],
granular flow [22, 23, 61], biological swarming models [53, 59, 60], evolution of vortex
densities in superconductors [28, 3, 2, 29, 50] and bacterial chemotaxis [18, 40, 13, 14].
A body of recent work has focused on the problem of finite time singularities and
local vs global well-posedness in multiple space dimension for both the inviscid case
(1.1) [7, 8, 9, 10, 15, 11, 21, 31, 38, 41] and the cases with various kinds of diffusion
[4, 13, 11, 43, 44]. The highly studied Keller-Segel problem typically has a Newtonian
potential and linear diffusion. For the pure transport problem (1.1), of particular
interest is the transition from smooth solutions to weak and measure solutions with
mass concentration. This paper presents a general framework for radially symmetric
solutions that blowup in finite time in which the initial data decreases monotonically
from the origin.

In the case of power-law kernels e.g. K(x) = |x|α/α, it is already known that the
critical power is α = 2. For α < 2 finite time singularities always arise and for α ≥ 2
solutions stay smooth for all time if the initial data is smooth [8, 9, 21]. In the case
of finite time blowup, i.e. α < 2, it has been observed numerically [38, 39, 37] that,
starting with a smooth radially symmetric initial data which is monotone decreasing
as a function of the radius, the solution evolves so that the monotonicity is preserved
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and at some finite time develops a power-law singularity at the origin. The power is
sufficiently singular that, based on the results in this paper, the solution produces an
instantaneous mass concentration after the initial singularity. To make this rigorous
we must develop a general theory for such singular solutions. This paper addresses
this particular class of measure solutions, namely those with a radially symmetric
decreasing profile and possibly a Dirac mass at the origin. We prove that this structure
is maintained for all time when α < 2. We conjecture that this class of radially
symmetric decreasing solutions including a Dirac mass at the origin describes well
the local behavior at the blow up time of general non radially symmetric solutions.
We also note that for α > 2 it has been observed in numerical simulations [39, 37]
that monotone decreasing structures are not preserved: indeed there is an attracting
solution of the form of a collapsing delta-ring which causes mass to collects on the ring
during the collapse thereby destroying any initial monotone property of the solution
[39, 37].

We note that our work fits nicely between the general measure theory in [21]
(for α ≥ 1) and previous works which consider different classes of weak solutions
including L∞ [7, 8] and Lp [10]. For L∞ and Lp solutions we typically have only
local well-posedness whereas the measure solutions have global well-posedness. Our
work extends the global existence results in [21] to the case of more singular kernels
with power α ≥ 2− d, for the special case of monotone decreasing radially symmetric
measure solutions. This includes that of the Newtonian potential, which is discussed
separately in the next paragraph. Uniqueness of solutions for 2 − d < α < 1 is still
an open problem.

In two space dimensions, when K(x) = log(|x|) (i.e. K is the Newtonian poten-
tial), the aggregation equation arises as a model for the evolution of vortex densities
in superconductors [28, 57, 58, 47, 3, 2, 48, 29, 50], and also in models for adhesion
dynamics [55, 56]. In these models singularities are known to appear in finite time,
and the question of interest is how to continue the solution after the initial formation
of singularities. Since these singularities are expected to be Dirac masses one has to
consider measure solutions. Unfortunately, due to the very singular behavior of the
Newtonian potential at the origin, most of the results to date concern the existence
of measure solutions which contain an error term (a defect measure) compared to the
original equation [29, 55, 2]. Also uniqueness is lacking in these works.

In this paper we consider the Newtonian case in all dimensions and show that for
general radially symmetric data there is no need to consider a defect measure because
the symmetry allows the problem to be reduced to a form of the inviscid Burgers
equation on the half line, for which many things are known. In particular, the case of
radially symmetric monotone decreasing densities maps to classical Lipschitz solutions
of the inviscid Burgers equation, without shocks, allowing us to prove such solutions
exist and are unique for all time. For the non-monotone case, shocks can form,
corresponding to mass concentrations along spherical shells, and their evolution is not
immediately well-defined, due to a jump in the velocity field at the shell. However,
one can use the classical weak solution theory for Burgers to define a jump condition
through a weak form of the evolution equation, or through some other convention.
If we use the classical Burgers shock solution then the solution is unique since it
automatically satisfies the Lax entropy condition. The more singular case of signed
measures can also be studied in this framework, in which case one must consider
rarefaction solutions as well as shocks.

Going back to the case K(x) = |x|
α

/α, 2 − d < α < 2, recent computational
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results [38] show that the initial finite time blowup from radially symmetric data
has a simple self-similar form in which the powerlaws of the similarity solution have
anomalous scaling but the shape of the similarity solution has a simple monotonically
decreasing structure with powerlaw tail. The power in the tail determines the degree
of singularity of the solution at the initial blowup time - we observe that at the initial
blowup time the solution leaves L∞ but remains in some Lp spaces and does not
concentrate mass. This result prompted a careful study of the well-posedness of the
equation in Lp spaces [10]. In that paper it was proved that for a given interaction
kernel, there exists a critical Lp space such that the problem is locally well-posed for
p > pc. Moreover it was proved in [10] that the power pc is sharp for K = |x|, i.e.
the problem is locally ill-posed for p < pc. Some of these results, in particular the
critical Lp space, have been extended to general power-law kernels in [31]. In the
present work we examine the mechanism by which initial data in the critical space
Lpc leave instantaneously this space. Taking advantage of our existence theory for
radially symmetric decreasing measure solutions when 2 − d < α < 2, we exhibit a
large class of radially symmetric decreasing initial data in Lpc for which a Dirac mass
forms instantaneously in the solution. This is a natural extension of the results in
[10] and [31].

This paper is organized as follows: below we review the mathematical notation
and basic functional analysis used in this paper. Section 2 develops a general existence
theory for radially symmetric solutions with the monotonicity constraint. Section 3
proves instantaneous mass concentration for the critical Lp spaces. Section 4 considers
the case of the Newtonian potential, for which we can show that radial symmetry
results in a transformation of the nonlocal problem to the inviscid Burgers equation
on a half line. Section 5 summarizes the results and discusses some open problems.
In the appendix we derive some background theory of ordinary differential equations
needed for the proofs in this paper and not derived in standard references (although
the arguments are similar to standard methods).

1.1. Mathematical formulations and notation.

The aggregation equation, for smooth solutions, in Eulerian coordinates, is

∂ρ

∂t
+ div(ρv) = 0 (1.2)

v(x, t) = −∇K ∗ ρ. (1.3)

For very singular kernels, and correspondingly singular solutions - in general measure
solutions - it makes sense to reformulate the problem in Lagrangian coordinates and
work mainly in this framework to develop the theory. It is easy to see, in the case of
strong solutions, that the above formulation is equivalent to

ρ(t) = σt#ρinit, (1.4)

σ is the flow map associated to the the field v = −(∇K ∗ ρ(t))(x). (1.5)

In other words, the mass ρ is transported by characteristics σ that satisfy the ordinary
differential equation

d

dt
σ(x, t) = v(σ(x, t), t) , σ(x, 0) = x.

The map σt : R
d → R

d is defined by σt(x) = σ(x, t) and σt#ρinit stands for the push
forward of the measure ρinit by the map σt (see below for a precise definition of the
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push forward). We work with formulation (1.4-1.5) to prove existence of solutions,
rather than (1.2-1.3). We refer to this as the Lagrangian formulation of the problem.
Note, in particular, that the flux ρv in (1.2) may be difficult to define, for the product
of a measure ρ and a velocity field that blows up precisely at the point where ρ
concentrates mass. This corresponds to the case α < 1 for which existence theory was
not known prior to this work. Since we are working with a purely transport problem
it is very natural to work in a Lagrangian framework. The radial symmetry combined
with monotonicity provides a focusing effect in which the only mass concentration
occurs precisely at the origin, providing a natural way to keep track of mass transport
in this problem. We now introduce some technical notation and corresponding well-
known functional analytic results.

• M(Rd) stands for the space of Borel non-negative measure on R
d which have

finite mass.
• MR(Rd) is the set of µ ∈ M(Rd) which are radially symmetric.
• MRD(Rd) is the set of µ ∈ M(Rd) which are radially symmetric and de-

creasing. To be more precise, µ belongs to MRD(Rd) if and only if it can be
written µ = mδ + g, where m ∈ [0, +∞), δ is the Dirac delta measure at the
origin and g is an L1 function which is nonnegative, radially symmetric and
monotone decreasing as a function of the radius.

• P(Rd), PR(Rd) and PRD(Rd) are the subset of M(Rd), MR(Rd) and MRD(Rd)
respectively which are made of measure of mass 1.

• P2(R
d) ⊂ P(Rd), is the subspace of probability measure of finite second

moment, i.e.
∫

Rd |x|
2dµ(x) < ∞.

• We say that a sequence (µn) ⊂ P(Rd) converges narrowly to µ ∈ P(Rd),
denoted by µn ⇀ µ, if

lim
n→∞

∫

Rd

f(x)dµn(x) =

∫

Rd

f(x)dµ(x)

for every f ∈ C0
b (Rd), the space of continuous and bounded real function

defined on R
d.

• Cw([0, +∞),P(Rd)) is the set of functions µ : [0, +∞) → P(Rd) which are
narrowly continuous, i.e. µ(t + h) ⇀ µ(t) as h → 0 ∀t ≥ 0.

• For µ and ν in P2(R
d), W2(µ, ν) stands for the Wasserstein distance with

quadratic cost between µ and ν. Recall that P2(R
d), endowed with the metric

W2 is a complete metric space. Furthermore,

lim
n→∞

W2(µn, µ) = 0 ⇒ µn ⇀ µ as n → ∞.

• C([0, +∞),P2(R
d)) is the set of functions from [0, +∞) to P2(R

d) which are
continuous with respect to W2. Note that

C([0, +∞),P2(R
d)) ⊂ Cw([0, +∞),P(Rd)).

The space C([0, +∞),P2(R
d)) is endowed with the distance

W2(µ, ν) = sup
t≥0

W2(µ(t), ν(t)).

• If T : R
d → R

d is a Borel map, and if µ ∈ M(Rd), we denote by T#µ the
push forward of µ through T , defined by T#µ(B) = µ(T−1(B)), ∀B ∈ B(Rd).
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More generally we have
∫

Rd

f(T (x))dµ(x) =

∫

Rd

f(x)d(T#µ)(x)

for every bounded Borel function f : R
d → R.

• Both B(0, R) and BR will be used to denote the open ball of radius R, {x ∈
R

d : |x| < R}. Aǫ, ǫ < 1, denotes the annulus {x ∈ R
d : ǫ < |x| < 1}.

1.2. Lagrangian solutions versus distributional solutions.

If v is bounded on compact sets, which is only true for α ≥ 1, it is then standard
(see [1] or [10, Proposition 4.8] for example) to prove that if ρ and σ satisfy (1.4) and
(1.5), then ρ is a distributional solution of the aggregation equation, i.e.

∫ +∞

0

∫

Rd

( dξ

dt
(x, t) + ∇ξ(x, t) · vt(x)

)
dρt(x) dt = 0, (1.6)

vt(x) = v(x, t) = −(∇K ∗ ρ(t))(x) (1.7)

for all ξ ∈ C∞
0 (Rd × (0, +∞)). On the other hand, if 2− d < α < 1, then the velocity

field x 7→ vt(x) is not bounded and it is not clear how to give a sense to (1.6). Hence
we use the Lagrangian formulation of the problem throughout most of this paper. In
the special case of the Newtonian potential, in Section 4 we transform using mass
variables to Burgers equation for which it again makes sense to use a distributional
form of the problem albeit in a different coordinate system.

2. General theory of radially symmetric decreasing solutions.

This section is devoted to the proof of the following theorem:
Theorem 2.1. Let ∇K(x) = ~x|x|

α−2
, α ∈ (2 − d, 2). Given ρinit ∈ PRD(Rd)

with compact support, there exists ρ ∈ C([0, +∞),PRD(Rd)) and a continuous map
σ : [0, +∞)× R

d → R
d satisfying (1.4)-(1.5).

This Theorem is interesting for two reasons: first it provides global existence of
radially symmetric decreasing measure solutions with potential more singular than
the one considered previously. In [21] global existence and uniqueness of measure
solutions is proven for α ≥ 1; here we restrict our attention to radially symmetric
decreasing solution but we obtain global existence for 2 − d < α < 2. Secondly this
theorem shows that radially symmetric decreasing profiles are preserved for all time
when 2 − d < α < 2. Monotonicity is also preserved for the Newtonian case however
the problem localizes and the simpler proof is carried out in Section 4.

2.1. Formula for the convolution in radial coordinates and properties

of the kernel.

In this section we recall some known results about radially symmetric solutions
of the aggregation equation and we prove additional results needed in the following
subsections.

Definition 2.2. Let µ ∈ MR(Rd). We define µ̂ ∈ M([0, +∞)) to be the Borel
measure on [0, +∞) which satisfies

µ̂(I) = µ({x ∈ R
d : |x| ∈ I})

for all I ∈ B([0, +∞)).
Remark 1. It is straightforward to check that if a sequence µn ∈ PR(Rd) con-

verges narrowly to µ ∈ PR(Rd) then

lim
n→∞

∫

[0,+∞)

f(r)dµ̂n(r) =

∫

[0,+∞)

f(r)dµ̂(r) (2.1)
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for every f ∈ C0
b ([0, +∞)), the space of continuous and bounded real function defined

on [0, +∞).
Definition 2.3. Let µ, ν ∈ PR(Rd). We say that ν is more concentrated than

µ, and we write µ ≻ ν, if ν̂ = T#µ̂ for some Borel map T : [0, +∞) 7→ [0, +∞)
satisfying T (r) ≤ r for all r ∈ [0, +∞).

For α ∈ (2 − d, 2) define the function φ : [0, +∞) → R by

φ(r) =
1

ωd−1

∫

Sd−1

e1 − ry

|e1 − ry|2−α · e1 dσ(y) (2.2)

where Sd−1 = {x ∈ R
d : |x| = 1} is the unit sphere and ωd−1 its surface measure.

The following lemma was proven in [10] for the case α = 1 and in [31] for general α.

Lemma 2.4. Let ∇K(x) = ~x|x|α−2, α ∈ (2 − d, 2). Let µ ∈ MR(Rd). Then for
any x 6= 0, we have

(∇K ∗ µ)(x) = |x|α−1
∫ +∞

0

φ

(
r

|x|

)
dµ̂(r)

x

|x|
. (2.3)

Moreover, φ is continuous, strictly positive, non-increasing on [0, +∞), and

φ(0) = 1, lim
r→∞

φ(r)r2−α =
d + α − 2

d
.

Note in particular that φ ∈ Cb
0([0, +∞)) which, in view of (2.1), will be convenient

in order to pass to the limit in expression such as (2.3). The positivity, monotonicity
and boundedness of φ have three important consequences that can be directly read
from (2.3).

Corollary 2.5. Let µ, ν ∈ MR(Rd). Since φ is strictly positive, we have

µ ≥ ν =⇒ |∇K ∗ µ| ≥ |∇K ∗ ν| . (2.4)

Let µ, ν ∈ PR(Rd). Since φ is non-increasing, we have

µ ≻ ν =⇒ |∇K ∗ µ| ≥ |∇K ∗ ν| . (2.5)

Let µ ∈ PR(Rd). Since 0 < φ ≤ 1 we have

|∇K ∗ µ| ≤ |x|α−1 . (2.6)

In the next Lemma we prove that that φ is Hölder continuous. This will be useful
later.

Lemma 2.6. Let α ∈ (2 − d, 2), α 6= 0. Given 0 < γ < min(α + d − 2, 1) there
exists a constant C1 > 0 such that

|φ(r1) − φ(r2)| ≤ C1 |r1 − r2|
γ

(2.7)

for all r1, r2 satisfying |r1 − r2| < 1.
Proof. In [31, Lemma 4.4] it was proven that φ is differentiable on [0, 1)∪ (1+∞)

and that, for r 6= 1:

φ′(r) = −Cα,d

∫ π

0

r(sin θ)d

A(r, θ)4−α
dθ (2.8)

where A(r, θ) = (1 + r2 − 2r cos θ)1/2 (2.9)

and Cα,d =
ωd−2(2 − α)(d + α − 2)

ωd−1(d − 1)
> 0 (2.10)
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Note first that for fixed r the function θ 7→ A(r, θ) reaches its minimum at θ = 0. So
A(r, θ) ≥ |r − 1| and one can easily see from (2.8) that φ′(r) is bounded for r > 2 and
therefore φ is Lipschitz continuous on [2, +∞).

We now deal with the case r ∈ [0, 2]. Note that for fixed θ the function r 7→ A(r, θ)
reaches its minimum at r = cos θ and therefore A(r, θ) ≥ |sin θ|. Choose an arbitrary
β ∈ (2− d, 3− d] which also satisfies β < α. Using the fact that A(1 + h, θ) ≥ |h| and
A(1 + h, θ) ≥ sin θ we obtain for h 6= 0:

|φ′(1 + h)| = Cα,d

∫ π

0

(sin θ)d

A(1 + h, θ)d+1−(α−β)

1 + h

A(1 + h, θ)3−d−β
dθ (2.11)

≤ Cα,d
1 + h

|h|3−d−β

∫ π

0

1

(sin θ)1−(α−β)
dθ. (2.12)

Since sin θ ∼ θ for small θ, and since α− β > 0, it is clear that the integral appearing
(2.12) is finite and therefore there exists a constant C > 0 such that

|φ′(1 + h)| ≤
C

|h|
3−d−β

for all h ∈ [−1, 1], h 6= 0. (2.13)

Since φ′ is negative, for r ∈ [0, 1) we clearly have:

−C(1 − r)β+d−3 ≤ φ′(r) ≤ 0. (2.14)

Integrating we get that if 0 ≤ r1 < r2 < 1

−
C

β + d − 2

(
(1 − r1)

β+d−2 − (1 − r2)
β+d−2

)
≤ φ(r2) − φ(r1) ≤ 0.

Note that 0 < β + d − 2 ≤ 1, therefore using the concavity of r → rβ+d−2 we get

−
C

β + d − 2
(r2 − r1)

β+d−2 ≤ φ(r2) − φ(r1) ≤ 0

for all 0 ≤ r1 < r2 ≤ 1. The same reasoning leads to the same estimate for the case
1 ≤ r1 < r2 ≤ 2. Finally, if 0 ≤ r1 ≤ 1 ≤ r2 ≤ 2 we let r1 = 1 − h1 and r2 = 1 + h2

and using the concavity r → rβ+d−2 we obtain:

0 ≤ φ(1 − h1) − φ(1 + h2) = φ(1 − h1) − φ(1) + φ(1) − φ(1 + h2)

≤
C

β + d − 2
(hβ+d−2

1 + hβ+d−2
2 )

≤
C

β + d − 2
23−β−d(h1 + h2)

β+d−2.

2.2. Regularity of the velocity field.

We now study the regularity of a the velocity field associated with a radially
symmetric decreasing measure solution of the aggregation equation. Recall that

Aǫ := {x ∈ R
d : ǫ < |x| < 1}. (2.15)

Obviously A0 = B(0, 1)\{0}.
Proposition 2.7. Let ρ ∈ Cw([0, +∞),PRD(Rd)) and assume that supp(ρ(t)) ⊂

B(0, 1) for all t ≥ 0. Let ∇K(x) = ~x|x|α−2, α ∈ (2 − d, 2). Then the velocity field
v(x, t) = −(∇K ∗ ρ(t))(x) satisfies:
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(P0) v(x, t) is continuous on A0 × [0, +∞) and v(0, t) = 0 for all t ≥ 0.
(P1) For every t ≥ 0, the function x 7→ v(x, t) is continuously differentiable on A0.

We denote by Dv its derivative.
(P2) Given ǫ > 0 there exists C > 0 such that |Dv(x, t)| < C for all (x, t) ∈

Aǫ × [0, +∞).
(P3) Given ǫ > 0 and η > 0, there exists δ > 0 such that

|Dv(y, t) − Dv(x, t)| ≤ η

for all x, y ∈ Aǫ satifying |x − y| < δ and for all t ≥ 0.

In order to prove this proposition, we will need the following lemma and its
corollary.

Lemma 2.8. Suppose g ∈ L1(Rd) is nonnegative, radially symmetric decreasing,
and supported in B(0, 1). Suppose also that Φ ∈ C(Rd\{0})∩L1

loc(R
d). Then Φ ∗ g ∈

C(Rd\{0}) ∩ L1
loc(R

d) and

‖Φ ∗ g‖L∞(Aǫ) ≤ ‖g‖L1(Bǫ/2)

{
sup

ǫ/2<|y|<2

|Φ(y)| +
‖Φ‖L1(B2)

|Bǫ/2|

}
. (2.16)

Proof. Since Φ belongs to L1
loc, by Young’s inequality Φ ∗ g is also in L1

loc. We
now prove estimate (2.16). Fix x in Aǫ.

|(Φ ∗ g)(x)| ≤

∫

Bǫ/2

|Φ(x − y)| g(y)dy +

∫

Aǫ/2

|Φ(x − y)| g(y)dy (2.17)

≤
(

sup
ǫ/2<|y|<1+ǫ/2

|Φ(y)|
)
‖g‖L1(Bǫ/2) (2.18)

+
(

sup
y∈Aǫ/2

g(y)
)
‖Φ‖L1(B2). (2.19)

Since g is radially symmetric decreasing, we have that g(z) ≥ supy∈Aǫ/2
g(y) for almost

every z ∈ Bǫ/2. Therefore we obtain

‖g‖L1(Bǫ/2) ≥ |Bǫ/2| sup
y∈Aǫ/2

g(y)

which, combined with (2.19), leads to the desired estimate. We now prove that Φ ∗ g
is continuous. Reasoning as above we obtain that if x ∈ Aǫ then

|(Φ ∗ g)(x + h) − (Φ ∗ g)(x)| ≤ ‖g‖L1(Bǫ/2)

{
sup

ǫ/2<|y|<2

|Φ(y + h) − Φ(y)| +
‖Φ(· + h) − Φ(·)‖L1(B2)

|Bǫ/2|

}
. (2.20)

We conclude that Φ ∗ g is continuous using the fact that Φ is uniformly continuous
on compact sets which do not contain the origin and the continuity of the translation
h → Φ(· + h) from R

d to L1(B2).
Recall that PRD(Rd) is the space of probability measure µ which can be written

µ = mδ + g

for some m ≥ 0 and for some nonnegative, radially symmetric decreasing function
g ∈ L1(Rd). From the previous Lemma we directly obtain the following corollary:
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Corollary 2.9. Let K : R
d → R be a potential such that Kxixj ∈ C(Rd\{0}) ∩

L1
loc(R

d). Then the family of functions {Kxixj ∗ µ : µ ∈ PRD(Rd)} is uniformly
bounded and equicontinuous on every annulus Aǫ, ǫ > 0. To be more precise we
have:

‖Kxixj ∗ µ‖L∞(Aǫ) ≤ sup
ǫ/2<|y|<2

|Kxixj (y)| +
‖Kxixj‖L1(B2)

|Bǫ/2|
for all µ ∈ PRD(Rd)

(2.21)
And also: given ǫ > 0 and η > 0, there exists δ > 0 such that

∣∣(Kxixj ∗ µ)(x) − (Kxixj ∗ µ)(y)
∣∣ ≤ η (2.22)

for all x, y ∈ Aǫ satisfying |x − y| < δ and for all µ ∈ PRD(Rd).
Proof. Since µ ∈ PRD(Rd) it can be written µ = mδ + g where m ∈ [0, 1] and

g satisfies the hypothesis of Lemma 2.8. So Kxixj ∗ µ = mKxixj + Kxixj ∗ g and it
is easy to conclude using Lemma 2.8 with Φ = Kxixj . The second statement is a
consequence of (2.20).

We now prove Proposition 2.7:
Proof of Proposition 2.7. Let us first check that v(x, t) is continuous on A0 ×

[0, +∞). Continuity with respect to time comes from the fact that t 7→ ρ(t) is narrowly
continuous together with the fact that the kernel φ appearing in formula (2.3) belongs
to C0

b ([0, +∞)). Continuity with respect to space comes from the Hölder continuity
of φ. To prove (P1), (P2) and (P3), note first that if K(x) = |x|

α
, α > 2 − α, then

Kxixj ∈ C(Rd\{0}) ∩ L1
loc(R

d), and then use Corollary 2.9. 2

Definition 2.10. V is the space of velocity fields v : B(0, 1) × [0, +∞) → R
d

which are radially symmetric and pointing inward (i.e. v(x, t) = −λ(|x| , t)x for some
nonnegative function λ : [0, 1)× [0, +∞) → R) and which satisfies (P0)–(P3).

Note that if v ∈ V , then v(0, t) = 0 for all t ≥ 0. Obviously a velocity field
defined as in the statement of Proposition 2.7 belongs to V (the fact that it points
inward come from formula (2.3) together with the positivity of the kernel φ). We now
investigate properties of flow maps generated by velocity fields in V .

Proposition 2.11. Suppose v ∈ V. Then there exists a unique continuous
function σ : B(0, 1) × [0, +∞) 7→ B(0, 1) satisfying

σ(x, t) = x +

∫ t

0

v(σ(x, s), s)ds for all (x, t) ∈ B(0, 1) × [0, +∞). (2.23)

Moreover if the point (x0, t0) ∈ B(0, 1) × [0, +∞) is such that σ(x0, t0) 6= 0, then the
mapping x 7→ σ(x, t0) is continuously differentiable at x0 and we have

det Dσ(x0, t0) = exp
(∫ t0

0

(div v)(σ(x0, s), s)ds
)

> 0. (2.24)

In particular, if R(t) is such that (σt)−1({0}) = B(0, R(t)), then σt is a diffeomor-
phism from B(0, 1)\B(0, R(t)) to R

d\{0}.
Proof. The global existence and forward uniqueness of solution of the ODE ẋ =

v(x, t) simply come from the fact that v is Lipschitz continuous with respect to space
away from the origin (because of (P2)) together with the fact that v is pointing inward.
Indeed, solutions can be continued as long as they are in B(0, 1)\{0} and since v is
pointing inward, the only way for a solution to escape this domain is to reach the
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origin. When a solution reaches the origin, it stays there forever in accordance to the
fact that v(0, t) = 0 for all t ≥ 0.

The differentiability of σt on B(0, 1)\B(0, R(t)) and formula (2.24) are more del-
icate. In classical ODE textbooks, such results are obtained under the assumption
that v(x, t) is continuously differentiable in both space and time. In our case v is
continuously differentiable in space but only continuous in time. However, by revisit-
ing classical proofs, one can easily check that assumption (P3) is enough to obtained
differentiability of the flow map as well as formula (2.24). This is done in section 6.1
of the appendix.

Since the flow map σt generated by a velocity field in V is a diffeomorphism
from B(0, 1)\B(0, R(t)) to B(0, 1)\{0}, we can use the change of variable formula to
express the push forward of a measure in PRD(Rd) by σt:

Corollary 2.12. Suppose v ∈ V and let σ be the associated flow map provided
by Proposition 2.11. Let µ = m0δ + g0 ∈ PRD(Rd) and assume that suppµ ∈ B(0, 1).
Then

σt#µ = m(t)δ + g(t)

where m(t) ∈ R
+ and g(t) ∈ L1(Rd) satisfy :

m(t) = m0 +

∫

(σt)−1({0})

g0(x) dx (2.25)

g(x, t) =
( g0

det Dσt
◦ (σt)−1

)
(x) for x 6= 0. (2.26)

2.3. Radially symmetric decreasing profiles are preserved.

In this subsection we give a heuristic argument (which will be made rigorous in the
next subsection) explaining why radially symmetric decreasing profiles are preserved
by the aggregation equation when 2 − d < α ≤ 2. We recall here that it is observed
numerically that when α > 2, radially symmetric decreasing profiles are not preserved.
The following lemma is key to our argument:

Lemma 2.13. Suppose f ∈ L1
loc(R

d) is nonnegative and radially symmetric de-
creasing. Suppose g ∈ L1(Rd) is nonnegative, radially symmetric decreasing and has
compact support. Then f ∗ g is also nonnegative and radially symmetric decreasing.

Proof. The mononicity of g allows us to use a “layer cake” decomposition of g,
namely

g(x) =

∫ ∞

0

χB(0,r̃(g))(x)dg

where r̃(g) denotes the inverse function of g(r) and χB(0,s) denotes the characteristic
function of the ball of radius s. Thus

f ∗ g(x) =

∫ ∞

0

f ∗ χB(0,r̃(g))(x)dg (2.27)

and we note that the integrand of (2.27) is monotone decreasing because the char-
acteristic function of a ball convolved with a nonnegative L1

loc monotone decreasing
function is itself monotone decreasing. By integrating a monotone integrand with
respect to g we obtain the monotonicity result for f ∗ g.

10



We now present the heuristic argument. Let us assume that u(t, x) is a smooth
solution of the aggregation equation. Clearly we have:

∂u

∂t
+ ∇u · v = (∆K ∗ u)u. (2.28)

Suppose that ∆K is locally integrable, nonnegative and radially symmetric decreasing.
When ∇K(x) = ~x|x|α−2, these hold true if and only if 2 − d < α ≤ 2. We then use
Lemma 2.13 to see that if for some t0 ≥ 0, u(·, t0) is radially symmetric decreasing
then the RHS of (2.28) is also radially symmetric decreasing at t0. This indicates
that the rate of change along the characteristic is greater the closer we are to the
origin. Therefore the solution is expected to remain radially symmetric decreasing for
t > t0. For the special case of the Newtonian potential, ∆K ∗u = u and monotonicity
is similarly preserved - this is discussed in more detail in Section 4.

2.4. Proof of Theorem 2.1.

The proof is inspired by the work in [25], where global existence of measure
solutions for some kinetics model was obtained by using a fixed point iteration in the
space of probability measures endowed with the Wasserstein distance.

Let ∇K(x) = ~x|x|α−2, α ∈ (2− d, 2), and let ρinit ∈ PRD(Rd) with supp(ρinit) ⊂
B(0, 1). Define:

ρ0(t) = ρinit ∀t ∈ [0, +∞)

v0(t) = −∇K ∗ ρ0(t) ∀t ∈ [0, +∞)

σt
0 : R

d → R
d := flow map associated with v0

and for n ≥ 1 define recursively

ρn(t) = σt
n−1#ρinit ∀t ∈ [0, +∞)

vn(t) = −∇K ∗ ρn(t) ∀t ∈ [0, +∞)

σt
n : R

d → R
d := flow map associated with vn.

Proposition 2.14.
(i) For all n ≥ 0, ρn ∈ C([0, +∞),PRD(Rd)) and supp(ρn(t)) ⊂ B(0, 1) for all

t ≥ 0.
(ii) Given ǫ > 0, there exists Lǫ > 0 such that

|vn(x, t) − vn(y, t)| ≤ Lǫ |x − y|

for all x, y ∈ Aǫ, for all t ≥ 0, and for all n ≥ 0.
(iii) There exists a constant θ ∈ (0, 1] depending only on α such that the following

holds: Given ǫ > 0, there exists Cǫ > 0 and δ > 0 such that |t − s| < δ implies

|vn(x, t) − vn(x, s)| ≤ Cǫ |s − t|
θ

for all x ∈ Aǫ and for all n ≥ 0.
(iv) ρn+1(t) ≻ ρn(t) for all n ≥ 0 and all t ∈ [0, +∞). This implies |vn+1(x, t)| ≥

|vn(x, t)| for all (x, t) ∈ R
d × [0, +∞) and for all n ≥ 0.

Before we prove this proposition let us explain how it will be used in the proof of
Theorem 2.1. Because of statement (ii), (iii), (iv) and the bound |vn(x, t)| ≤ |x|

α−1
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(see (2.6)), we can use the Arzela Ascoli theorem to conclude that the vn’s converge
uniformly on Aǫ × [0, +∞) to some function v which is Lipschitz continuous in space
and Hölder continuous in time, with same constants Lǫ and Cǫ. This velocity field
v(x, t) generates a flow map σt : R

d → R
d for all t ≥ 0 and from this flow map we

can construct ρ(t) = σt#ρinit. In Proposition 2.15 it will be shown that σn converges
uniformly to σ on B(0, 1)× [0,∞). This implies in particular that for a given t, ρn(t)
converges narrowly to ρ(t). The narrow convergence preserves the monotonicity (see
Proposition 6.4 of the Appendix), and therefore ρ(t) is radially symmetric decreasing.
In order to prove that the radially symmetric decreasing function ρ(t) and the flow
map σt obtained by the above limiting process satisfy (1.4) and (1.5) we just need to
show that v(t) = −∇K ∗ρ(t), and this fact will follow easily from passing to the limit
in the relationship vn(t) = −∇K ∗ ρn(t).

Proof of Proposition 2.14. Let us first prove (i). The initial iterate ρ0(t) ≡ ρinit

obviously belongs to C([0, +∞),PRD(Rd)) with supp(ρ0(t)) ⊂ B(0, 1) for all t ≥ 0.
Assume that ρn ∈ C([0, +∞),PRD(Rd)) with supp(ρn(t)) ⊂ B(0, 1) for all t ≥ 0.
From Proposition 2.7 vn ∈ V and from Corollary 2.12

ρn+1(t) = mn+1(t)δ + gn+1(t) (2.29)

mn+1(t) = m0 +

∫

(σt
n)−1({0})

g0(x) dx (2.30)

gn+1(x, t) =

(
g0

detDσt
n

◦ (σt
n)−1

)
(x) for x 6= 0. (2.31)

Here m0 and g0 are such that ρinit = m0δ + g0. Also from Proposition 2.11 we know
that detDσt

n satisfies

detDσt
n(x) = exp

∫ t

0

(div vn)(σs
n(x), s)ds (2.32)

for all (x, t) such that σt
n(x) 6= 0. Since we have assumed that ρn(t) is in PRD(Rd)

with compact support, and since for α ∈ (2 − d, 2) ∆K is nonnegative, radially
symmetric decreasing and locally integrable, we know from Lemma 2.13 that the
function x 7→ −divvn(x, t) = [∆K ∗ ρn(t)](x) is nonnegative, radially symmetric and
decreasing. Since |x| ≤ |y| implies |σs

n(x)| ≤ |σs
n(y)| one can easily see from (2.32)

that

x 7→
1

detDσt
n(x)

is nonnegative, radially symmetric and decreasing.

Then we easily see from (2.31) that, since g0 is radially symmetric and decreasing, so
is x 7→ gn+1(x, t).

Let us now remark that the estimate |vn(x, t)| ≤ |x|
α−1

together with Lemma 6.5
of the Appendix lead to the following: if α ∈ (2 − d, 1) then

∣∣σt
n(x) − σs

n(x)
∣∣ ≤ Cα |t − s|

1
2−α (2.33)

for all x ∈ B(0, 1) and for all t, s ≥ 0. Here Cα := (2 − α)
1

2−α . If α ∈ [1, 2) then
v(x, t) ≤ 1 on B(0, 1) × [0, +∞) and therefore we get

∣∣σt
n(x) − σs

n(x)
∣∣ ≤ |t − s| (2.34)
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for all x ∈ B(0, 1) and for all t, s ≥ 0. Using Lemma 6.3 from the Appendix, together
with (2.33) we obtain that, if α ∈ (2 − d, 1) then

W2(ρn+1(t), ρn+1(s)) ≤ ‖σt
n − σs

n‖L∞(B(0,1)) ≤ Cα|t − s|
1

2−α .

This prove that t 7→ ρn+1(t) is Hölder continuous with respect to W2 when α ∈
(2−d, 1). If α ∈ [1, 2), we obtain from (2.34) that t 7→ ρn+1(t) is Lipschitz continuous
with respect to W2.

Statement (ii) is a direct consequence of Corollary 2.9. We now prove (iii). Sup-

pose 2 − d < α < 1. Choose δ such that |t − s| < δ implies Cα |t − s|
1

2−α ≤ ǫ. Using
Lemma 2.6 and estimate (2.33) we obtain that |t − s| < δ and x ∈ Aǫ implies that

|vn(x, t) − vn(x, s)| = |x|
α−1

∫ +∞

0

∣∣∣∣φ
(

σt
n−1(r)

|x|

)
− φ

(
σs

n−1(r)

|x|

)∣∣∣∣ dρ̂init(r) (2.35)

≤ |x|α−1−γ
∫ +∞

0

c
∣∣σt

n−1(r) − σs
n−1(r)

∣∣γ dρ̂init(r) (2.36)

≤ c Cα |x|
α−1−γ

|t − s|
γ

2−α . (2.37)

The first equality is a simple consequence of formula (2.3), the fact that ρn(t) =

σt
n−1#ρinit and the definition of the push forward. Note that Cα |t − s|

1
2−α ≤ ǫ and

(2.33) imply that
∣∣∣σ

t
n−1(r)

|x| −
σs

n−1(r)

|x|

∣∣∣ ≤ 1 for x ∈ Aǫ. This allowed us to use Lemma

2.6 in order to go from (2.35) to (2.36). The case α ∈ [1, 2) is dealt with similarly.

We finally prove (iv). Obviously ρ1(t) ≻ ρ0(t) ≡ ρinit for all t ≥ 0. Assume that
for a given n, ρn(t) ≻ ρn−1(t) for all t ≥ 0. Then (2.5) implies |vn(x, t)| ≥ |vn−1(x, t)|.
Lemma 3.2, which is proven in the next section, implies then that ρn+1(t) ≻ ρn(t) for
all t ≥ 0. 2

As already mentioned, (ii) (iii) and (iv) imply that the vn’s converges uniformly
on Aǫ × [0, +∞) to some function v (which is Lipschitz continuous in space away
from the origin). Since ǫ can be chosen as small as we want, v(x, t) is well define on
B(0, 1)\{0}×[0, +∞). Let v(0, t) = 0 so that v is now well defined on B(0, 1)×[0, +∞).
This velocity field v(x, t) generates a flow map σt : B(0, 1) → B(0, 1).

Proposition 2.15. σn(x, t) converges uniformly to σ(x, t) on B(0, 1)× [0, +∞).

Proof. Let ǫ > 0 be fixed. From formula (2.3) it is clear that |v0| is strictly positive
away from the origin. Since |vn+1| ≥ |vn| we have that |v| is also strictly positive away
from the origin. Therefore there exists a time Tǫ > 0 such that σTǫ(B(0, 1)) ⊂ B(0, ǫ).
Choose N so that n ≥ N implies ‖v − vn‖L∞(Aǫ×[0,Tǫ])

≤ ǫ/(Tǫe
LǫTǫ).

Case 1: Assume first that (x, t) ∈ B(0, 1)× [0, +∞) is such that |σt(x)| ≥ ǫ. Note
that such a t is necessarily smaller than Tǫ. For all τ ≤ t and for all n ≥ 0 we have

|στ (x) − στ
n(x)| ≤

∫ τ

0

|v(σs(x), s) − vn(σs
n(x), s)| ds

≤

∫ τ

0

|v(σs(x), s) − vn(σs(x), s)| + |vn(σs(x), s) − vn(σs
n(x), s)| ds

≤ τ ‖v − vn‖L∞(Aǫ×[0,τ ]) + Lǫ

∫ τ

0

|σs(x) − σs
n(x)| ds.
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We have use the fact that |σt(x)| ≥ ǫ implies that |σs(x)| ≥ ǫ for all s ≤ τ ≤ t. We
have also use the fact that, since |v| ≥ |vn|, |σ

s
n(x)| ≥ |σs(x)| ≥ ǫ for all s ≤ τ ≤ t

and for all n ≥ 0. Using Gronwall’s lemma and the fact that t ≤ Tǫ we obtain that
for n ≥ N :

∣∣σt(x) − σt
n(x)

∣∣ ≤ Tǫ ‖v − vn‖L∞(Aǫ×[0,Tǫ])
eLǫTǫ ≤ ǫ. (2.38)

Case 2: Assume that (x, t) ∈ B(0, 1) × [0, +∞) is such that |x| < ǫ. Since the
velocity fields v and vn are focussing we clearly have that |σt(x) − σt

n(x)| < 2ǫ for all
n.

Case 3: Assume finally that (x, t) ∈ B(0, 1) × [0, +∞) is such that |σt(x)| < ǫ
and |x| ≥ ǫ. Since τ 7→ στ (x) is continuous there exists a time s ∈ [0, t] such that
|σs(x)| = ǫ. So from case 1 we get |σs(x) − σs

n(x)| ≤ ǫ for n ≥ N . Since |σs(x)| = ǫ
we have that |σs

n(x)| ≤ 2ǫ for n ≥ N . Since s ≤ t we have |σt
n(x)| ≤ |σs

n(x)| ≤ 2ǫ for
n ≥ N . Therefore |σt(x) − σt

n(x)| < 3ǫ for all n ≥ N .

We are now ready to prove the Theorem 2.1:
Proof of Theorem 2.1. Define ρ(t) := σt#ρinit. Recall that from Lemma 6.3 of

the Appendix

W2(ρ, ρn) := sup
t∈[0,∞)

W2(ρ(t), ρn(t)) ≤ ‖σ − σn‖L∞(B1×[0,+∞)) .

So from Proposition 2.15 we get that W2(ρn −ρ) → 0. This implies in particular that
for every t ∈ [0, +∞), ρn(t) converges narrowly to ρ(t). Since narrow convergence
preserves the monotonicity (Lemma 6.4 of the Appendix), we know that ρ(t) is radially
symmetric decreasing.

We are now going to prove that ρ and σ satisfy (1.4) and (1.5). Since ρ is defined
by ρ(t) = σt#ρinit where σt : R

d → R
d is the flow map associated to the velocity

field v(x, t), we just need to prove that v(x, t) = −(∇K ∗ ρ(t))(x). This is obtain by
passing to the limit in the relation vn(x, t) = −(∇K ∗ ρn(t))(x). Indeed vn converges
pointwise to v in B(0, 1)× [0, +∞) (remember that vn(0, t) = v(0, t) = 0 for all n and
t). And since for fixed t, ρn(t) converges narrowly to ρ(t), we obtain from (2.3) that
∇K ∗ ρn converges pointwise to ∇K ∗ ρ in B(0, 1) × [0, +∞]. 2

3. Instantaneous mass concentration.

In [10] it was proven that the aggregation equation with potential ∇K(x) =

~x |x|α−2, 2 − d < α < 2, is locally well posed in any Lp-space with p > d
d+α−2 . Note

that given β ∈ (d+α−2
d , 1) the function

h(x) =

{
c

|x|d−1

1
(− log|x|)β if |x| ≤ 1

0 otherwise

belongs to the critical space L
d

d+α−2 (Rd) but does not belong to any Lp space with
p > d

d+α−2 . In [31] it was proved that if the initial data is exactly equal to h(x) then a

solution of the aggregation equation instantaneously leaves the space L
d

d+α−2 . In this

section we go a little further and show that the solution not only leaves L
d

d+α−2 but
also instantaneously concentrates some point mass at the origin. Our results make use
of the existence theory from the previous section. Also compared to the work in [10]
and [31], our argument here is local in essence and holds for any radially symmetric
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decreasing initial data which is locally more singular than h(x) at the origin. The
main theorem of the section is the following:

Theorem 3.1. Let ∇K(x) = ~x |x|α−2, 2 − d < α < 2. Suppose ρinit ∈ PRD(Rd)
is compactly supported and absolutely continuous with respect to the Lebesgue measure.
Suppose that there exists c > 0, r0 > 0 and β ∈ (d+α−2

d , 1) such that the density uinit

of ρinit satisfies

uinit(x) ≥
c

|x|d−1

1

(− log |x|)β
for all |x| < r0. (3.1)

Suppose finally that ρ ∈ C([0, +∞),PRD(Rd)) satisfies the Lagrangian formulation
(1.4)-(1.5) of the aggregation equation. Then ρ(t)({0}) > 0 for all t > 0.

3.1. Comparison principles.

In this subsection we derive a few comparison principles which will be necessary
in order to make the arguments local.

Lemma 3.2. Suppose v1, v2 ∈ V and |v1| ≥ |v2|. Then

σt
1#µ ≻ σt

2#µ for all µ ∈ PR(Rd) and t ≥ 0

where σ1 and σ2 are the flow maps associated to v1 and v2 respectively.
Proof. Since v2 ∈ V the flow map σt

2 is invertible away from the origin. Define
Λt

2(x) = (σt
2)

−1(x) if x 6= 0 and Λt
2(0) = 0. One can then easily check that

(σt
1 ◦ Λt

2)#(σt
2#µ) = σt

1#µ

Moreover since |v1| ≥ |v2| we have that |(σt
1 ◦ Λt

2)(x)| ≤ |x|, which concludes the
proof.

Lemma 3.3. Suppose v ∈ V. Suppose also that µ, ν ∈ PR(Rd) and µ ≻ ν. Then

σt#µ ≻ σt#ν for all t ≥ 0

where σ is the flow maps associated to v.
Proof. Since µ ≻ ν there is a map P satisfying |P (x)| ≤ |x| such that µ = P#ν.

As in the previous lemma, define Λt(x) = (σt)−1(x) if x 6= 0 and Λt(0) = 0. One can
then easily check that

(σt ◦ P ◦ Λt)#(σt#µ) = σt#ν

and |(σt ◦ P ◦ Λt)(x)| ≤ |x| which conclude the proof.
The following definition will be needed in order to compare two measures of

different mass.
Definition 3.4. Suppose ρ ∈ PR(Rd) and µ ∈ MR(Rd). We write ρ ⊲ µ if there

exists a measure ν ∈ PR(Rd) such that

ρ ≻ ν and ν(A) ≥ µ(A) ∀A ∈ B(Rd).

In view of (2.4) and (2.5) it is clear that:

ρ ⊲ µ =⇒ |∇K ∗ ρ| ≥ |∇K ∗ µ| (3.2)

The following Lemma will be useful in order to make localized comparisons.

15



Lemma 3.5. Suppose v1, v2 ∈ V and |v1| ≥ |v2| in B(0, 2R) × [0, +∞) . Suppose
also that ρ ∈ PR(Rd), µ ∈ MR(Rd) and ρ ⊲ µ. Then

σt
1#ρ ⊲ σt

2#(µ χB(0,R)) for all t ≥ 0

where σ1 and σ2 are the flow maps associated to v1 and v2 respectively, and χB(0,R)

is the indicator function of the set B(0, R).

Proof. Since ρ ⊲ µ there exists a probability measure ν such that ρ ≻ ν ≥ µ.
Let ξ(x) be a smooth radially symmetric function which satisfies ξ(x) = 1 if |x| ≤ R,
ξ(x) = 0 if |x| ≥ 2R and χ(x) ≤ 1 for all x ∈ R

d. The velocity field v3(x, t) :=
v2(x, t)ξ(x) is still in V . Moreover we have |v3| ≤ |v1| for all x ∈ R

d and t ≥ 0. We
can therefore use the two previous Lemmas to obtain that

σt
1#ρ ≻ σt

3#ρ ≻ σt
3#ν ≥ σt

3#µ ≥ σt
3#(µ χB[0,R])

The last two inequalities are a simple consequence of the definition of the push-forward
together with the fact that ν ≥ µ ≥ µ χB[0,R]. Finally, note that since v3 = v2 on
B(0, R) × [0, +∞), then σt

3#(µ χB[0,R]) = σt
2#(µ χB[0,R]).

3.2. Proof of Theorem 3.1 by bootstrap argument.

Fix α ∈ (2 − d, 2) and define the functions

fǫ,r0
(x) =

1

|x|
d+α−2+ǫ

χB(0,r0)(x) for ǫ ∈ (0, 1) (3.3)

gr0
(x) =

1

|x|
d+α−2

χB(0,r0)(x) (3.4)

hβ,r0
(x) =

1

|x|
d+α−2

1

(− ln |x|)β
χB(0,r0)(x) for β ∈ (

d + α − 2

d
, 1). (3.5)

Obviously fǫ,r0
is more singular than gr0

and gr0
itself is more singular than hβ,r0

. In
[10] it was proved that if α = 1 and the initial data is exactly equal to Cfǫ,r0

(x) (C
is a normalizing constant) then a Dirac delta function appears instantaneously in the
solution. The proof relied on the fact that solutions of the ODE ẋ = −(∇K ∗fǫ,r0

)(x)
reach the origin in finite time. However this strategy does not work with gr0

and fǫ,r0
,

because solutions of ẋ = −(∇K ∗ gr0
)(x) and ẋ = −(∇K ∗ hβ,r0

)(x) do not reach the
origin in finite time. For that reason we will use a bootstrap argument to prove that
a delta function appears instantaneously when the initial data is equal to or more

singular than hβ,r0
∈ L

d
d+α−2 (Rd). Roughly speaking, we will show that the velocity

field −∇K ∗ hβ,r0
instantaneously deforms hβ,r0

into a function more singular than
gr0

, then we will show that the velocity field −∇K ∗ gr0
instantaneously deforms gr0

into a function more singular than fǫ,r0
, and finally we will use the argument from

[10] to show that the velocity field −∇K ∗ fǫ,r0
deforms fǫ,r0

in such a way that a
delta function appears instantly.

The following definition is consistent with Definition 2.2:

Definition 3.6. Given a radially symmetric, non-negative function u ∈ L1(Rd),
we define û ∈ L1((0, +∞)) to be the unique function satisfying

∫ r2

r1

û(r)dr =

∫

r1<|x|<r2

u(x)dx for all r1, r2 ≥ 0.

16



In other words, û(r) = u(r)ωdr
d−1. With this notation we have:

f̂ǫ,r0
(r) = ωd

1

rα−1+ǫ
χ[0,r0](r) (3.6)

ĝr0
(r) = ωd

1

rα−1
χ[0,r0](r) (3.7)

ĥβ,r0
(r) = ωd

1

rα−1

1

(− ln r)β
χ[0,r0](r) (3.8)

Definition 3.7. The function ρ ∈ C([0, +∞),PRD(Rd)) is said to be a La-
grangian solution of the aggregation equation with initial data ρinit if it satisfies the
Lagrangian formulation (1.4)-(1.5) of the aggregation equation.

Proposition 3.8. Let ρ ∈ C([0, +∞),PRD(Rd)) be a Lagrangian solution of
the aggregation equation with compactly supported initial data ρinit and potential K
satisfying ∇K(x) = ~x |x|

α−2
, 2 − d < α < 2. Let v(x, t) = −(∇K ∗ ρ(t))(x) be the

associated velocity field.
(i) If ρinit ⊲ cfǫ,r0

for some c, r0 > 0 and ǫ ∈ (0, 1), then there exist R, C > 0
such that

|v(x, t)| ≥ C |x|
1−ǫ

for all (x, t) ∈ B(0, R) × [0 + ∞).

(ii) If ρinit ⊲ c gr0
for some c, r0 > 0, then there exist R, C > 0 such that

|v(x, t)| ≥ C |x| (− ln |x|) for all (x, t) ∈ B(0, R) × [0 + ∞).

(iii) If ρinit⊲chβ,r0
for some c, r0 > 0 and β ∈ (d+α−2

d , 1), then there exist R, C > 0
such that

|v(x, t)| ≥ C |x| (− ln |x|)1−β for all (x, t) ∈ B(0, R) × [0 + ∞).

Proof. Let us prove (i). On one hand, from (3.2) we see that |v(x, 0)| ≥
c |(∇K ∗ fǫ,r0

)(x)| for all x ∈ R
d. On the other hand, since the velocity field is

always pointing inward (this is due to the positivity of φ), we have that ρ(t) ≻ ρ(0)
for all t ≥ 0, and therefore from (2.5) we get that |v(x, t)| ≥ |v(x, 0)| for all x ∈ R

d

and t ≥ 0. So we only need to show that |(∇K ∗ fǫ,r0
)(x)| ≥ C |x|1−ǫ in some neigh-

borhood of the origin, and this estimate follows easily from Lemma 2.4. Indeed, by
Lemma 2.4 we have for |x| ≤ r0

|∇K ∗ fǫ,r0
(x)| = ωd

∫ |x|

0

φ

(
r

|x|

)(
|x|

r

)α−1

r−ǫdr (3.9)

+ ωd|x|

∫ r0

|x|

φ

(
r

|x|

)(
r

|x|

)2−α

r−1−ǫdr (3.10)

≥ ωdC1

∫ |x|

0

r−ǫdr + ωdC2|x|

∫ r0

|x|

r−1−ǫdr (3.11)

≥ ωdC1
|x|1−ǫ

1 − ǫ
(3.12)

where C1 = inf [0,1] φ = φ(1) and C2 = inf(1,+∞) φ(r)r2−α > 0.
Let us now prove (ii). Reasoning as above we see that it is enough to show

that |(∇K ∗ gr0
)(x)| ≥ C |x| (− ln |x|) in some neighborhood of the origin. Then the
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argument is similar. From (3.11) with ǫ = 0 we get

|∇K ∗ gr0
(x)| ≥ ωdC2 |x| ln

(
r0

|x|

)

which yields to the desired estimate.
To prove (iii) it is enough to show |(∇K ∗ hβ,r0

)(x)| ≥ C |x| (− ln |x|)1−β in some
neighborhood of the origin, and the argument is similar. In this case we have

|∇K ∗ u0(x)| ≥ ωdC2|x|

∫ r0

|x|

1

| log r|β
dr

r
,

which yields to the desired estimate. This last estimate was derived independently in
[31].

The ODE’s

ṙ = −Cr1−ǫ, ṙ = −Cr(− ln r) and ṙ = −Cr(− ln r)1−β

suggested by the previous proposition have explicit solutions and their flow maps are
respectively:

σt
1(r) = σ1(r, t) =

{
(rǫ − ǫCt)1/ǫ if r > (ǫCt)1/ǫ

0 if r ≤ (ǫCt)1/ǫ
(3.13)

σt
2(r) = σ2(r, t) = reCt

(3.14)

σt
3(r) = σ3(r, t) = e

−
“

Cβt+(ln 1
r )

β
”1/β

(3.15)

Solutions of the first ODE reach the origin in finite time but solutions of the other
two ODE’s only approach the origin as t → ∞. Corresponding to the flow maps
σi : [0, +∞) × [0, +∞) → [0, +∞) there are flow maps Si : R

d × [0, +∞) → R
d

defined by Si(x, t) = σi(|x| , t)
x
|x| . The Si are the flow maps associated to the

velocity fields w1(x) = −C |x|
1−ǫ x

|x| , w2(x) = −C |x| (− ln |x|) x
|x| , and w3(x) =

−C |x| (− ln |x|)1−β x
|x| . Let u ∈ L1(Rd) be a radially symmetric, non-negative func-

tion. It is clear from (3.13) that St
1#u has a point mass at the origin if u has non-zero

mass in B(0, (ǫCt)1/ǫ). On the other hand, because St
2 and St

3 are smooth invertible
maps, St

2#u and St
3#u are continuous with respect to the Lebesgue measure, and by

the change of variable formula, we have

(St
i#u)̂(r) = (σt

i#û)(r) = û(τ t
i (r))

∂τ t
i (r)

∂r
i = 2, 3 (3.16)

where τ t
i (r) = (σt

i)
−1(r) (3.17)

Proposition 3.9 (Bootstrap). Let ρ ∈ C([0, +∞),PRD(Rd)) be a Lagrangian
solution of the aggregation equation with compactly supported initial data ρinit and
potential K satisfying ∇K(x) = ~x |x|α−2, 2 − d < α < 2.

(i) If ρinit ⊲ cfǫ,r0
for some c, r0 > 0 and ǫ ∈ (0, 1), then ρ(t)({0}) > 0 for all

t > 0.
(ii) If ρinit ⊲ c gr0

for some c, r0 > 0, then for any t > 0 there exist constants
c1, r1 > 0 and ǫ ∈ (0, 1), such that ρ(t) ⊲ c1 fǫ,r1

.
(iii) If ρinit ⊲ c hβ,r0

, for some c, r0 > 0 and β ∈ (d+α−2
d , 1), then for any t > 0

there exists constants c1, r1 > 0 such that ρ(t) ⊲ c1 gr1
.
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Proof. Let us prove (i). Let St
1(x) = S1(x, t) be the flow map generated by the

velocity field w1(x) = −C |x|1−ǫ x
|x| suggested by Proposition 3.8. From Lemma 3.5

and Proposition 3.8 we then obtain that

ρ(t) ⊲ St
1#cfǫ,r1

(3.18)

for r1 small enough and for all t ≥ 0. Let us fix a t > 0. Since fǫ,r1
has non-zero

mass in B(0, (ǫCt)1/ǫ), it is clear from (3.13) that the measure St
1#cfǫ,r1

has a point
mass at the origin. Then by (3.18) we conclude that ρ(t) also has a point mass at the
origin.

Let us now prove (ii). Again Lemma 3.5 and Proposition 3.8 imply that ρ(t) ⊲
St

2#cgr1
for r1 small enough. As already mentioned St

2#cgr1
is continuous with

respect to Lebesgue measure. We are going to show that given any t > 0, St
2#gr1

≥
c2fr2,ǫ for some constant c2, r2 > 0 and ǫ ∈ (0, 1) which will conclude the proof of (ii).

Let τ t
2(r) = (σt

2)
−1(r) = re−ct

where σt
2(r) is defined by (3.14). Using the change of

variable formula, we get that

(σ2#ĝr1
)(r) = ĝr1

(τ t
2(r))

∂τ t
2

∂r
(r)

=
ωd(

re−ct
)α−1 e−ctre−ct−1 for r small enough

=
ωd

rα−1+(2−α)(1−e−ct)
e−ct

Since 2 − α > 0 it is clear that (σ2#ĝr1
)(r) ≥ c2f̂r2,ǫ(r) for r small enough.

Let us now prove (iii). Once more Lemma 3.5 and Proposition 3.8 imply that
ρ(t) ⊲ St

3#chβ,r1
for r1 small enough. Let us fix t > 0 and show that St

3#chβ,r1
≥ c2gr2

for r2 small enough. In view of (3.7) it is enough to prove that

lim
r→0

rα−1
(
σt

3#ĥβ,r1
(r)
)

> 0. (3.19)

Let τ t
3(r) = (σt

3)
−1(r) and note that

ln
1

τ t
3(r)

=

(
−cβt +

(
ln

1

r

)β
)1/β

(3.20)

From now on we drop the lower subscript. From the change of variable formula we
have

σt#ĥ(r) = ĥ(τ t(r))
∂τ t

∂r
(r) (3.21)

=
τ t(r)1−α

(
ln 1

τ t(r)

)β

∂τ t

∂r
(r) (3.22)

=
τ t(r)2−α

−cβt +
(
ln 1

r

)β
∂τ t

∂r (r)

τ t(r)
(3.23)

where we have used (3.20) to go from (3.22) to (3.23). Then note that using (3.20)
again we get

∂τ t

∂r (r)

τ t(r)
= −

∂

∂r
ln

(
1

τ t(r)

)
=

(
−cβt +

(
ln

1

r

)β
) 1

β −1(
ln

1

r

)β−1
1

r
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which combined with (3.23) gives

rα−1
(
σt#ĥ(r)

)
=

(
τ t(r)

r

)2−α
(
−cβt +

(
ln

1

r

)β
) 1

β −2(
ln

1

r

)β−1

(3.24)

=

(
τ t(r)

r

)2−α
(

1 −
cβt

(
ln 1

r

)β

) 1
β −2(

ln
1

r

)−β

(3.25)

≥
1

2

(
τ t(r)

r

)2−α (
ln

1

r

)−β

for r small enough (3.26)

Using (3.20) and doing a Taylor expansion we find that

ln

(
τ t(r)

r

)
= ln

(
1

r

)
− ln

(
1

r

)(
1 −

cβt
(
ln 1

r

)β

)
(3.27)

= ct

(
ln

1

r

)1−β
(

1 + o

(
cβt

(
ln 1

r

)β

))
(3.28)

≥
1

2
ct

(
ln

1

r

)1−β

for r small enough (3.29)

Combining (3.26) and (3.29) we get

ln
(
rα−1

(
σt#ĥ(r)

))
≥ ln(1/2) +

1

2
(2 − α)ct

(
ln

1

r

)1−β

− β ln ln
1

r

for r small enough. Since 2−α > 0 it is clear that limr→∞ ln
(
rα−1

(
σt#ĥ(r)

))
= +∞

which implies (3.19).
We now prove Theorem 3.1:
Proof of Theorem 3.1. If ρinit ⊲ c hβ,r0

for some for some c, r0 > 0 and β ∈
(d+α−2

d , 1), we can apply the previous proposition to get that for any t1 > 0, ρ(t1) ⊲
c gr0

for some different constants c, r0 > 0. Applying the proposition again, we
get that for any t2 > t1, ρ(t2) ⊲ c fǫ,r0

for some other constants c, r0 > 0 and for
some ǫ ∈ (0, 1). Applying the proposition one last time we get that for any t3 > t2,
ρ(t3)({0}) > 0. Since t1 < t2 < t3 can be chosen arbitrarily small, this conclude the
proof. 2

4. Newtonian potential case.

An even more singular case is that of the Newtonian potential, α = 2 − d in
general, with K(x) = log |x| in the special case of 2D. Without loss of generality we
use the normalization for K that yields ∆(K ∗ ρ) = ρ, i.e. the fundamental solution
of the Poisson equation. This simple fact localizes the dynamics as compared to
the nonlocal case studied in previous sections. In Eulerian coordinates, for smooth
densities, we have

ρt + v · ∇ρ = ρ2. (4.1)

Recall that for radially symmetric problems, the Laplace operator is

∆f =
1

rd−1

∂

∂r
rd−1 ∂f

∂r
.
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Likewise we have the following formulae for the divergence and gradient operators:

∇f =
∂f

∂r
~r,

where ~r is the unit outward pointing radial vector and

div v =
1

rd−1

∂

∂r
rd−1v.

Using the latter formula we can rewrite v above in terms of ρ simply by inverting
divv = −ρ:

v(r) = −
1

rd−1

∫ r

0

sd−1ρ(s)ds := −
m(r)

rd−1
, (4.2)

where m(r) is proportional to the mass contained inside a ball of radius r. Thus it
makes sense to rewrite the evolution equation (4.1) in mass coordinates - in general
regardless of the kernel it is

mt + vmr = 0. (4.3)

However this greatly simplifies in the special Newtonian case. Formula (4.2) gives

mt −
mmr

rd−1
= 0.

By changing variables to z coordinates, where z = rd

d , we have the inviscid Burgers
equation,

mt − mmz = 0. (4.4)

While the mass coordinates (4.3) is well-known, to the best of our knowledge
the transformation to the inviscid Burgers equation (4.4) for the Newtonian poten-
tial is new in higher dimensions. In one dimension it is known that K = |x| can be
transformed to the inviscid Burgers problem see e.g. [15]. The connection to Burgers
equation allows us to prove quite a lot about radially symmetric solutions of the ag-
gregation equation with Newtonian potential. We consider three cases: (a) monotone
decreasing radial densities for which we have a unique forward time solution; (b) gen-
eral radial densities for which we have existence of solutions but uniqueness requires
the specification of a jump condition (akin to choosing a particular entropy-flux pair
for the definition of distribution solution, and; (c) the case of radially symmetric signed
measures for which one requires an additional entropy condition in order to have a
unique solution. All of these cases can be distinguished by the known properties of
the inviscid Burgers equation [42, 30].

4.1. Case 1: ρ ∈ PRD(Rd) - existence of unique classical solutions.

In the case of radially symmetric monotone decreasing probability measures, we
have unique classical solutions by virtue of the fact that the corresponding flow field
v is Lipschitz for r > 0. Monotonicity is preserved by virtue of the localization of the
equations as described above. More specifically, we have the heuristic that ρ satisfies
ρt = ρ2 along characteristics so the initial ordering of the density is preserved provided
that the characteristics remain well ordered and are well defined. We can prove this
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to be the case by going to the mass coordinate formulation above. The condition
that the characteristics remain well defined is akin to proving that shocks will not
form from any initial data satisfying the monotonicity condition. If a shock forms -
which we define as a singularity in mz in the mass equation (4.4), the first time of
formation will occur at tshock = supz{1/m′

init(z)}. So we need the characteristic to
reach the origin before this time occurs. Denote by zs the location at time zero of
this characteristic. Then our condition on the shock occurring after the characteristic
crosses zero is

zs

minit(zs)
<

1

m′
init(zs)

⇐⇒ minit(zs) > zsm
′
init(zs)

since both minit and m′
init are nonnegative. Using the definition of the mass m and

converting back to regular radial coordinates, the above is equivalent to the following
condition on the density ρ:

∫

B(0,R)

ρinit(R)dx ≤

∫

B(0,R)

ρinit(x)dx

for all R, which is true for monotone decreasing initial data ρinit. The special case
of the equals sign for the first shock time is equivalent to the shock happening right
when the characteristic reaches the origin. There are exact solutions that satisfy this -
corresponding to a density that is the characteristic function of a collapsing ball. The
corresponding solution in (m, z) coordinates is the well-known Burgers solution of the
form −z/(1− t) that forms a shock in finite time in which all of the characteristics on
an interval collapse at the origin simultaneously. This example is the most singular
case of the general class of solutions considered in this subsection. Since the only
shocks that form occur at the origin, which is a boundary of the domain, this results
in a global-in-time classical solution of (4.4) for any initial condition minit(z) arising
from a probability density ρinit ∈ PRD(Rd). The classical solution of the inviscid
Burgers equation easily gives us a unique solution of the Lagrangian formulation of
the problem as well. We state these results below:

Theorem 4.1. Given compactly supported initial data ρinit ∈ PRD(Rd), define
minit =

∫ r

0 sd−1dρ. Then there exists a unique classical solution to equation (4.4)
on the half space (x, t) ∈ (0,∞) × [0,∞) and a corresponding unique solution of
the Lagrangian mapping formulation of the density transport problem. The solution
retains its monotonicity property for all time.

As we show below the situation is much more complicated for general radially
symmetric probability distributions without the monotonicity condition.

4.2. Case 2: ρ ∈ PR(Rd) - existence of unique solutions with jump con-

dition.

In the case of general radially symmetric probability densities, we no longer have
classical solutions. Let us consider the simplest example of data that violates the
monotonicity condition - that of a uniform delta-concentration on the boundary of
the ball of radius R∗. Following the mass coordinates, we see that this example
has a jump discontinuity in m(z) at z∗ = (R∗)d/d. Since m is the characteristic
speed, this likewise results in a jump in the velocity across the delta-ring. One way
to define the solution is to consider a distribution solution of (4.4) in which case
the speed of the shock (velocity of the delta-ring) is defined, in z coordinates as
sz−shock = (m1+m2)/2, i.e. the Rankine-Hugoniot condition associated with equation
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(4.4). As is well-known for scalar conservation laws, we could transform equation (4.4)
by multiplying by any function of m,

(F (m))t − (G(m))z = 0, F ′(m) = f(m), G′(m) = mf(m) (4.5)

for some function f , yieldling a different jump condition in the weak-distribution form
of (4.5),

sz−shock =
[F (m)]

[G(m)]

where [ ] denotes the jump across the shock.
By virtue of well-known results for scalar conservation laws, we obtain families of

weak solutions for the general radially symmetric problem. For a given formulation
of the form (4.5) there exists a unique distribution solution. Uniqueness for inviscid
Burgers often requires an additional entropy condition. In the case of formulation
(4.4), the entropy condition is automatically satisfied by the monotonicity of m, which
is guaranteed for any radial probability density, not necessarily monotone. The full
entropy condition would only be required in the case of non-monotone m such as
would arise in the case of a signed measure ρ.

It would be interesting to know whether there is an optimal choice of shock speeds
for these under-determined problems. For example one might also consider an optimal
transport framework in which the best choice of shock speed would be one in which the
interaction energy is most quickly dissipated. For the aggregation problem this would
result in the fastest speed possible for the delta-ring which would satisfy a Lagrangian
formulation of the problem but perhaps not a classical distribution solution in Eulerian
variables - even in the m − z framework described above. We note that the entropy
solution discussed above, in which the speed of the shock is chosen to be the average
of the speeds on either side, is a natural generalization of the choice conventionally
made for 2D vortex sheets, in which v = ∇⊥K ∗ρ rather than v = ∇K ∗ρ, and ρ is the
vorticity. For that problem one ascribes a velocity to the sheet that is the arithmetic
average of the speeds on either side [49]. The frozen time calculation can be made by
analogy to the incompressible flow problem, however the ensuing dynamics is quite
different. For the vortex sheet problem the flow is tangential to the sheet so the issue
of shocks does not arise. For the aggregation problem the flow is normal to the sheet
and affects the solution on either side of it, because the speed of the shock determines
the rate at which characteristics on either side of the discontinuity are absorbed and
the rate at which information is lost in the discontinuity. To summarize, if we define
a solution as satisfying an equation of the form (4.5) in the sense of distributions,
then we expect a unique solution, however, in the case of jump discontinuities in m,
the shock speed will depend on the choice of entropy-flux pair as discussed above.
Moreover we believe even more general examples may exist that could satisfy an
optimality condition associated with dissipation of the interaction energy. We finally
briefly mention the case of signed measures below.

4.3. Case 3: signed measures.

The case of signed measures introduces yet another source of nonuniqueness of
solutions, which we briefly discuss. A signed measure corresponds to a non-montone
(but L∞) solution of the inviscid Burgers problem. This general formulation intro-
duces the need for something like an entropy condition to achieve unique distribution
solutions. For example, in the case of a negative delta-ring measure, we have a decreas-
ing jump in m which introduces the possibility of a rarefaction solution going forward
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in time. In the classical weak solution formulation of Burgers equation, the entropy
condition would select the rarefaction as the unique forward-time solution. Neverthe-
less there exist other solutions, such as the outward-moving shock, that are bonafide
distribution solutions, albeit ones that violate Lax’s entropy condition whereby the
speed of the shock should be faster than the characteristic speed ahead of it, and
slower than the characteristic speed behind it.

5. Conclusions.

We have considered existence of radially symmetric, monotone decreasing solu-
tions to the aggregation equation in the case of more singular potentials |x|α/α for
α in the range 2 − d ≤ α < 1. We remind the reader that the problem with α ≥ 1
is known to be globally well-posed for measure data including the case without ra-
dial symmetry and monotonicity [21]. For 2 − d ≤ α < 2 we find that monotonicity
is preserved, a feature that is not true for α > 2. Our results provide a rigorous
framework for monotonicity behavior observed in numerical simulations of finite time
blowup [38, 39] for radially symmetric data. The results also provide an understand-
ing of the continuation of the solution after blowup. That understanding includes
the result that one obtains instantaneous mass concentration for certain classes of L1

initial data including those observed as the asymptotic form of the blowup profile in
numerical simulations [38, 39]. The special case of the Newtonian potential results in
a localization of the problem, reducing to a form of the inviscid Burgers equation on
the half line. In particular for radially symmetric decreasing data, there is a unique
classical solution of the Burgers problem for all time, resulting in a unique solution
of the original density problem. This solution also retains its monotonicity.

In contrast to the Newtonian potential, for the case 1 > α > 2 − d the ensuing
velocity field is at best Hölder continuous in time and our results are less precise. For
example, uniqueness of solutions is still an open problem in this range, as is existence
in the case of non-monotone, radially symmetric data. The existence problem is
complicated by the fact that the velocity field is at best Hölder continuous which
makes it difficult to get convergence estimates for the flow map - something we use
to prove existence of solutions in the case of monotone data. It is somewhat ironic
that the more singular case of the Newtonian potential can be more easily solved - the
velocity field is more singular, with a jump discontinuity. However the localization
of the dynamics results in a better understanding of the problem. For the general
nonlocal problem in the range 2− d < α < 2, the monotonicity assumption allows for
smoother estimates on the velocity field, namely Lipschitz estimates, which allow us
to prove convergence of approximations and hence existence of a Lagrangian solution.

There are many open problems. Uniqueness of the monotone solutions we con-
struct in this manuscript is not known in the range 2 − d < α < 1. Existence for
non-monotone data has also not been proved in this range. Moreover, the general
problem with non-radially symmetric data is wide open.

6. Appendix.

6.1. Some general ODE results.

In standard ODE textbooks such as [24], it is proven that the flow map associated
to a velocity field which is continuously differentiable in both space and time is itself
differentiable. In our case of interest the velocity field is continuously differentiable in
space but only continuous in time. We show here that the hypothesis of continuous
differentiability in time can be replaced by a weaker assumption that holds true in
our case. Only very minor modifications are needed compared to standard proofs
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found in ODE textbooks such as [24]. We will refer to [24] and we will indicate the
necessary modifications to be made in the proof there.

Let Ω ⊂ R
d and J ⊂ (−∞, +∞) be two open sets. Suppose the function v :

Ω × J → R
d satisfies the following:

(H0) v is continuous on Ω × J .
(H1) For every t ∈ J , the function x 7→ v(x, t) is continuously differentiable on Ω.

We denote by Dv its derivative.
(H2) Given compact sets Ω̄1 ⊂⊂ Ω and J̄1 ⊂⊂ J , there exists C > 0 such that

|Dv(x, t)| ≤ C

for all (x, t) ∈ Ω̄1 × J̄1.
(H3) Given compact sets Ω̄1 ⊂⊂ Ω and J̄1 ⊂⊂ J , and given ǫ > 0, there exists

δ > 0 such that

|Dv(y, t) − Dv(x, t)| ≤ ǫ

for all x, y ∈ Ω̄1 satifying |x − y| < δ and for all t ∈ J̄1.
Theorem 6.1. Under the above hypothesis, given (x0, t0) ∈ Ω × J there exists

open sets Ω0 ⊂ Ω and J0 ⊂ J such that (x0, t0) ∈ Ω0 × J0 and a unique continuous
function σ : Ω0 × J0 7→ R

d such that

σ(x, t) = x +

∫ t

t0

v(σ(x, s), s)ds (6.1)

Moreover, given t ∈ J0, the mapping x 7→ σ(x, t) is continuously differentiable on Ω0

and we have

Dσ(x, t) = Id +

∫ t

t0

Dv(σ(x, s), s)Dσ(x, s)ds (6.2)

Proof. The proof of Theorem 1.184, page 120 in [24] (or Theorem 1.261, page
138 of the online version of [24]) can be carried out with very minor modifications.
Let us just mentioned where and how hypothesis (H3) is needed. In the proof of
[24] the space X and Y are defined by X = C(b(t0, δ) × B(x0, ν/2), B̄(x0, ν)) and
Y = Cb(b(t0, δ) × B(x0, ν/2), L(Rd, Rd)), where b(t0, δ) and B(x0, ν/2) denotes balls
of radius δ and ν/2 and L(Rd, Rd) denotes the set of linear transformations on R

n.
Both X and Y are endowed with the sup norm. Cb stands for continuous and bounded.
The mapping Ψ : X × Y → Y is defined by

Ψ(φ, Φ)(x, t) = Id +

∫ t

t0

Dv(φ(x, s), s)Φ(x, s)ds.

In order to use the fiber contraction principle from [24], we must verify that Ψ is con-
tinuous. From (H2) we easily obtain ‖Ψ(φ, Φ1) − Ψ(φ, Φ2)‖ ≤ Kδ ‖Φ1 − Φ2‖ where
K = supB(x0,ν/2)×b(t0,δ) |Dv|. Hypothesis (H3) is needed in order to obtain continuity
of Ψ with respect to its first argument. To see this write

Ψ(φ1, Φ)(x, t) − Ψ(φ2, Φ)(x, t) =

∫ t

t0

(Dv(φ1(x, s), s) − Dv2(φ(x, s), s)) Φ(x, s)ds.

(6.3)
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Using (H3) we see that ‖Ψ(φ1, Φ) − Ψ(φ2, Φ)‖ can be made as small as we want by
choosing φ1 and φ2 close enough with respect to the sup-norm.

Remark 2. Since Dv is not assumed to be continuous with respect to time,
the function t 7→ Dσ(x, t) is not necessarily continuously differentiable. However it
is absolutely continuous as can been seen from (6.2). Therefore, given x ∈ Ω0, the
function Y (t) = Dσ(x, t) is differentiable for almost every t ∈ J0 and the differential
equation

Y ′(t) = Dv(σ(x, t), t) Y (t)

holds almost everywhere in J0. Then we can use Liouville Theorem (which is stated
below) to deduce that

d

dt
det Dσ(x, t) = (div v)(σ(x, t), t) det Dσ(x, t) (6.4)

also holds almost everywhere in J0. This of course implies that

det Dσ(x, t) = exp
(∫ t

t0

(div v)(σ(x, s), s)ds
)
. (6.5)

which is the formula needed in our case (see (2.24)).
Theorem 6.2 (Liouville). Let A be d×d matrix and let Y(t) be a d×d time depen-

dent matrix which is differentiable at t = t0 and satisfies Y ′(t0) = A Y (t0). Then the
function Λ(t) = det Y (t) is differentiable at t0 and satisfies Λ′(t0) = (Tr A) Λ(t0).

Proof. See for example Hartman [34].

6.2. Some general Lemmas.

A proof of the following Lemma can be found in [25, Lemma 3.11].
Lemma 6.3. Let T, S : R

d → R
d be two Borel maps. Also take ρ ∈ P2(R

d). Then

W2(S#ρ, T#ρ) ≤ ‖S − T ‖L∞(suppρ) .

Lemma 6.4. Suppose that ρ ∈ P(Rd) has compact support and suppose that
PRD(Rd) ∋ ρn converges narrowly to ρ. Then ρ also belongs to PRD(Rd).

Proof. Let R be a rotation of R
d and let f ∈ C(Rd). Then f ◦ R ∈ C(Rd) and∫

f◦Rdρn =
∫

fdρn. Taking limits we see that
∫

f◦Rdρ =
∫

fdρ so that ρ ∈ MR(Rd).
To prove ρ is decreasing fix 0 < r1 < r2 and take disjoint small rings Aj = {rj − ηj ≤
|x| ≤ rj + δj}, j = 1, 2 having the same volume. We may assume ρ(∂Aj) = 0.
Then there exist continuous functions f1 ≥ χA1

and f2 ≤ χA2
with disjoint supports

such that |ρ(Aj) −
∫

fjdρ| < ǫ. By hypothesis we have inf f1dρn ≥
∫

f2dρn, so that
ρ(A2) + 2ǫ ≤ ρ(A1). Then shrinking ǫ, A1 and A2 shows that ρ ∈ PRD(Rd).

Lemma 6.5. Let α > 2 − d and suppose y : [0, +∞) → [0, +∞) is an absolutely
continuous function satisfying −y(t)α−1 ≤ y′(t) ≤ 0 for almost every t ∈ [0, +∞) for
which y(t) > 0. If α ≤ 1 then y(t) is Hölder continuous. To be more precise:

−((2 − α)(t − s))
1

2−α ≤ y(t) − y(s) ≤ 0

for all 0 ≤ s ≤ t. If α > 1 then y(t) is Lipschitz continuous. To be more precise:

−y(0)α−1(t − s) ≤ y(t) − y(s) ≤ 0

26



for all 0 ≤ s ≤ t.
Proof. The case α > 1 is trivial since the inequality −y(t)α−1 ≤ y′(t) ≤ 0 together

with the non-negativity of y implies −y(0)α−1 ≤ y′(t) ≤ 0. We now prove the Lemma
for 2 − d < α ≤ 1. For almost every t ≥ 0 for which y(t) > 0 we have −(2 − α) ≤
d
dt

(
y(t)2−α

)
≤ 0. It is then clear that −(2 − α)(t − s) ≤ y(t)2−α − y(s)2−α ≤ 0 for

all 0 ≤ s ≤ t. But because of the convexity of the function r 7→ r2−α we have that
(y(s) − y(t))2−α ≤ y(s)2−α − y(t)2−α, which gives the result.
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